

International Journal of Control, Automation and Systems VV(N) (YYYY) 1-3 ISSN:1598-6446 eISSN:2005-4092

http://dx.doi.org/10.1007/s12555-xxx-xxxx-xx http://www.springer.com/12555

 ICROS, KIEE and Springer 2016

Multi-Agent Quality of Experience Control

Francesco Delli Priscoli, Alessandro Di Giorgio, Federico Lisi, Salvatore Monaco,

Antonio Pietrabissa, Lorenzo Ricciardi Celsi*, and Vincenzo Suraci

Abstract: In the framework of the Future Internet, the aim of the Quality of Experience (QoE) Control functionalities

is to track the personalized desired QoE level of the applications. The paper proposes to perform such a task by

dynamically selecting the most appropriate Classes of Service (among the ones supported by the network), this

selection being driven by a novel heuristic Multi-Agent Reinforcement Learning (MARL) algorithm. The paper

shows that such an approach offers the opportunity to cope with some practical implementation problems: in

particular, it allows to face the so-called “curse of dimensionality” of MARL algorithms, thus achieving satisfactory

performance results even in the presence of several hundreds of Agents.

Keywords: Future Internet, Multi-Agent Reinforcement Learning, Quality of Experience, Quality of Service.

1. INTRODUCTION

A key Future Internet target is to allow applications to

transparently, efficiently and flexibly exploit the available

resources, with the aim of achieving a satisfaction level

that meets the personalized users’ needs and expectations.

Such expectations could be expressed in terms of a

properly defined Quality of Experience (QoE). In this

respect, the International Telecommunication Union

(ITU-T) defines QoE as the overall acceptability of an

application or service, as perceived subjectively by the

end-user [1]: this means that QoE could be regarded as a

personalized function of plenty of parameters of

heterogeneous nature and spanning all layers of the

protocol stack (e.g., such parameters can be related to

Quality of Service (QoS), security, mobility, contents,

services, device characteristics, etc.).

Indeed, a large amount of research is ongoing in the

field of QoE Evaluation, i.e., of the identification, on the

one hand, of the personalized expected QoE level (Target

QoE) for a given user availing her/himself of a given

application in a given context (e.g., see [2] and [3] for

voice and video applications, respectively), and, on the

other hand, of the personalized functions for computing

the Perceived QoE, including the monitorable Feedback

Parameters which could serve as independent variables for

these functions (e.g., see [4]). In particular, several works

focus on studying the relation between QoE and network

QoS parameters (e.g., see [5]).

Another QoE-related key research issue is that of QoE

Control. Once a QoE Evaluator has assessed the

personalized expected QoE level (Target QoE) and the

personalized currently perceived QoE level (Perceived

QoE), a QoE Controller should be in charge of making

suitable Control Decisions aimed at reducing, as far as

possible, the difference between the personalized Target

and Perceived QoE levels. Section 2.1 discusses the nature

of the QoE Controller decisions.

QoE Evaluation and QoE Control are also being widely

studied in the context of several Future Internet related

initiatives such as the MIUR PLATINO project [6] and

the FP7 Future Internet PPP initiative (namely, [7] and

[8]).

This paper focuses on QoE Control, whereas QoE

Evaluation falls outside the scope of the paper. The

interested readers are referred to [4] and [9] for an

approach to QoE Evaluation that is fully consistent with

this paper. Without claiming to present a ready-to-use

solution, this paper provides some innovative hints that

could ensure an efficient implementation of the QoE

Controller.

In Section 2.1, the paper describes how Control

Decisions can practically be implemented via the dynamic

selection of predefined Classes of Service. In Section 2.2,

the paper explains how such a dynamic selection can be

performed in a model-independent way – in the authors’

opinion, a control-based approach (as in [10] and [11])

relying on any Future Internet model is not practically

Manuscript received December 13, 2015.

This work was supported by the Italian Ministry of Education, Research and University, namely by the PLATINO PON project

(www.progettoplatino.it), under Grant Agreement no. PON01_01007.

Francesco Delli Priscoli, Alessandro Di Giorgio, Federico Lisi, Salvatore Monaco, Antonio Pietrabissa, and Lorenzo Ricciardi Celsi are with

the Department of Computer, Control and Management Engineering “Antonio Ruberti,” University of Rome “La Sapienza,” via Ariosto 25,

00185 Rome, Italy (email: {dellipriscoli, digiorgio, lisi, monaco, pietrabissa, ricciardicelsi}diag.uniroma1.it).

Vincenzo Suraci is with eCampus University, via Isimbardi 10, 22060 Novedrate, Italy (email: vincenzo.suraci@uniecampus.it).

* Corresponding author.

Adam Smith and Ikura Mizumoto are with the School of Mechanical Engineering, World University, 1050 Jackson St., Albany, CA 94000,

U.S.A. (e-mails: {smith, newton}@icros.org).

* Corresponding author.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio della ricerca- Università di Roma La Sapienza

https://core.ac.uk/display/80310148?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 F. Delli Priscoli, A. Di Giorgio, F. Lisi, S. Monaco, A. Pietrabissa, L.Ricciardi Celsi, and V. Suraci

2

viable due to the sheer unpredictability of the involved

variables [12] – thanks to the adoption of a multi-agent

algorithm. A suitable algorithm was identified in a Multi-

Agent Reinforcement Learning (MARL) technique,

namely the MARL Q-Learning algorithm presented in [13]

and [14] (classical multi-agent algorithms – see, e.g., [15,

16] – are based on state-space models). Then, the paper

discusses the limitations of MARL Q-Learning with

respect to practical implementation (Section 3.1) and how

these limitations can be overcome by adopting the

proposed heuristic algorithm, hereafter referred to as H-

MARL-Q algorithm (Section 3.2). Finally, some

numerical simulations showing the encouraging

performance results of the proposed heuristic algorithm

are presented in Section 4.2 with reference to a proof-of-

concept scenario (described in Section 4.1) which does not

claim to represent any real network.

2. THE QoE CONTROLLER

2.1. QoE Controller Architecture

The QoE Controller makes its decisions at discrete time

instants tk, hereafter referred to as time steps, occurring

with a suitable time period T, whose duration depends on

the considered environment (including technological

processing constraints).

We assume that each in-progress application instance

is handled by an Agent i and we define the personalized

QoE Error at time tk (indicated as ei(tk)), relevant to Agent

i, as

 ei(tk) =

PQoEi(tk) TQoEi (1)

where PQoEi(tk) represents the Perceived QoE, i.e., the

QoE currently perceived at time tk by Agent i, and TQoEi

represents the Target QoE, i.e., the personalized QoE

which would satisfy the personalized Agent i

requirements. So, if this QoE Error is positive, the in-

progress application is said to be overperforming, since

the QoE currently perceived by the Agent is greater than

the desired one, whereas, if the QoE Error is negative, the

in-progress application is said to be underperforming.

Note that the presence of overperforming Agents might

affect the system performance, since they may require an

unnecessarily large amount of resources, which could

cause, in turn, the underperformance of other Agents. The

goal of the QoE Controller is to guarantee, at every time

tk, a nonnegative QoE Error for all Agents i (for

i = 1,…, N), i.e., to avoid the occurrence of

underperforming applications. Furthermore, if it is not

possible to guarantee a nonnegative QoE Error for all

Agents (e.g., due to insufficient network resources), the

QoE Controller should reduce, as far as possible, the QoE

Errors of the various Agents while guaranteeing fairness

among them. Fairness basically consists in making sure

that the QoE Errors experienced by the Agents are kept,

as far as possible, close to one another.

As shown in Fig. 1, both the Perceived and the Target

QoE should be computed by a suitable QoE Evaluator

based on suitable Feedback Parameters resulting from the

real-time monitoring of the network, as well as from direct

or indirect feedbacks coming from users and/or

applications. For a more detailed description of the way

the QoE functionalities are embedded in the Future

Internet architecture, see [17], [18] and [19].

Quality of

Experience (QoE)

Controller

Control

Decisions

Quality of

Experience (QoE)

Evaluator

Target

QoE

Perceived

QoE

Users

Applications

Networks

Feedback

Parameters

Fig. 1. Sketch of the QoE architecture for the Future

Internet.

In particular, a promising approach [4] is to relate the

computation of the Perceived QoE to the application type

(e.g. real-time HDTV streaming, distributed

videoconferencing, File Transfer Protocol, etc.) of each

in-progress application instance. Let M denote the total

number of application types in the considered

environment; let m  denote a generic

application type; let i(m) denote an Agent (i.e., an

application instance) belonging to the m-th application

type. Then, the Perceived QoE for Agent i(m), denoted

with PQoEi(m)(tk), is computed as follows:

 PQoEi(m)(tk) = gm(mtk), (2)

where mtkrepresents a suitable set of Feedback

Parameters for the m-th application type, computed up to

time tk, and gmis a suitable function relating, for the m-th

application type, the Feedback Parameters mtkwith the

Perceived QoE. Section 4 shows a simple implementation

of (2); more advanced implementations can be found in

[9].

A relevant drawback that could be immediately

associated with such a method of evaluating the Perceived

QoE for every Agent at each time step is the fact that an

Agent can intentionally underreport its own Perceived

QoE in order to increase the amount of network resources

allocated to it. Such a problem falls within the area of

mechanism design [20]. In this respect, in [21], Delli

Priscoli et al. propose an interesting solution (compliant

with the control algorithm discussed here) that allows to

determine whether the Agent feedbacks are being fair or

not. Such a solution is capable of ensuring an acceptable

degree of robustness to possible episodes of dishonest

Agent conduct.

The Target QoE, denoted with TQoEi, can be derived

from a suitable analysis of the available Feedback

Parameters (e.g., by using unsupervised machine learning

techniques), or it can simply correspond to a reference

value which is assigned by the Telco operator, taking into

account the commercial profile of the user.

In this paper, we propose a solution in which the

Manuscript Template for the International Journal of Control, Automation, and Systems: ICROS & KIEE

3

distributed Agents associated to the application instances

are embedded in properly selected network nodes (e.g., in

the mobile user terminals): the Agents are in charge of the

monitoring and actuation functionalities whereas the

control functionalities are centralized in the QoE

Controller.

In particular, whenever a new application instance is

born, the associated Agent i is in charge of evaluating the

personalized Target QoE TQoEi (which remains

unchanged for the whole lifetime of the application

instance), of computing its own personalized Perceived

QoE PQoEi(tk) and of communicating the monitored

values to the QoE Controller. As a result, at each time tk,

the QoE Controller, based on the received values for

TQoEi
 and PQoEi(tj) up to time tk (i = 1,…, N; j = 0, 1,…,

k), has to choose the most appropriate action ai(tk) (for

i = 1,…, N) which the Agent i should enforce at time tk,

i.e., the most appropriate joint action (a1(tk), a2(tk),…,

aN(tk)) which the N Agents should enforce at time tk. At

each time tk, the chosen joint action is broadcast to the N

Agents: then, the i-th Agent has to enforce the

corresponding action ai(tk).

Note that the proposed arrangement is based on the

presence of a centralized entity (i.e., the QoE Controller),

collecting the Agents’ observations, which runs the

MARL algorithm and broadcasts the resulting Control

Decisions to the Agents. Therefore, any direct signal

exchange among the Agents is avoided, thus limiting the

overall signalling overhead.

The QoE Controller outputs, i.e, the joint action chosen

by the QoE Controller, may include for each Agent the

choice of QoS Reference Values (e.g., the expected

priority level, the tolerated transfer delay range, the

minimum throughput to be guaranteed, the tolerated

packet loss range, the tolerated dropping frequency range,

etc.), of Security Reference Values (e.g., the expected

encryption level, the expected security level of the routing

path computed by introducing appropriate metrics, etc.),

and of Content/Service Reference Values (e.g., the

expected content/service mix, etc.).

The QoE Controller has to dynamically select, for each

in-progress application instance, the most appropriate

Reference Values which should actually drive, thanks to

suitable underlying network procedures (which are

outside the scope of this paper), the Perceived QoE as

close as possible to the Target QoE (for further details, see

[12] where the above-mentioned Reference Values are

referred to as Driving Parameters). However, since the

control action has a large number of degrees of freedom,

the exploration of the solution space may take a large

amount of time, thus making the task of the QoE

Controller excessively complex. A simpler (yet less fine-

grained) control task arises if the management of the

underlying networks is arranged into Classes of Service

(CoS), as described in [22].

In this paper, we assume that each CoS is associated

with a predefined set of QoS Reference Values.

Nevertheless, the proposed approach can be applied even

in the case when each CoS is associated with a set of

Reference Values that are not necessarily related to QoS

issues only, but also, for instance, to Security parameters,

and/or to Content/Service characteristics, etc. Let S

indicate the total number of CoSs and let ai(tk) {c1, c2,

…, cS} indicate the action performed by the i-th Agent (i.e.,

the CoS chosen by the i-th Agent) at the time instant tk.

In current telecommunication networks, a static CoS

assignment policy is adopted: each application instance is

given a CoS for its entire lifetime; the CoS associated to a

given application instance should be the one whose QoS

Reference Values satisfy “on the average” the application

requirements. Nevertheless, it is evident that such a static

association does not take into account either personalized

application requirements or contingent situations taking

place in the telecommunication networks, such as

congestion events. So, a static CoS assignment may

generally lead to poor performance in terms of the

personalized QoE perceived by each user. Hence, this

paper considers dynamic CoS-to-application assignment

as the methodological means to accomplish the above-

mentioned goals in terms of QoE Error reduction and

fairness. This means that, at each time instant tk, the QoE

Controller has to decide, in real time, which is the most

appropriate CoS to be associated with each in-progress

application instance (e.g., if the Agents are embedded in

mobile user terminals, the QoE Controller decisions can

be implemented by inserting the selected CoS identifier in

the header of the packets transmitted by the terminals). Up

to the authors’ knowledge, apart from [18], [19], [12] and

[23], such a dynamic assignment approach has never been

investigated so far.

Indeed, meeting the Target QoE for the in-progress

applications, in conjunction with an efficient exploitation

of the available bandwidth, could be a rather challenging

issue, especially in wireless networks with limited

bandwidth resources. In this respect, optimal adaptive

control strategies could be key factors to cope with such

an issue. Moreover, due to the data-intensive nature of

multimedia streaming services as well as due to the

increasingly demanding requirements in terms of

QoS/QoE, Reinforcement Learning based algorithms are

being used more and more in telecommunication

networks, as long as they prove to be computationally

efficient and sufficiently scalable [24].

2.2. The MARL-Q Algorithm for the QoE Controller

This paper focuses on the problem of designing the QoE

Controller algorithm. It should be evident that, in order to

solve this problem by means of traditional model-based

control techniques, the QoE Controller should know – or

at least estimate – the correlation between its decisions

(namely, the selected QoE Controller outputs) and the

Perceived QoE. However, no model of the very complex

plant regulated by the QoE Controller (namely, the plant

receiving the QoE Controller outputs in input and

producing the Perceived QoE as its output) can be

assumed, since it depends on plenty of hardly predictable

factors (such as traffic characteristics of the ongoing

applications, network topologies, resource management

algorithms, QoE Evaluation methods and so on).

In light of the above, the QoE Controller decision

 F. Delli Priscoli, A. Di Giorgio, F. Lisi, S. Monaco, A. Pietrabissa, L.Ricciardi Celsi, and V. Suraci

4

strategy must be learned online by trial and error. This is

why we propose that the QoE Controller makes use of a

model-free MARL algorithm in order to evaluate, at each

time step tk, the joint policy (a1(tk), a2(tk), …, aN(tk)) =

(a1, a2, …, aN) which, once enforced by the Agents,

tracks the discussed goals in terms of QoE Error. The

proposed MARL algorithm works on the basis of the

observation of a joint reward r(tk+1, a1(tk), a2(tk), …, aN(tk))

= r(tk+1, a1, a2, …, aN), i.e., of the numerical reward (the

same for all the N Agents) which is received by each

Agent at time tk+1
 as a consequence of the enforcement, at

time tk, of the joint policy (a1, a2, …, aN). The MARL

algorithm in question is aimed at maximizing the long-run

return R(), namely at maximizing the expected

discounted return:

where [0,1) is the discount rate, which weighs

immediate versus delayed rewards, and E{} denotes the

expected value under policy .

In order to set up a MARL problem, we have to select

the state space, the action spaces and the reward function.

 We consider a static game, i.e., a game with only a single

state: such an assumption, on the one hand, is not

limiting in our context, and, on the other hand, greatly

reduces the computational complexity which in MARL

is exponential in the number of state and action

variables.

 Following the discussion on dynamic CoS assignment,

the action set Ai of Agent i coincides with the set of

CoSs, i.e., Ai = {c1, c2, …, cS}, i = 1, …, N. In other

words, action ai(tk), performed by Agent i at time tk, can

be equal to either c1, or c2, …, or cS. The cardinality of

the joint action space A = A1 × … × AN is equal to |A1| 

|A2|  …  |AN| = SN.

 The function expressing the joint reward r(tk+1, a1, a2,

…, aN) should be consistent with the discussed goals in

terms of QoE Error; in this respect, each candidate joint

reward should be a non-increasing function of the N

error values |ei(tk)| (for i = 1, …, N). In Section 4.1, the

choice of suitable joint reward functions will be

discussed.

In particular, we propose to apply the Multi-Agent Q-

Learning algorithm [13] (hereinafter referred to as MARL-

Q algorithm) which is proved to converge to an optimal

policy *(a1, a2, …, aN), i.e., to a policy which maximizes

the expected discounted long-run return R(). The

algorithm is the multi-agent extension of the well-known

(single-agent) Q-Learning algorithm ([25]), already

succesfully applied to QoE/QoS control in

communication networks ([26], [27]).

The MARL-Q algorithm relies on the estimation of the

optimal action-value function Q(s, a1, a2, …, aN), defined

as the expected return of the system when it starts from

state s, takes the joint action (a1, a2, …, aN), and follows

policy  thereafter. In the previously defined centralized

context, at each time step tk, this algorithm (i) evaluates a

joint policy (a1, a2, …, aN) – which sums up the

behaviour of all the N Agents and is initialized arbitrarily

– and (ii) improves such a policy by making it -greedy

with respect to the current action-value function [28], thus

yielding a better joint policy ' to be evaluated and

improved at the next iteration.

In detail, the policy evaluation step (i) is performed by

the MARL-Q algorithm by updating the action-value

function Q(tk, a1, a2, …, aN) according to the following

update rule:

where  is the discount rate and tkis a sequence

of learning rates, which are key parameters that should

satisfy the standard stochastic approximation conditions

for convergence [29]. The argument tk denotes the value

of the action-value function computed at time tk, whereas

the argument s is omitted since we are considering a single

state problem.

The policy improvement step (ii) consists in performing,

with probability equal to , a random joint action (a1', a2',

…, aN') and, with probability equal to 1 – , the following

greedy joint action (a1', a2',..., aN'):

The parameter is the exploration rate. A large

value of  guarantees that different policies with respect

to the current best one are explored, and thus avoids that

the QoE Controller remains stuck in a local minimum

(exploration); on the other hand, a small value of  lets the

QoE Controller choose the best action based on the current

estimate of the action-value function (exploitation).

So, at each time step tk, the centralized QoE Controller

– based on the Perceived QoE values PQoEi(tk) (i = 1,

…, N) transmitted by the Agents at time tk, and on the

knowledge of the Target QoE values TQoEi (i = 1, …, N)

transmitted by the Agents at the time of their birth –

performs the following tasks until the optimal action-

value function Q* (and the optimal policy *) is found:

T1) it updates the action-value function Q according to

(4);

T2) it determines the joint action (a1', a2', …, aN') in a

random way with probability equal to  and

according to (5) with probability equal to 1 – ;

T3) it broadcasts the chosen joint action (a1', a2', …, aN')

to all Agents so that Agent i consequently enforces

action ai';

T4) it computes the corresponding joint reward r(tk+1,

a1', a2', …, aN') according to the selected reward

function which should include, as independent

variables, the Perceived QoE values PQoEi(tk) (i = 1,

Manuscript Template for the International Journal of Control, Automation, and Systems: ICROS & KIEE

5

…, N) and the Target QoE values TQoEi (i = 1,

…, N).

The algorithm converges under a generic initial policy.

By varying the learning rates, the exploration rate and

the discount rate, the convergence speed of the algorithm

and the quality of the solution significantly change; the

parameters used in the simulations reported in Section 4

have been tuned by running the simulations several times.

3. PROPOSED HEURISTIC MARL-Q BASED

(H-MARL-Q) ALGORITHM

3.1 Limitations of MARL-Q

The analysis of the contents of the previous section

offers us the opportunity to discuss the following issues.

 The main challenge arisen in MARL is the so-called

curse of dimensionality [14]: in fact, as Reinforcement

Learning algorithms (such as Q-Learning) estimate

values for each possible state or state-action pair, the

computational complexity of MARL is exponential in

the number of state and action variables and, therefore,

in the number of Agents; in addition, the Agents’

rewards are correlated and then they cannot be

maximized independently of one another. The runtime

of the MARL-Q algorithm (i.e., the time the algorithm

needs to perform the specific task it has been designed

for) directly depends on the cardinality SN of the joint

action space. As a matter of fact, at each time step, the

max operator in (5) has to consider SN values; in this

respect, it is particularly important to note that, in a

Future Internet framework where the QoE Controller

should be able to handle even thousands of Agents and

dozens of CoSs, SN would become a really huge value.

For this reason, the task of implementing the dynamic

CoS assignment according to the MARL-Q algorithm

discussed in the previous section is inherently complex

from a computational point of view and, as a result, it

is extremely runtime-consuming. Such a relevant issue

claims for a reasonable reduction of the size of the

joint action space (and, hence, of the computational

effort of the learning algorithm).

 The issue of the nonstationarity of multi-agent

learning arises too, since all Agents in the system are

simultaneously learning: each Agent is faced with a

moving-target learning problem and consequently the

best policy changes as the other Agents’ policies

change. In this respect, the exploration strategy is

crucial for the efficiency of MARL algorithms. Agents

explore to obtain information not only about the

environment, but also about the other Agents, for the

purpose of implicitly building models of these Agents.

In other words, the need for coordination stems from

the fact that the effect of any Agent’s action on the

environment depends also on the actions taken by the

other Agents. Nonetheless, too much exploration

should be avoided, as it may destabilize the learning

dynamics of the other Agents.

In order to address the above-mentioned limitations, this

paper presents an innovative heuristic algorithm, hereafter

referred to as H-MARL-Q algorithm and derived from the

MARL-Q algorithm described in Section 2.2. Such a

heuristic algorithm, in comparison with the latter,

considerably reduces the joint action space, thus

significantly accelerating the task of dynamic CoS

mapping, without teasing out an excessive amount of

exploratory and information-gathering actions (hence,

preserving an acceptable level of environment

exploration). As shown in Section 4, the proposed H-

MARL-Q algorithm has also turned out to be successful

in addressing the issue of the algorithm scalability,

yielding satisfactory results even when the number of

Agents is counted in the order of thousands (as it will

happen in the upcoming Internet of Things era).

3.2 H-MARL-Q Algorithm Description

The H-MARL-Q algorithm only considers a suitably

selected subset of the joint action space, reasonably

yielding an approximate solution to the dynamic CoS

assignment problem presented in Section 2.

Basically, at each time step, the entire joint action space

contains plenty of joint actions which have very few

possibilities of being the best ones (i.e., the ones which

meet the max operator in (5)). Unfortunately, such joint

actions cannot be identified and discarded a-priori,

because we do not have any a-priori knowledge of the

environment; nevertheless, such actions can be identified

and removed by carrying out a preliminary analysis of the

Agents’ dynamic behaviour in a simpler emulated

environment. So, the basic underlying idea of the H-

MARL-Q algorithm is to perform the following two steps.

Step (a): This step, referred to as Identification of the

Reduced Joint Action Space, is performed by

the QoE Controller una tantum, every time a

new Agent is born, in order to identify, through

the emulation of suitable test environments, an

appropriate Reduced Joint Action Space.

Step (b): This step, referred to as Identification of the

Suboptimal Joint Action, is performed, in real

time, by the QoE Controller at each time step tk,

in order to identify the joint action (a1, a2,…,

aN) to be performed at time tk on the basis of

real-time observations of the environment and

considering the Reduced Joint Action Space

identified in step (a) (and not the entire joint

action space A). This yields a suboptimal joint

policy which constitutes a satisfactory

approximate solution to the considered

problem.

3.2.1 H-MARL-Q Algorithm Description: Step (a)

Whenever a new Agent, say agent N, is born (i.e., a new

application instance is launched), say at time tk, in a real

environment in which N – 1 Agents i (for i = 1, 2,…, N –

1) are already active, the new Agent notifies its existence

to the QoE Controller together with its own personalized

QoE requirements expressed in terms of Target QoE

(TQoEN). Then, the QoE Controller emulates the dynamic

behaviour of the system in N – 1 two-player test games,

each one involving two Agents: (i) the new Agent N and

 F. Delli Priscoli, A. Di Giorgio, F. Lisi, S. Monaco, A. Pietrabissa, L.Ricciardi Celsi, and V. Suraci

6

(ii) each of the already active Agents i (i = 1,…, N – 1).

These two-player test games are played in emulated test

environments which should reproduce only some key

features of the real environment.

Let [i, j] denote the two-player test game involving

Agents i and j. In each two-player test game [i, j] the

optimal policy *(ai, aj) is obtained by applying the

MARL-Q algorithm described in the previous section

(clearly, in this case, the number of Agents N appearing in

(4) and (5) is equal to two). The optimal policy identifies

a pair of deterministic actions (ai
*, aj

*) where ai
* and aj

*

represent the optimal CoS choices that the Agents i and j,

respectively, should enforce.

It should be clear that, since the cardinality of the joint

action space of each test environment is equal to S2, the

computational complexity of the MARL-Q algorithm is

limited, i.e., the algorithm converges to the optimal policy

in a limited runtime as shown through real tests in Section

4.

After step (a), at any time tk at which N Agents are

active, the QoE Controller stores N(N – 1)/2 optimal

action couples:

 (ai
*, aj

*) with i = 1,…, N, j = 1,…, N, i ≠ j. (6)

These couples are used in order to identify a Reduced

Joint Action Space containing a reasonable subset of the

entire joint action space A.

Let ai
*[i, j] and aj

*[i, j] denote the optimal action for the

i-th Agent and the j-th Agent, respectively, resulting from

the two-player test game [i, j]. We assume that such a

Reduced Joint Action Space consists of the union of N

Action Subspaces, where the i-th Action Subspace is

associated to the i-th Agent (the sub-tables within the

borders in bold in the table below represent such Action

Subspaces). Each Action Subspace includes S candidate

joint actions (i.e., the rows of each sub-table). The i-th

Action Subspace is built by only considering the two-

player test games involving the i-th Agent. In particular,

each of the S candidate joint actions of the i-th Action

Subspace is obtained as follows: for each Agent j, with j

≠ i, the optimal action aj
*[i, j] that such an Agent would

perform in the two-player test game [i, j] is taken into

account, whilst for the i-th Agent all the S possible actions

of the Ai
 set are spanned (each one being considered in a

different candidate joint action of the Action Subspace).

By so doing, the Reduced Joint Action Space includes

SN candidate joint actions: this certainly entails a drastic

reduction with respect to the SN joint actions that would

appear in the entire joint action space A.

For instance, if, at the considered time step, N = 4 (i.e.,

the Agents 1, 2, 3 and 4 are active) and S = 3 (i.e., the

action ai that Agent i, for i = 1, 2, 3, 4, can perform

corresponds to the selection of one of the three CoSs c1,

c2, c3), each of the SN = 12 rows of the table below

provides one of the 12 candidate joint actions (in

particular, the sub-tables included within the borders in

bold identify the N = 4 Action Subspaces), while each of

the four columns of the table identifies the single actions

that can be taken by Agents 1, 2, 3 and 4, respectively, in

the overall Reduced Joint Action Space.

Moreover, every time a new Agent, say agent N, dies

(i.e., an in-progress application terminates), the Reduced

Joint Action Space is updated by eliminating the actions

involving Agent N. For instance, referring to the example

reported in the table below, if Agent 4 dies, the three joint

actions corresponding to the three last rows are removed

(i.e., the Action Subspace corresponding to Agent 4 is

removed), and all the actions corresponding to the last

column are removed, too.

Table 1. Representation of the Reduced Joint Action

Space for N = 4 and S = 3. The columns of the table

identify the different Agents, the rows represent the

different candidate joint actions, and the sub-tables within

the borders in bold represent the so-called Action

Subspaces.

c1 a2
* [1,2] a3

* [1,3] a4
* [1,4]

c2 a2
* [1,2] a3

* [1,3] a4
* [1,4]

c3 a2
* [1,2] a3

* [1,3] a4
* [1,4]

a1
*[1,2] c1 a3

* [2,3] a4
* [2,4]

a1
*[1,2] c2 a3

* [2,3] a4
* [2,4]

a1
*[1,2] c3 a3

* [2,3] a4
* [2,4]

a1
* [1,3] a2

* [2,3] c1 a4
* [3,4]

a1
* [1,3] a2

* [2,3] c2 a4
* [3,4]

a1
* [1,3] a2

* [2,3] c3 a4
* [3,4]

a1
* [1,4] a2

* [2,4] a3
* [3,4] c1

a1
* [1,4] a2

* [2,4] a3
* [3,4] c2

a1
* [1,4] a2

* [2,4] a3
* [3,4] c3

3.2.2 H-MARL-Q Algorithm Description: Step (b)

Step (b) of the H-MARL-Q algorithm is performed on

the basis of the MARL-Q algorithm presented in Section

2.2 and is applied to the Reduced Joint Action Space

identified in step (a). So, in step (b), the QoE Controller

has to perform the tasks T1, T2, T3, and T4 described in

Section 2.2, with the fundamental difference that, when

performing tasks T1 and T2, the Reduced Joint Action

Space (having cardinality SN), instead of the entire Joint

Action Space (having cardinality SN), is considered. Since

N can be in the order of thousands, it is evident that the

proposed approach drastically reduces the required

computing power.

4. H-MARL-Q ALGORITHM SIMULATIONS

4.1 Simulation Scenario

This section presents numerical simulations, carried out

Manuscript Template for the International Journal of Control, Automation, and Systems: ICROS & KIEE

7

using MATLAB®, with reference to a simple simulation

scenario which does not claim to represent any real

network. The presented simulations are just aimed at

providing a proof-of-concept of the proposed algorithm in

order to highlight its potentialities and criticalities.

 We assume the presence of S = 3 different CoSs (e.g.,

“guaranteed,” “premium” and “best effort” services) and

M = 3 different application types (i.e., real-time HDTV

streaming, distributed videoconferencing and simple File

Transfer Protocol). The static CoS assignment policy

determines a static association among application types

and CoSs (i.e., an application instance belonging to a

given application type is assigned the corresponding CoS

for its entire lifetime), whereas in the dynamic CoS

assignment case, at each time step tk, an application

instance can be assigned any CoS (regardless of the

application type) according to the proposed H-MARL-Q

algorithm.

We assume that, during our simulations, N Agents are

active, each one being involved in an application instance.

Such an application instance may belong to one of the

three considered application types and is characterized by

an average offered transmission bitrate bi randomly

selected in the set {0.6, 1.2, 2} and by a personalized

Target QoE TQoEi (for i = 1, …, N) randomly selected in

the set {0.7, 0.8, 0.9}.

Fig. 2. Dumbbell network topology.

 The simulated network has a dumbbell network

topology, as shown in Fig. 2, where each of the N

transmitters corresponds to one of the N considered

Agents. Router West implements a Weighted Fair

Queueing (WFQ) scheduler for handling the traffic to be

transmitted over the bottleneck link. The related WFQ

vector [30] is assumed to be (0.5, 0.3, 0.2), where the i-th

element is the weight assigned to the i-th CoS (higher

weight means higher priority). The bottleneck link is

characterized by an available link capacity Blink computed

as:

where  is a parameter in the range (0,1) accounting for

traffic congestion; in particular, in our simulations we

consider two different situations characterized by = 0.7

and = 0.8, which represent High Traffic and Medium

Traffic conditions, respectively.

As for the number of active Agents N, in our

simulations we consider two cases: N = 100 and N = 1000.

For each of these two cases and for each of the two

considered traffic congestion conditions, ten simulation

runs or episodes have been carried out, with a duration of

(15  103) time steps for N = 100 and of (15  104) time

steps for N = 1000: in each simulation run a different

association among application instances, application types,

average offered bitrates and Target QoE values is

performed. Such associations are assumed to be fixed for

the entire simulation run.

In the simple proposed simulation scenario, we assume

that the set of Feedback Parameters m (introduced in

Section 2.1) includes, for any m = 1, 2, 3, just a single

element denoted as QoS and that the function gm,

introduced in (2), is computed on the basis of the well-

known IQX hypothesis [5]. This means that (2) becomes:

 PQoEi(m)(tk)=pm e
-m QoS

 m (7)

where the parameter QoS has been assumed to be equal

to the difference between the traffic offered by the

application instance and the corresponding bitrate

currently allocated by the WFQ Scheduler. Note that the

latter parameter depends on the CoS appointed at time tk

for the considered application instance, which actually

impacts on the priority assigned by the WFQ Scheduler to

the packets of the relevant traffic flow. We assume 1 =

0.5, 2 = 0.7, 3 = 1, as well as pm = 1 and m = 0 for all

values of m; with these choices, PQoEi(m)(tk) is always

included in the range [0,1]. The learning rates (tk)

appearing in (4), according to [31], are set to:

(tk, a1, a2,…, aN)= 1/(1+visit(tk, a1, a2,…, aN)) (8)

where visit(tk, a1, …, aN) is the number of times that a

specific joint action (a1, a2, …, aN) has been enforced up

to the iteration at time tk. The discount rate is set to = 0.9.

The selected joint reward function, consistent with the

general criteria identified in Section 2, is:

where the absolute value of wi serves as an appropriately

chosen penalty, which the i-th Agent is inflicted with, any

time it exhibits either underperforming or overperforming

behaviour. A proper choice of wi may be the following:

 wi(tk) = – 100 if ei(tk) < – 0.15 (i.e., if severe

underperformance is experienced by Agent i);

 wi(tk) = – 10 if – 0.15 < ei(tk) < 0 (i.e., if minor

underperformance is experienced by Agent i);

 wi(tk) = – 1 if 0 < ei(tk) < 0.1 (i.e., if acceptable

overperformance is experienced by Agent i);

 wi(tk) = – 50 if ei(tk) > 0.1 (i.e., if undesirable

overperformance is experienced by Agent i). (9)

 F. Delli Priscoli, A. Di Giorgio, F. Lisi, S. Monaco, A. Pietrabissa, L.Ricciardi Celsi, and V. Suraci

8

In particular, the thresholds on the QoE Error values in

(9) have been arbitrarily chosen in order to suitably

classify the behaviour of Agent i at time tk as a result of

the joint action taken. Moreover, the initial policy, that is,

the initial CoS-to-application association, is randomly

generated.

Note that, even though the proposed proof-of-concept

does not claim to represent any real network, a bottleneck

link characterized by limited available bandwidth capacity

can represent the uplink of a given cell of a cellular

network. In such a scenario, a number of Agents roaming

in the considered cell (and hence sharing the cell available

uplink capacity) in the order of some hundreds (as

assumed in this section) seems reasonable.

4.2 Numerical Results

This subsection shows the results obtained in the

described simulation scenario; in particular, the H-

MARL-Q algorithm is applied with a number of Agents N

= 100 and N = 1000, both in the High and Medium Traffic

conditions.

It should be emphasized that we can deal with such a

high number of Agents due to the fact that the proposed

H-MARL-Q algorithm relies on a Reduced Joint Action

Space, which has cardinality SN = 300 in the scenario with

100 Agents (S = 3 and N = 100), and SN = 3000 in the

scenario with 1000 Agents (S = 3 and N = 1000). If the

original Joint Action Space were used, a solution relying

on the MARL-Q algorithm would be unfeasible, since the

cardinality would be SN = 3100 = 5.2  1047, and SN = 31000=

1.42  10477 in the two scenarios, respectively.

The results obtained with the H-MARL-Q algorithm are

compared with the performance of a Static algorithm

which adopts a static CoS assignment policy. The

comparison with the MARL-Q algorithm is impossible

due to the curse of dimensionality (as explained in Section

3.1).

The obtained results are expressed in terms of two

quantities:

(i) the Average Absolute QoE Error, computed as the

absolute value of the QoE Error expressed by (1),

averaged over all the considered Agents and all the

simulation episodes (see Figs. 3 and 4);

(ii) the QoE Error Standard Deviation, computed as the

standard deviation of the QoE Error vector (e1, e2, …,

eN) (where ei, for i = 1, 2, …, N, is expressed as in (1))

averaged over all the simulation episodes (see Figs. 5

and 6).

Note that the standard deviation accounts for the

fairness among Agents: the smaller the standard deviation,

the higher the fairness among Agents, as discussed in

Section 2.1.

Figs. 3-6 clearly show that the H-MARL-Q algorithm

remarkably outperforms the Static algorithm in all of the

considered simulation cases. In particular, while under the

Static algorithm the Average Absolute QoE Error is

appreciably smaller in Medium rather than in High Traffic

conditions, under the H-MARL-Q algorithm, for both N =

100 and N = 1000, the Average QoE Error bars

corresponding to High and Medium Traffic conditions

(see Figs. 3 and 4) exhibit values that are really close to

each other: this means that the presented algorithm also

allows to overcome the disadvantages related to the

impact that the traffic congestion conditions produce on

the bottleneck link.

Furthermore, the QoE Error Standard Deviation shown

in Figs. 5 and 6 confirms the virtues of the H-MARL-Q

algorithm, since the dispersion of the QoE Error values of

the different Agents at the end of the learning procedure

is significantly closer to zero than in the case when the

Static algorithm is applied.

All these results evidently show that the dynamic and

personalized selection of the most appropriate CoS for the

ongoing application instances yields improved

performance results, if compared with a static CoS

assignment policy.

In addition, Fig. 7 shows the Average Absolute QoE

Error trend, i.e., the evolution of the Average Absolute

QoE Error over time.

Let the settling time denote the time needed by the

Average Absolute QoE Error to reach a steady state. Once

an acceptable preliminary agreement among Agents –

yielding the selection of the most “promising” joint

actions for solving the dynamic CoS assignment problem

– has been reached in step (a), the error dynamics, as

highlighted in Fig. 7, experiences a rapid decrease over

the first 100 iterations of step (b) and then it takes some

time to settle down to the steady-state value: in the figure,

the settling time is approximately equal to 9000 iterations.

So, the overall runtime required by the H-MARL-Q

algorithm is the sum of the time ta necessary to reach the

preliminary agreement in step (a) plus the time tb

necessary to perform step (b), where tb amounts to

approximately 9000 iterations for N = 100 and ta is

negligible with respect to tb. This is indeed an encouraging

result which shows that the H-MARL-Q algorithm has to

be preferred to the MARL-Q algorithm as the former

achieves a satisfactory approximate solution in a

reasonably smaller amount of runtime than the latter –

whose runtime, instead, actually turns out to be unfeasibly

long in scenarios where the number of Agents is counted

in the order of hundreds or thousands.

The proposed approach to QoE Control enables a

dynamic Class of Service selection aimed at reducing the

error between the personalized Perceived QoE and the

personalized Target QoE levels by properly driving the

control procedures that handle the underlying networks.

This result could be obtained by embedding an innovative

Multi-Agent Reinforcement Learning algorithm, namely

the proposed H-MARL-Q algorithm, in a centralized QoE

Controller. Such an algorithm has been tested in a simple

simulation scenario, with just the aim of providing a

proof-of-concept and without claiming to represent any

real network.

5. CONCLUSION

The proposed method presents several practical

advantages:

Manuscript Template for the International Journal of Control, Automation, and Systems: ICROS & KIEE

9

(i) it does not require any a-priori knowledge of the

environment (i.e., it is model-free) thanks to the

adoption of a Reinforcement Learning based

approach;

(ii) it is decoupled from QoE Evaluation, i.e., it can work

in conjunction with any algorithm computing the

Target QoE and the Perceived QoE values, and it

allows a personalization level up to the single

application instance, since the only signal exchanged

at the interface between the QoE Controller and the

QoE Evaluator is the QoE Error provided by (1);

(iii) it requires minimal signalling overhead since no

communication exchange among Agents is needed

and very little information has to be exchanged

among the centralized QoE Controller and the

distributed Agents;

(iv) it is characterized by a very good degree of

scalability (thus being able to handle several

hundreds of Agents) due to the fact that, as the joint

action to be carried out at each time step is sought

within a suitable Reduced Joint Action Space, the

complexity of the proposed H-MARL-Q algorithm

is linear in the number of Agents (as opposed to the

well-known MARL-Q algorithm whose complexity

is exponential in the number of Agents).

Note that the algorithm presented in this paper assumes

the time-invariance of the Target QoE. However, the

authors are carrying out further studies, based on concept

drift in web/telecommunication systems [32], so as to

address also the case of a time-varying Target QoE. In this

last case, the Target QoE depends not only on the

commercial profile of the users but also on the relevant

feedbacks provided by the users themselves.

Moreover, the authors are presently carrying out further

research based on a combinatorial multi-armed bandit

approach to cooperative online learning [33, 34], with the

aim of overcoming the centralized paradigm and,

consequently, of developing a solution in which the QoE

Control functionalities

can be fully distributed into the Agents.

Finally, note that the overall modular architecture

sketched in Fig. 1 – within which Reinforcement Learning

algorithms embedded in a QoE Controller play the role of

dynamically selecting (on the basis of real-time feedbacks

provided by a proper QoE Evaluator) appropriate

Reference Values which should drive environment-

specific procedures – has proved to be so flexible that the

authors are reproducing it also in the domains of

intelligent transport systems and telemedicine within the

framework of EU-funded research projects.

ACKNOWLEDGEMENT

The authors wish to thank Proff. A. Isidori, C. Gori

Giorgi, S. Battilotti, F. Facchinei, and L. Palagi for their

continuous support and valuable contributions to the work

within the PLATINO project. The authors also wish to

thank Ing. J. Capolicchio for the fruitful discussions.

Fig. 3. Average Absolute QoE Error for N = 100. The

dark-grey bar and the light-grey bar represent the Average

Absolute QoE Error in High and Medium Traffic

conditions, respectively.

Fig. 4. Average Absolute QoE Error for N = 1000. The

dark-grey bar and the light-grey bar represent the Average

Absolute QoE Error in High and Medium Traffic

conditions, respectively.

0,00

0,02

0,04

0,06

0,08

0,10

0,12

0,14

0,16

0,18

0,20

H-MARL-Q Static

Average Absolute QoE Error

for N = 100

0,00

0,02

0,04

0,06

0,08

0,10

0,12

0,14

0,16

0,18

0,20

H-MARL-Q Static

Average Absolute QoE Error

for N = 1000

International Journal of Control, Automation and Systems VV(N) (YYYY) 1-3 ISSN:1598-6446 eISSN:2005-4092

http://dx.doi.org/10.1007/s12555-xxx-xxxx-xx http://www.springer.com/12555

 ICROS, KIEE and Springer 2016

Fig. 5. QoE Error Standard Deviation for N = 100. The

dark-grey bar and the light-grey bar represent the QoE

Error Standard Deviation in High and Medium Traffic

conditions, respectively.

Fig. 6. QoE Error Standard Deviation for N = 1000. The

dark-grey bar and the light-grey bar represent the QoE

Error Standard Deviation in High and Medium Traffic

conditions, respectively.

Fig. 7. Average Absolute QoE Error trend, corresponding to step (b) of the H-MARL-Q algorithm, in High (black line)

and Medium (grey line) Traffic conditions with N = 100.

REFERENCES

[1] ITU-T, “Amendment 1: Recommendation P.10/G.100.

New Appendix I – Definition of Quality of Experience

(QoE),” Telecommun. Stand. Sect. Itu-T, vol. 100, no.

2006, 2007.

[2] S. Jelassi, G. Rubino, H. Melvin, H. Youssef, and G.

Pujolle, “Quality of experience of VoIP service: A survey

of assessment approaches and open issues,” IEEE

Commun. Surv. Tutorials, vol. 14, no. 2, pp. 491–513,

2012.

[3] S. Singh, J. G. Andrews, and G. de Veciana, “Interference

Shaping for Improved Quality of Experience for Real-

Time Video Streaming,” IEEE J. Sel. Areas Commun., vol.

30, no. 7, pp. 1259–1269, 2012.

[4] S. Canale, F. Facchinei, R. Gambuti, L. Palagi, and V.

Suraci, “User profile based Quality of Experience,” in

Proceedings of the 18th International Conference on

Circuits, Systems, Communications and Computers

(CSCC 2014), Santorini Island, Greece, Advances in

Information Science and Applications – Volume II, 2014.

[5] M. Fiedler, T. Hossfeld, and P. Tran-Gia, “A generic

quantitative relationship between quality of experience

0,00

0,05

0,10

0,15

0,20

0,25

H-MARL-Q Static

QoE Error Standard Deviation

for N = 100

0,00

0,05

0,10

0,15

0,20

0,25

H-MARL-Q Static

QoE Error Standard Deviation

for N = 1000

0

0,05

0,1

0,15

0,2

0,25

1 10 50 100 300 500 1000 3000 5000 9000 12000 15000

tk

Average Absolute QoE Error trend

Manuscript Template for the International Journal of Control, Automation, and Systems: ICROS & KIEE

11

and quality of service,” IEEE Network, vol. 24, no. 2, pp.

36-41, 2010.

[6] “Platform for Innovative Services in Future Internet,”

Italian Ministry of University and Research (MIUR)

PLATINO project, grant greement no. PON01_01007,

http://www.progettoplatino.it/.

[7] FI-WARE (Future Internet Ware), EU FP7-ICT Large-

scale Integrating Project (IP), 2011-2014, grant agreement

no. 312826, http://www.fi-ware.eu/.

[8] FI-Core (Future Internet - Core Platform), EU FP7-ICT

Large-scale Integrating Project (IP), 2014-2016, grant

agreement no. 632893,

http://cordis.europa.eu/project/rcn/192274_en.html.

[9] R. Gambuti, A. Di Giorgio, F. Liberati, A. Pietrabissa, V.

Suraci, and F. Delli Priscoli, “Profiled Quality of

Experience Control,” submitted to Information

Technology and Control, 2016.

[10] F. Delli Priscoli, A. Isidori, L. Marconi, “A Dissipativity-

based Approach to Output Regulation of Non-Minimum-

Phase Systems,” Systems and Control Letters, Elsevier

Science Pub., vol. 58, pp. 584-591, 2009.

[11] L. Ricciardi Celsi, R. Bonghi, S. Monaco, and D.

Normand-Cyrot, “On the Exact Steering of Finite Sampled

Nonlinear Dynamics with Input Delays,” in Proceedings

of the 1st Conference on Modelling, Identification and

Control of Nonlinear Systems (MICNON 2015), IFAC-

PapersOnLine, vol. 48, no. 11, pp. 674-679, Saint-

Petersburg, June 2015, DOI:

10.1016/j.ifacol.2015.09.265.

[12] L. Ricciardi Celsi, S. Battilotti, F. Cimorelli, C. Gori

Giorgi, S. Monaco, M. Panfili, V. Suraci, and F. Delli

Priscoli, “A Q-Learning Based Approach to Quality of

Experience Control in Cognitive Future Internet

Networks,” in Proc. of the 23rd Mediterranean

Conference on Control and Automation (MED15), pp.

1045-1052, June 16-19, 2015, Torremolinos, Spain, DOI:

10.1109/MED.2015.7158895.

[13] M.M.L. Littman, “Friend-or-foe Q-learning in general-

sum Games,” in ICML, 2001, vol. 1, pp. 322–328.

[14] L. Busoniu, R. Babuska, and B. De Schutter, “A

Comprehensive Survey of Multiagent Reinforcement

Learning,” Syst. Man, Cybern. Part C Appl. Rev. IEEE

Trans., vol. 38, pp. 156–172, 2008.

[15] S. Manfredi, “An algorithm for fast rendezvous seeking of

wireless networked robotic systems,” Ad Hoc Networks,

Vol. 11, No.7, pp. 1942-1950,

DOI:10.1016/j.adhoc.2012.06.010, 2013.

[16] F. Delli Priscoli, A. Isidori, L. Marconi, A. Pietrabissa,

“Leader-Following Coordination of Nonlinear Agents

under Time-varying Communication Topologies,” IEEE

Transactions on Control of Network Systems, vol. 2, no: 4,

2015, pp. 393-405, DOI: 10.1109/TCNS.2015.2426752.

[17] M. Castrucci, F. Delli Priscoli, A. Pietrabissa, and V.

Suraci, “A Cognitive Future Internet Architecture,” Futur.

Internet, Lect. Notes Comput. Sci. Vol. 7858 2013, vol.

6656, pp. 91–102, 2011.

[18] M. Castrucci, M. Cecchi, F. Delli Priscoli, L. Fogliati, P.

Garino, and V. Suraci, “Key Concepts for the Future

Internet Architecture,” Future Network and Mobile

Summit 2011, Warsaw, June 2011.

[19] C. Bruni, F. Delli Priscoli, G. Koch, A. Palo, and A.

Pietrabissa, “Quality of Experience Provision in the Future

Internet,” IEEE Syst. J., pp. 1–11, 2014.

[20] N. Nisan and A. Ronen, “Algorithmic mechanism design,”

Games and Economic Behavior, vol. 35, no. 1-2, pp. 166-

196, 2001.

[21] F. Delli Priscoli, V. Suraci, A. Pietrabissa, and M. Iannone,

“Modelling Quality of Experience in Future Internet

Networks,” in Proc. of the Future Network & Mobile

Summit (FutureNetw), 2012, ISBN: 978-1-905824-16-8.

[22] C. Estan, S. Savage, and G. Varghese, “Automatically

inferring patterns of resource consumption in network

traffic,” in Proc. 2003 Conf. Appl. Technol. Archit. Protoc.

Comput. Commun. - SIGCOMM ’03, pp. 137–148, 2003.

[23] S. Battilotti, C. Gori Giorgi, S. Monaco, M. Panfili, A.

Pietrabissa, L. Ricciardi Celsi, and V. Suraci, “A Multi-

Agent Reinforcement Learning Based Approach to

Quality of Experience Control in Future Internet

Networks,” in Proc. of the 34th Chinese Control

Conference (CCC2015), pp. 6495-6500, July 28-30, 2015,

Hangzhou, China, DOI: 10:1109/ChiCC.2015.7260662.

[24] Q. Jiang, H. Xi, and B. Yin, “Dynamic file grouping for

load balancing in streaming media clustered server

systems,” International Journal of Control, Automation

and Systems, vol. 7, no. 4, pp. 630-637, 2009.

[25] C.J.C.H. Watkins and P. Dayan, “Q-learning,” Mach.

Learn., vol. 8, pp. 279–292, 1992.

[26] G. Santhi, Alamelu Nachiappan, Mougamadou Zaid

Ibrahime, R. Raghunadhane, and M. K. Favas. “Q-learning

based adaptive QoS routing protocol for MANETs,” IEEE

Int. Conf. on Recent Trends in Information Technology

(ICRTIT), pp. 1233-1238., 2011.

[27] A. Pietrabissa, “A Reinforcement Learning Approach to

Call Admission and Call Dropping Control in Links with

Variable Capacity”, European Journal of Control, Vol. 17,

Issue 1, 2011, pp. 89-103, ISSN 0974-3580, DOI:

10.3166/EJC.17.89-103.

[28] R.S. Sutton and A.G. Barto, Reinforcement Learning: An

Introduction. MIT Press, Cambridge, Massachusetts,

1998.

[29] T. Jaakkola, M.I. Jordan, and S.P. Singh, “On the

convergence of stochastic iterative dynamic programming

algorithms,” Neural Computation, vol. 6, pp. 1185-1201,

1994.

[30] A. Demers, S. Keshav, and S. Shenker, “Analysis and

simulation of a fair queueing algorithm,” ACM SIGCOMM

Comput. Commun. Rev., vol. 19, no. 4, pp. 1–12, 1989.

[31] T. Mitchell, Machine Learning, McGraw Hill, 1997.

[32] I. Zliobaité, “Learning under concept drift: an overview,”

arXiv preprint arXiv:1010.4784, 2010.

[33] Y. Gai, B. Krishnamachari, and Q. Zhao, “Combinatorial

network optimization with unknown variables: Multi-

armed bandits with linear rewards and individual

observations,” IEEE/ACM Transactions on Networking

(TON), vol. 20, no. 5, pp. 1466-1478, 2012.

[34] J. Xu, C. Tekin, S. Zhang, and M. van der Schaar,

“Distributed Multi-Agent Online Learning Based on

Global Feedback,” IEEE Transactions on Signal

Processing, vol. 63, no. 9, pp. 2225-2238, 2015.

Francesco Delli Priscoli was born in

Rome, Italy, in 1962. He received the

degree in Electronics Engineering (summa

cum laude) and the Ph.D. degree in

Systems Engineering from the University

of Rome “La Sapienza” in 1986 and 1991,

respectively. Since 1991, he has been

working at the University of Rome “La

Sapienza,” where, at present, he is Full

Professor of Automatic Control, Control of

Autonomous Multi-Agent Systems, and Control of

Communication and Energy Networks. In the framework of his

academic activity, he has mainly researched on

resource/service/content management procedures and on

cognitive techniques for telecommunication and energy

networks, by largely adopting control-based methodologies. He

is the author of about 180 papers appeared in major international

journals (about 60), on books (about 10) and in conference

proceedings (about 110). He also holds four patents. He is an

associate editor of Control Engineering Practice and a member

http://www.progettoplatino.it/
http://cordis.europa.eu/project/rcn/192274_en.html

Gil-Dong Hong, Adam Smith, and Ikuro Mizumoto

12

of the IFAC Technical Committee on Networked Systems. He

was/is the scientific responsible, at the University of Rome “La

Sapienza,” for 31 projects financed by the European Union

(Fourth, Fifth, Sixth, Seventh and Eighth Framework

Programmes) and by the European Space Agency (ESA), as well

as for many national projects and cooperations with major

industries. His present research interests concern closed-loop

multi-agent learning techniques for Quality of Experience

evaluation and control in advanced communication and energy

networks, as well as all the related networking algorithms.

Alessandro Di Giorgio was born in

Rome, Italy, in 1980. He received the

degree (cum laude) in Physics in 2005,

and the Ph.D. degree in Systems

Engineering from the University of

Rome “La Sapienza,” in 2010. He is

currently a Research Fellow in

Automatic Control, working on original

applications of control systems theory to the resource

manegement problem in the field of power systems and

telecommunications networks; he is author of about 40 papers

and book chapters on these topics, mainly produced in the

context of national and European research projects.

Federico Lisi was born in Rome, Italy, in

1986. He received the M.Sc. degree in

Artificial Intelligence and Robotics with

110/110 in 2015 from the University of

Rome “La Sapienza.” He has been

working in the MIUR project PLATINO

and in the FP7 project SWIPE. His main

research interests concern reinforcement

learning for multi-agent systems, path

planning for autonomous robots, neural networks and data

mining.

Salvatore Monaco was born in Udine, Italy,

in 1951 and he has been a Full Professor of

Systems Theory at the University of Rome

“La Sapienza” since 1986. He was a member

of the ASI (Italian Space Agency) Scientific

Committee from 1989 to 1995, of the

Executive Council of the EUCA (European

Union Control Association) from 1990

(foundation year) to 1997, and of the ASI

Working Group on Evaluation from 1999 to

2001. He has also been a member of the ASI Technological

Committee since 1997. He has promoted technological transfer

in the area of Automation. In 1995, he served as scientific

advisor for the Director of the Joint Research Center of the

European Union. Since 2001, he has been president of the

council for the degree of Systems and Control Engineering at the

University of Rome “La Sapienza” and also president of the

Scientific Committee of the “Université Franco-Italienne,” an

inter-governmental institution for coordinating research and

didactics. His research activity is in the field of Systems and

Control Theory and applied research in spacecraft control,

mobile robot control and control of communication networks.

Antonio Pietrabissa is Assistant Professor

at the Department of Computer, Control, and

Management Engineering “Antonio Ruberti”

(DIAG) of the University of Rome “La

Sapienza,” where he received his degree in

Electronics Engineering and his Ph.D.

degree in Systems Engineering in 2000 and

2004.” Since 2000, he has worked with the

Network Control Laboratory at DIAG, in the

framework of National and European

projects related to ICT. Since 2007, he has been member of the

Scientific and Technical Committee of the Consortium for the

Research in Automation and Telecommunication (CRAT).

Since 2000, he has participated in 15 research projects funded by

the European Union (EU), 2 projects funded by the European

Space Agency (ESA), 2 projects funded by the Italian Space

Agency (ASI), and 3 projects funded by the Italian Ministry of

Education, Universities and Research (MIUR). His main

research focus is on the application of systems and control theory

methodologies to the analysis and control of networks. He is

author of more than 30 journal papers and over 60 conference

papers and book chapters on these topics.

Lorenzo Ricciardi Celsi was born in Rome,

Italy, in 1990. He received the B.Sc. degree in

Electronics Engineering in 2011 and the M.Sc.

degree in Control Engineering in 2014, both

summa cum laude from the University of

Rome “La Sapienza.” He is currently a PhD

Candidate in “Automatica, Bioengineering

and Operations Research” at the same

university. He has been working on

reinforcement learning algorithms within the

framework of the FP7 project T-NOVA and the MIUR project

PLATINO. He is also working on the development of the

intelligent multi-modal transport system foreseen by the H2020

project BONVOYAGE. His main research interests are:

nonlinear systems and control theory with application to

communication networks as well as to aircraft and spacecraft

control, advanced control methodologies for multi-agent

systems and machine learning algorithms and methods.

Vincenzo Suraci was born in Rome, Italy,

in 1978. He graduated in Computer

Engineering summa cum laude in 2004 at

the University of Rome “La Sapienza.” In

2008 he received his Ph.D. degree in

Systems Engineering at the Department

Computer, Control, and Management

Engineering “Antonio Ruberti” (DIAG)

of the same university. Currently, he is a

Researcher at eCampus University and Project Manager at

CRAT. His main research interest is to develop and adapt

advanced control and operations research methodologies (such

as reinforcement learning, column generation, hybrid automata,

and discrete event systems) for the solution of challenging and

emerging engineering problems: e.g., connection admission

control, access technologies selection, QoE/QoS cognitive

control, resource management over heterogeneous technologies,

convergence of heterogeneous networks. He has achieved a wide

experience in the field of applied research and project

management. Since 2011, he has been managing the EU-funded

Future Internet Core Platform research project FI-WARE. In

2012, he also applied for a EU Patent request on DVB as a result

of his profitable research in the framework of EU research

projects.

