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Abstract: In the framework of the Future Internet, the aim of the Quality of Experience (QoE) Control functionalities 

is to track the personalized desired QoE level of the applications. The paper proposes to perform such a task by 

dynamically selecting the most appropriate Classes of Service (among the ones supported by the network), this 

selection being driven by a novel heuristic Multi-Agent Reinforcement Learning (MARL) algorithm. The paper 

shows that such an approach offers the opportunity to cope with some practical implementation problems: in 

particular, it allows to face the so-called “curse of dimensionality” of MARL algorithms, thus achieving satisfactory 

performance results even in the presence of several hundreds of Agents.  
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1. INTRODUCTION 

 

A key Future Internet target is to allow applications to 

transparently, efficiently and flexibly exploit the available 

resources, with the aim of achieving a satisfaction level 

that meets the personalized users’ needs and expectations. 

Such expectations could be expressed in terms of a 

properly defined Quality of Experience (QoE). In this 

respect, the International Telecommunication Union 

(ITU-T) defines QoE as the overall acceptability of an 

application or service, as perceived subjectively by the 

end-user [1]: this means that QoE could be regarded as a 

personalized function of plenty of parameters of 

heterogeneous nature and spanning all layers of the 

protocol stack (e.g., such parameters can be related to 

Quality of Service (QoS), security, mobility, contents, 

services, device characteristics, etc.).  

Indeed, a large amount of research is ongoing in the 

field of QoE Evaluation, i.e., of the identification, on the 

one hand, of the personalized expected QoE level (Target 

QoE) for a given user availing her/himself of a given 

application in a given context (e.g., see [2] and [3] for 

voice and video applications, respectively), and, on the 

other hand, of the personalized functions for computing 

the Perceived QoE, including the monitorable Feedback 

Parameters which could serve as independent variables for 

these functions (e.g., see [4]). In particular, several works 

focus on studying the relation between QoE and network 

QoS parameters (e.g., see [5]).  

Another QoE-related key research issue is that of QoE 

Control. Once a QoE Evaluator has assessed the 

personalized expected QoE level (Target QoE) and the 

personalized currently perceived QoE level (Perceived 

QoE), a QoE Controller should be in charge of making 

suitable Control Decisions aimed at reducing, as far as 

possible, the difference between the personalized Target 

and Perceived QoE levels. Section 2.1 discusses the nature 

of the QoE Controller decisions.  

QoE Evaluation and QoE Control are also being widely 

studied in the context of several Future Internet related 

initiatives such as the MIUR PLATINO project [6] and 

the FP7 Future Internet PPP initiative (namely, [7] and 

[8]). 

This paper focuses on QoE Control, whereas QoE 

Evaluation falls outside the scope of the paper. The 

interested readers are referred to [4] and [9] for an 

approach to QoE Evaluation that is fully consistent with 

this paper. Without claiming to present a ready-to-use 

solution, this paper provides some innovative hints that 

could ensure an efficient implementation of the QoE 

Controller.  

In Section 2.1, the paper describes how Control 

Decisions can practically be implemented via the dynamic 

selection of predefined Classes of Service. In Section 2.2, 

the paper explains how such a dynamic selection can be 

performed in a model-independent way – in the authors’ 

opinion, a control-based approach (as in [10] and [11]) 

relying on any Future Internet model is not practically 

Manuscript received December 13, 2015. 

This work was supported by the Italian Ministry of Education, Research and University, namely by the PLATINO PON project 

(www.progettoplatino.it), under Grant Agreement no. PON01_01007. 

Francesco Delli Priscoli, Alessandro Di Giorgio, Federico Lisi, Salvatore Monaco, Antonio Pietrabissa, and Lorenzo Ricciardi Celsi are with 

the Department of Computer, Control and Management Engineering “Antonio Ruberti,” University of Rome “La Sapienza,” via Ariosto 25, 

00185 Rome, Italy (email: {dellipriscoli, digiorgio, lisi, monaco, pietrabissa, ricciardicelsi}diag.uniroma1.it). 

Vincenzo Suraci is with eCampus University, via Isimbardi 10, 22060 Novedrate, Italy (email: vincenzo.suraci@uniecampus.it). 

* Corresponding author. 

 

 
Adam Smith and Ikura Mizumoto are with the School of Mechanical Engineering, World University, 1050 Jackson St., Albany, CA 94000, 

U.S.A. (e-mails: {smith, newton}@icros.org). 

* Corresponding author. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio della ricerca- Università di Roma La Sapienza

https://core.ac.uk/display/80310148?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 
  F. Delli Priscoli, A. Di Giorgio, F. Lisi, S. Monaco, A. Pietrabissa, L.Ricciardi Celsi, and V. Suraci 

 

2 

viable due to the sheer unpredictability of the involved 

variables [12] – thanks to the adoption of a multi-agent 

algorithm. A suitable algorithm was identified in a Multi-

Agent Reinforcement Learning (MARL) technique, 

namely the MARL Q-Learning algorithm presented in [13] 

and [14] (classical multi-agent algorithms – see, e.g., [15, 

16] – are based on state-space models). Then, the paper 

discusses the limitations of MARL Q-Learning with 

respect to practical implementation (Section 3.1) and how 

these limitations can be overcome by adopting the 

proposed heuristic algorithm, hereafter referred to as H-

MARL-Q algorithm (Section 3.2). Finally, some 

numerical simulations showing the encouraging 

performance results of the proposed heuristic algorithm 

are presented in Section 4.2 with reference to a proof-of-

concept scenario (described in Section 4.1) which does not 

claim to represent any real network. 

 

2. THE QoE CONTROLLER 

 

2.1. QoE Controller Architecture 

The QoE Controller makes its decisions at discrete time 

instants tk, hereafter referred to as time steps, occurring 

with a suitable time period T, whose duration depends on 

the considered environment (including technological 

processing constraints). 

We assume that each in-progress application instance 

is handled by an Agent i and we define the personalized 

QoE Error at time tk (indicated as ei(tk)), relevant to Agent 

i, as 

          ei(tk) = 
 

PQoEi(tk) TQoEi        (1) 

 

where PQoEi(tk) represents the Perceived QoE, i.e., the 

QoE currently perceived at time tk by Agent i, and TQoEi 

represents the Target QoE, i.e., the personalized QoE 

which would satisfy the personalized Agent i 

requirements. So, if this QoE Error is positive, the in-

progress application is said to be overperforming, since 

the QoE currently perceived by the Agent is greater than 

the desired one, whereas, if the QoE Error is negative, the 

in-progress application is said to be underperforming. 

Note that the presence of overperforming Agents might 

affect the system performance, since they may require an 

unnecessarily large amount of resources, which could 

cause, in turn, the underperformance of other Agents. The 

goal of the QoE Controller is to guarantee, at every time 

tk, a nonnegative QoE Error for all Agents i (for 

i = 1,…, N), i.e., to avoid the occurrence of 

underperforming applications. Furthermore, if it is not 

possible to guarantee a nonnegative QoE Error for all 

Agents (e.g., due to insufficient network resources), the 

QoE Controller should reduce, as far as possible, the QoE 

Errors of the various Agents while guaranteeing fairness 

among them. Fairness basically consists in making sure 

that the QoE Errors experienced by the Agents are kept, 

as far as possible, close to one another. 

As shown in Fig. 1, both the Perceived and the Target 

QoE should be computed by a suitable QoE Evaluator 

based on suitable Feedback Parameters resulting from the 

real-time monitoring of the network, as well as from direct 

or indirect feedbacks coming from users and/or 

applications. For a more detailed description of the way 

the QoE functionalities are embedded in the Future 

Internet architecture, see [17], [18] and [19]. 
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Fig. 1. Sketch of the QoE architecture for the Future 

Internet. 

 

In particular, a promising approach [4] is to relate the 

computation of the Perceived QoE to the application type 

(e.g. real-time HDTV streaming, distributed 

videoconferencing, File Transfer Protocol, etc.) of each 

in-progress application instance. Let M denote the total 

number of application types in the considered 

environment; let m  denote a generic 

application type; let i(m) denote an Agent (i.e., an 

application instance) belonging to the m-th application 

type. Then, the Perceived QoE for Agent i(m), denoted 

with PQoEi(m)(tk), is computed as follows: 

 

          PQoEi(m)(tk) = gm(mtk),           (2) 

 

where mtkrepresents a suitable set of Feedback 

Parameters for the m-th application type, computed up to 

time tk, and gmis a suitable function relating, for the m-th 

application type, the Feedback Parameters mtkwith the 

Perceived QoE. Section 4 shows a simple implementation 

of (2); more advanced implementations can be found in 

[9].  

A relevant drawback that could be immediately 

associated with such a method of evaluating the Perceived 

QoE for every Agent at each time step is the fact that an 

Agent can intentionally underreport its own Perceived 

QoE in order to increase the amount of network resources 

allocated to it. Such a problem falls within the area of 

mechanism design [20]. In this respect, in [21], Delli 

Priscoli et al. propose an interesting solution (compliant 

with the control algorithm discussed here) that allows to 

determine whether the Agent feedbacks are being fair or 

not. Such a solution is capable of ensuring an acceptable 

degree of robustness to possible episodes of dishonest 

Agent conduct. 

The Target QoE, denoted with TQoEi, can be derived 

from a suitable analysis of the available Feedback 

Parameters (e.g., by using unsupervised machine learning 

techniques), or it can simply correspond to a reference 

value which is assigned by the Telco operator, taking into 

account the commercial profile of the user.  

In this paper, we propose a solution in which the 
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distributed Agents associated to the application instances 

are embedded in properly selected network nodes (e.g., in 

the mobile user terminals): the Agents are in charge of the 

monitoring and actuation functionalities whereas the 

control functionalities are centralized in the QoE 

Controller.  

In particular, whenever a new application instance is 

born, the associated Agent i is in charge of evaluating the 

personalized Target QoE TQoEi (which remains 

unchanged for the whole lifetime of the application 

instance), of computing its own personalized Perceived 

QoE PQoEi(tk) and of communicating the monitored 

values to the QoE Controller. As a result, at each time tk, 

the QoE Controller, based on the received values for 

TQoEi
 and PQoEi(tj) up to time tk (i = 1,…, N; j = 0, 1,…, 

k), has to choose the most appropriate action ai(tk) (for 

i = 1,…, N) which the Agent i should enforce at time tk, 

i.e., the most appropriate joint action (a1(tk), a2(tk),…, 

aN(tk)) which the N Agents should enforce at time tk. At 

each time tk, the chosen joint action is broadcast to the N 

Agents: then, the i-th Agent has to enforce the 

corresponding action ai(tk).  

Note that the proposed arrangement is based on the 

presence of a centralized entity (i.e., the QoE Controller), 

collecting the Agents’ observations, which runs the 

MARL algorithm and broadcasts the resulting Control 

Decisions to the Agents. Therefore, any direct signal 

exchange among the Agents is avoided, thus limiting the 

overall signalling overhead.  

The QoE Controller outputs, i.e, the joint action chosen 

by the QoE Controller, may include for each Agent the 

choice of QoS Reference Values (e.g., the expected 

priority level, the tolerated transfer delay range, the 

minimum throughput to be guaranteed, the tolerated 

packet loss range, the tolerated dropping frequency range, 

etc.), of Security Reference Values (e.g., the expected 

encryption level, the expected security level of the routing 

path computed by introducing appropriate metrics, etc.), 

and of Content/Service Reference Values (e.g., the 

expected content/service mix, etc.). 

The QoE Controller has to dynamically select, for each 

in-progress application instance, the most appropriate 

Reference Values which should actually drive, thanks to 

suitable underlying network procedures (which are 

outside the scope of this paper), the Perceived QoE as 

close as possible to the Target QoE (for further details, see 

[12] where the above-mentioned Reference Values are 

referred to as Driving Parameters). However, since the 

control action has a large number of degrees of freedom, 

the exploration of the solution space may take a large 

amount of time, thus making the task of the QoE 

Controller excessively complex. A simpler (yet less fine-

grained) control task arises if the management of the 

underlying networks is arranged into Classes of Service 

(CoS), as described in [22]. 

In this paper, we assume that each CoS is associated 

with a predefined set of QoS Reference Values. 

Nevertheless, the proposed approach can be applied even 

in the case when each CoS is associated with a set of 

Reference Values that are not necessarily related to QoS 

issues only, but also, for instance, to Security parameters, 

and/or to Content/Service characteristics, etc. Let S 

indicate the total number of CoSs and let ai(tk) {c1, c2, 

…, cS} indicate the action performed by the i-th Agent (i.e., 

the CoS chosen by the i-th Agent) at the time instant tk.  

In current telecommunication networks, a static CoS 

assignment policy is adopted: each application instance is 

given a CoS for its entire lifetime; the CoS associated to a 

given application instance should be the one whose QoS 

Reference Values satisfy “on the average” the application 

requirements. Nevertheless, it is evident that such a static 

association does not take into account either personalized 

application requirements or contingent situations taking 

place in the telecommunication networks, such as 

congestion events. So, a static CoS assignment may 

generally lead to poor performance in terms of the 

personalized QoE perceived by each user. Hence, this 

paper considers dynamic CoS-to-application assignment 

as the methodological means to accomplish the above-

mentioned goals in terms of QoE Error reduction and 

fairness. This means that, at each time instant tk, the QoE 

Controller has to decide, in real time, which is the most 

appropriate CoS to be associated with each in-progress 

application instance (e.g., if the Agents are embedded in 

mobile user terminals, the QoE Controller decisions can 

be implemented by inserting the selected CoS identifier in 

the header of the packets transmitted by the terminals). Up 

to the authors’ knowledge, apart from [18], [19], [12] and 

[23], such a dynamic assignment approach has never been 

investigated so far.  

Indeed, meeting the Target QoE for the in-progress 

applications, in conjunction with an efficient exploitation 

of the available bandwidth, could be a rather challenging 

issue, especially in wireless networks with limited 

bandwidth resources. In this respect, optimal adaptive 

control strategies could be key factors to cope with such 

an issue. Moreover, due to the data-intensive nature of 

multimedia streaming services as well as due to the 

increasingly demanding requirements in terms of 

QoS/QoE, Reinforcement Learning based algorithms are 

being used more and more in telecommunication 

networks, as long as they prove to be computationally 

efficient and sufficiently scalable [24].  

 

2.2. The MARL-Q Algorithm for the QoE Controller 

This paper focuses on the problem of designing the QoE 

Controller algorithm. It should be evident that, in order to 

solve this problem by means of traditional model-based 

control techniques, the QoE Controller should know – or 

at least estimate – the correlation between its decisions 

(namely, the selected QoE Controller outputs) and the 

Perceived QoE. However, no model of the very complex 

plant regulated by the QoE Controller (namely, the plant 

receiving the QoE Controller outputs in input and 

producing the Perceived QoE as its output) can be 

assumed, since it depends on plenty of hardly predictable 

factors (such as traffic characteristics of the ongoing 

applications, network topologies, resource management 

algorithms, QoE Evaluation methods and so on).  

In light of the above, the QoE Controller decision 
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strategy must be learned online by trial and error. This is 

why we propose that the QoE Controller makes use of a 

model-free MARL algorithm in order to evaluate, at each 

time step tk, the joint policy (a1(tk), a2(tk), …, aN(tk)) = 

(a1, a2, …, aN) which, once enforced by the Agents, 

tracks the discussed goals in terms of QoE Error. The 

proposed MARL algorithm works on the basis of the 

observation of a joint reward r(tk+1, a1(tk), a2(tk), …, aN(tk)) 

= r(tk+1, a1, a2, …, aN), i.e., of the numerical reward (the 

same for all the N Agents) which is received by each 

Agent at time tk+1
 as a consequence of the enforcement, at 

time tk, of the joint policy (a1, a2, …, aN). The MARL 

algorithm in question is aimed at maximizing the long-run 

return R(), namely at maximizing the expected 

discounted return: 

 
where [0,1) is the discount rate, which weighs 

immediate versus delayed rewards, and E{} denotes the 

expected value under policy . 

In order to set up a MARL problem, we have to select 

the state space, the action spaces and the reward function. 

 We consider a static game, i.e., a game with only a single 

state: such an assumption, on the one hand, is not 

limiting in our context, and, on the other hand, greatly 

reduces the computational complexity which in MARL 

is exponential in the number of state and action 

variables. 

 Following the discussion on dynamic CoS assignment, 

the action set Ai of Agent i coincides with the set of 

CoSs, i.e., Ai = {c1, c2, …, cS}, i = 1, …, N. In other 

words, action ai(tk), performed by Agent i at time tk, can 

be equal to either c1, or c2, …, or cS. The cardinality of 

the joint action space A = A1 × … × AN  is equal to |A1|  

|A2|  …  |AN| = SN. 

 The function expressing the joint reward r(tk+1, a1, a2, 

…, aN) should be consistent with the discussed goals in 

terms of QoE Error; in this respect, each candidate joint 

reward should be a non-increasing function of the N 

error values |ei(tk)| (for i = 1, …, N). In Section 4.1, the 

choice of suitable joint reward functions will be 

discussed. 

In particular, we propose to apply the Multi-Agent Q-

Learning algorithm [13] (hereinafter referred to as MARL-

Q algorithm) which is proved to converge to an optimal 

policy *(a1, a2, …, aN), i.e., to a policy which maximizes 

the expected discounted long-run return R(). The 

algorithm is the multi-agent extension of the well-known 

(single-agent) Q-Learning algorithm ([25]), already 

succesfully applied to QoE/QoS control in 

communication networks ([26], [27]). 

The MARL-Q algorithm relies on the estimation of the 

optimal action-value function Q(s, a1, a2, …, aN), defined 

as the expected return of the system when it starts from 

state s, takes the joint action (a1, a2, …, aN), and follows 

policy  thereafter. In the previously defined centralized 

context, at each time step tk, this algorithm (i) evaluates a 

joint policy (a1, a2, …, aN) – which sums up the 

behaviour of all the N Agents and is initialized arbitrarily 

– and (ii) improves such a policy by making it -greedy 

with respect to the current action-value function [28], thus 

yielding a better joint policy ' to be evaluated and 

improved at the next iteration.  

In detail, the policy evaluation step (i) is performed by 

the MARL-Q algorithm by updating the action-value 

function Q(tk, a1, a2, …, aN) according to the following 

update rule: 

  

 
 

where  is the discount rate and tkis a sequence 

of learning rates, which are key parameters that should 

satisfy the standard stochastic approximation conditions 

for convergence [29]. The argument tk denotes the value 

of the action-value function computed at time tk, whereas 

the argument s is omitted since we are considering a single 

state problem. 

The policy improvement step (ii) consists in performing, 

with probability equal to , a random joint action (a1', a2', 

…, aN') and, with probability equal to 1 – , the following 

greedy joint action (a1', a2',..., aN'): 

 

 
 

The parameter is the exploration rate. A large 

value of  guarantees that different policies with respect 

to the current best one are explored, and thus avoids that 

the QoE Controller remains stuck in a local minimum 

(exploration); on the other hand, a small value of  lets the 

QoE Controller choose the best action based on the current 

estimate of the action-value function (exploitation). 

So, at each time step tk, the centralized QoE Controller 

– based on the Perceived QoE values PQoEi(tk) (i = 1, 

…, N) transmitted by the Agents at time tk, and on the 

knowledge of the Target QoE values TQoEi (i = 1, …, N) 

transmitted by the Agents at the time of their birth – 

performs the following tasks until the optimal action-

value function Q* (and the optimal policy *) is found: 

T1) it updates the action-value function Q according to 

(4); 

T2) it determines the joint action (a1', a2', …, aN') in a 

random way with probability equal to  and 

according to (5) with probability equal to 1 – ; 

T3) it broadcasts the chosen joint action (a1', a2', …, aN') 

to all Agents so that Agent i consequently enforces 

action ai'; 

T4) it computes the corresponding joint reward r(tk+1, 

a1', a2', …, aN') according to the selected reward 

function which should include, as independent 

variables, the Perceived QoE values PQoEi(tk) (i = 1, 
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…, N) and the Target QoE values TQoEi (i = 1, 

…, N). 

The algorithm converges under a generic initial policy. 

By varying the learning rates, the exploration rate and 

the discount rate, the convergence speed of the algorithm 

and the quality of the solution significantly change; the 

parameters used in the simulations reported in Section 4 

have been tuned by running the simulations several times. 

 

3. PROPOSED HEURISTIC MARL-Q BASED 

(H-MARL-Q) ALGORITHM 

 

3.1 Limitations of MARL-Q 

The analysis of the contents of the previous section 

offers us the opportunity to discuss the following issues. 

 The main challenge arisen in MARL is the so-called 

curse of dimensionality [14]: in fact, as Reinforcement 

Learning algorithms (such as Q-Learning) estimate 

values for each possible state or state-action pair, the 

computational complexity of MARL is exponential in 

the number of state and action variables and, therefore, 

in the number of Agents; in addition, the Agents’ 

rewards are correlated and then they cannot be 

maximized independently of one another. The runtime 

of the MARL-Q algorithm (i.e., the time the algorithm 

needs to perform the specific task it has been designed 

for) directly depends on the cardinality SN of the joint 

action space. As a matter of fact, at each time step, the 

max operator in (5) has to consider SN values; in this 

respect, it is particularly important to note that, in a 

Future Internet framework where the QoE Controller 

should be able to handle even thousands of Agents and 

dozens of CoSs, SN would become a really huge value. 

For this reason, the task of implementing the dynamic 

CoS assignment according to the MARL-Q algorithm 

discussed in the previous section is inherently complex 

from a computational point of view and, as a result, it 

is extremely runtime-consuming. Such a relevant issue 

claims for a reasonable reduction of the size of the 

joint action space (and, hence, of the computational 

effort of the learning algorithm). 

 The issue of the nonstationarity of multi-agent 

learning arises too, since all Agents in the system are 

simultaneously learning: each Agent is faced with a 

moving-target learning problem and consequently the 

best policy changes as the other Agents’ policies 

change. In this respect, the exploration strategy is 

crucial for the efficiency of MARL algorithms. Agents 

explore to obtain information not only about the 

environment, but also about the other Agents, for the 

purpose of implicitly building models of these Agents. 

In other words, the need for coordination stems from 

the fact that the effect of any Agent’s action on the 

environment depends also on the actions taken by the 

other Agents. Nonetheless, too much exploration 

should be avoided, as it may destabilize the learning 

dynamics of the other Agents. 

In order to address the above-mentioned limitations, this 

paper presents an innovative heuristic algorithm, hereafter 

referred to as H-MARL-Q algorithm and derived from the 

MARL-Q algorithm described in Section 2.2. Such a 

heuristic algorithm, in comparison with the latter, 

considerably reduces the joint action space, thus 

significantly accelerating the task of dynamic CoS 

mapping, without teasing out an excessive amount of 

exploratory and information-gathering actions (hence, 

preserving an acceptable level of environment 

exploration). As shown in Section 4, the proposed H-

MARL-Q algorithm has also turned out to be successful 

in addressing the issue of the algorithm scalability, 

yielding satisfactory results even when the number of 

Agents is counted in the order of thousands (as it will 

happen in the upcoming Internet of Things era). 

 

3.2 H-MARL-Q Algorithm Description 

The H-MARL-Q algorithm only considers a suitably 

selected subset of the joint action space, reasonably 

yielding an approximate solution to the dynamic CoS 

assignment problem presented in Section 2.  

Basically, at each time step, the entire joint action space 

contains plenty of joint actions which have very few 

possibilities of being the best ones (i.e., the ones which 

meet the max operator in (5)). Unfortunately, such joint 

actions cannot be identified and discarded a-priori, 

because we do not have any a-priori knowledge of the 

environment; nevertheless, such actions can be identified 

and removed by carrying out a preliminary analysis of the 

Agents’ dynamic behaviour in a simpler emulated 

environment. So, the basic underlying idea of the H-

MARL-Q algorithm is to perform the following two steps. 

Step (a): This step, referred to as Identification of the 

Reduced Joint Action Space, is performed by 

the QoE Controller una tantum, every time a 

new Agent is born, in order to identify, through 

the emulation of suitable test environments, an 

appropriate Reduced Joint Action Space. 

Step (b): This step, referred to as Identification of the 

Suboptimal Joint Action, is performed, in real 

time, by the QoE Controller at each time step tk, 

in order to identify the joint action (a1, a2,…, 

aN) to be performed at time tk on the basis of 

real-time observations of the environment and 

considering the Reduced Joint Action Space 

identified in step (a) (and not the entire joint 

action space A). This yields a suboptimal joint 

policy which constitutes a satisfactory 

approximate solution to the considered 

problem. 

 

3.2.1 H-MARL-Q Algorithm Description: Step (a) 

Whenever a new Agent, say agent N, is born (i.e., a new 

application instance is launched), say at time tk, in a real 

environment in which N – 1 Agents i (for i = 1, 2,…, N – 

1) are already active, the new Agent notifies its existence 

to the QoE Controller together with its own personalized 

QoE requirements expressed in terms of Target QoE 

(TQoEN). Then, the QoE Controller emulates the dynamic 

behaviour of the system in N – 1 two-player test games, 

each one involving two Agents: (i) the new Agent N and 
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(ii) each of the already active Agents i (i = 1,…, N – 1). 

These two-player test games are played in emulated test 

environments which should reproduce only some key 

features of the real environment. 

Let [i, j] denote the two-player test game involving 

Agents i and j. In each two-player test game [i, j] the 

optimal policy *(ai, aj) is obtained by applying the 

MARL-Q algorithm described in the previous section 

(clearly, in this case, the number of Agents N appearing in 

(4) and (5) is equal to two). The optimal policy identifies 

a pair of deterministic actions (ai
*, aj

*) where ai
* and aj

* 

represent the optimal CoS choices that the Agents i and j, 

respectively, should enforce.  

It should be clear that, since the cardinality of the joint 

action space of each test environment is equal to S2, the 

computational complexity of the MARL-Q algorithm is 

limited, i.e., the algorithm converges to the optimal policy 

in a limited runtime as shown through real tests in Section 

4.  

After step (a), at any time tk at which N Agents are 

active, the QoE Controller stores N(N – 1)/2 optimal 

action couples: 

 

  (ai
*, aj

*)  with i = 1,…, N,  j = 1,…, N,  i ≠ j.   (6) 

 

These couples are used in order to identify a Reduced 

Joint Action Space containing a reasonable subset of the 

entire joint action space A.  

Let ai
*[i, j] and aj

*[i, j] denote the optimal action for the 

i-th Agent and the j-th Agent, respectively, resulting from 

the two-player test game [i, j]. We assume that such a 

Reduced Joint Action Space consists of the union of N 

Action Subspaces, where the i-th Action Subspace is 

associated to the i-th Agent (the sub-tables within the 

borders in bold in the table below represent such Action 

Subspaces). Each Action Subspace includes S candidate 

joint actions (i.e., the rows of each sub-table). The i-th 

Action Subspace is built by only considering the two-

player test games involving the i-th Agent. In particular, 

each of the S candidate joint actions of the i-th Action 

Subspace is obtained as follows: for each Agent j, with j 

≠ i, the optimal action aj
*[i, j] that such an Agent would 

perform in the two-player test game [i, j] is taken into 

account, whilst for the i-th Agent all the S possible actions 

of the Ai
 set are spanned (each one being considered in a 

different candidate joint action of the Action Subspace). 

By so doing, the Reduced Joint Action Space includes 

SN candidate joint actions: this certainly entails a drastic 

reduction with respect to the SN joint actions that would 

appear in the entire joint action space A. 

For instance, if, at the considered time step, N = 4 (i.e., 

the Agents 1, 2, 3 and 4 are active) and S = 3 (i.e., the 

action ai that Agent i, for i = 1, 2, 3, 4, can perform 

corresponds to the selection of one of the three CoSs c1, 

c2, c3), each of the SN = 12 rows of the table below 

provides one of the 12 candidate joint actions (in 

particular, the sub-tables included within the borders in 

bold identify the N = 4 Action Subspaces), while each of 

the four columns of the table identifies the single actions 

that can be taken by Agents 1, 2, 3 and 4, respectively, in 

the overall Reduced Joint Action Space. 

Moreover, every time a new Agent, say agent N, dies 

(i.e., an in-progress application terminates), the Reduced 

Joint Action Space is updated by eliminating the actions 

involving Agent N. For instance, referring to the example 

reported in the table below, if Agent 4 dies, the three joint 

actions corresponding to the three last rows are removed 

(i.e., the Action Subspace corresponding to Agent 4 is 

removed), and all the actions corresponding to the last 

column are removed, too. 

Table 1. Representation of the Reduced Joint Action 

Space for N = 4 and S = 3. The columns of the table 

identify the different Agents, the rows represent the 

different candidate joint actions, and the sub-tables within 

the borders in bold represent the so-called Action 

Subspaces. 
 

c1 a2
* [1,2] a3

* [1,3] a4
* [1,4] 

c2 a2
* [1,2] a3

* [1,3] a4
* [1,4] 

c3 a2
* [1,2] a3

* [1,3] a4
* [1,4] 

a1
*[1,2] c1 a3

* [2,3] a4
* [2,4] 

a1
*[1,2] c2 a3

* [2,3] a4
* [2,4] 

a1
*[1,2] c3 a3

* [2,3] a4
* [2,4] 

a1
* [1,3] a2

* [2,3] c1 a4
* [3,4] 

a1
* [1,3] a2

* [2,3] c2 a4
* [3,4] 

a1
* [1,3] a2

* [2,3] c3 a4
* [3,4] 

a1
* [1,4] a2

* [2,4] a3
* [3,4] c1 

a1
* [1,4] a2

* [2,4] a3
* [3,4] c2 

a1
* [1,4] a2

* [2,4] a3
* [3,4] c3 

 

3.2.2 H-MARL-Q Algorithm Description: Step (b) 

Step (b) of the H-MARL-Q algorithm is performed on 

the basis of the MARL-Q algorithm presented in Section 

2.2 and is applied to the Reduced Joint Action Space 

identified in step (a). So, in step (b), the QoE Controller 

has to perform the tasks T1, T2, T3, and T4 described in 

Section 2.2, with the fundamental difference that, when 

performing tasks T1 and T2, the Reduced Joint Action 

Space (having cardinality SN), instead of the entire Joint 

Action Space (having cardinality SN), is considered. Since 

N can be in the order of thousands, it is evident that the 

proposed approach drastically reduces the required 

computing power. 

4. H-MARL-Q ALGORITHM SIMULATIONS 

 

4.1 Simulation Scenario 

This section presents numerical simulations, carried out 
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using MATLAB®, with reference to a simple simulation 

scenario which does not claim to represent any real 

network. The presented simulations are just aimed at 

providing a proof-of-concept of the proposed algorithm in 

order to highlight its potentialities and criticalities.  

 We assume the presence of S = 3 different CoSs (e.g., 

“guaranteed,” “premium” and “best effort” services) and 

M = 3 different application types (i.e., real-time HDTV 

streaming, distributed videoconferencing and simple File 

Transfer Protocol). The static CoS assignment policy 

determines a static association among application types 

and CoSs (i.e., an application instance belonging to a 

given application type is assigned the corresponding CoS 

for its entire lifetime), whereas in the dynamic CoS 

assignment case, at each time step tk, an application 

instance can be assigned any CoS (regardless of the 

application type) according to the proposed H-MARL-Q 

algorithm. 

We assume that, during our simulations, N Agents are 

active, each one being involved in an application instance. 

Such an application instance may belong to one of the 

three considered application types and is characterized by 

an average offered transmission bitrate bi randomly 

selected in the set {0.6, 1.2, 2} and by a personalized 

Target QoE TQoEi (for i = 1, …, N) randomly selected in 

the set {0.7, 0.8, 0.9}.  

 

Fig. 2. Dumbbell network topology. 

 The simulated network has a dumbbell network 

topology, as shown in Fig. 2, where each of the N 

transmitters corresponds to one of the N considered 

Agents. Router West implements a Weighted Fair 

Queueing (WFQ) scheduler for handling the traffic to be 

transmitted over the bottleneck link. The related WFQ 

vector [30] is assumed to be (0.5, 0.3, 0.2), where the i-th 

element is the weight assigned to the i-th CoS (higher 

weight means higher priority). The bottleneck link is 

characterized by an available link capacity Blink computed 

as: 

 
where  is a parameter in the range (0,1) accounting for 

traffic congestion; in particular, in our simulations we 

consider two different situations characterized by = 0.7 

and = 0.8, which represent High Traffic and Medium 

Traffic conditions, respectively.  

As for the number of active Agents N, in our 

simulations we consider two cases: N = 100 and N = 1000. 

For each of these two cases and for each of the two 

considered traffic congestion conditions, ten simulation 

runs or episodes have been carried out, with a duration of 

(15  103) time steps for N = 100 and of (15  104) time 

steps for N = 1000: in each simulation run a different 

association among application instances, application types, 

average offered bitrates and Target QoE values is 

performed. Such associations are assumed to be fixed for 

the entire simulation run. 

In the simple proposed simulation scenario, we assume 

that the set of Feedback Parameters m (introduced in 

Section 2.1) includes, for any m = 1, 2, 3, just a single 

element denoted as QoS and that the function gm, 

introduced in (2), is computed on the basis of the well-

known IQX hypothesis [5]. This means that (2) becomes: 

 

           PQoEi(m)(tk)=pm e
-m QoS

 m       (7) 

 

where the parameter QoS  has been assumed to be equal 

to the difference between the traffic offered by the 

application instance and the corresponding bitrate 

currently allocated by the WFQ Scheduler. Note that the 

latter parameter depends on the CoS appointed at time tk 

for the considered application instance, which actually 

impacts on the priority assigned by the WFQ Scheduler to 

the packets of the relevant traffic flow. We assume 1 = 

0.5, 2 = 0.7, 3 = 1, as well as pm = 1 and m = 0 for all 

values of m; with these choices, PQoEi(m)(tk) is always 

included in the range [0,1]. The learning rates (tk) 

appearing in (4), according to [31], are set to: 

 

(tk, a1, a2,…, aN)= 1/(1+visit(tk, a1, a2,…, aN))   (8) 

 

where visit(tk, a1, …, aN) is the number of times that a 

specific joint action (a1, a2, …, aN) has been enforced up 

to the iteration at time tk. The discount rate is set to = 0.9. 

The selected joint reward function, consistent with the 

general criteria identified in Section 2, is: 

 
where the absolute value of wi serves as an appropriately 

chosen penalty, which the i-th Agent is inflicted with, any 

time it exhibits either underperforming or overperforming 

behaviour. A proper choice of wi may be the following:  

 

 wi(tk) = – 100  if ei(tk) < – 0.15 (i.e., if severe 

underperformance is experienced by Agent i); 

 wi(tk) = – 10  if – 0.15 < ei(tk) < 0 (i.e., if minor 

underperformance is experienced by Agent i); 

 wi(tk) = – 1   if 0 < ei(tk) < 0.1 (i.e., if acceptable 

overperformance is experienced by Agent i); 

 wi(tk) = – 50  if ei(tk) > 0.1 (i.e., if undesirable 

overperformance is experienced by Agent i).     (9) 
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In particular, the thresholds on the QoE Error values in 

(9) have been arbitrarily chosen in order to suitably 

classify the behaviour of Agent i at time tk as a result of 

the joint action taken. Moreover, the initial policy, that is, 

the initial CoS-to-application association, is randomly 

generated. 

Note that, even though the proposed proof-of-concept 

does not claim to represent any real network, a bottleneck 

link characterized by limited available bandwidth capacity 

can represent the uplink of a given cell of a cellular 

network. In such a scenario, a number of Agents roaming 

in the considered cell (and hence sharing the cell available 

uplink capacity) in the order of some hundreds (as 

assumed in this section) seems reasonable. 

 

4.2 Numerical Results 

This subsection shows the results obtained in the 

described simulation scenario; in particular, the H-

MARL-Q algorithm is applied with a number of Agents N 

= 100 and N = 1000, both in the High and Medium Traffic 

conditions.  

It should be emphasized that we can deal with such a 

high number of Agents due to the fact that the proposed 

H-MARL-Q algorithm relies on a Reduced Joint Action 

Space, which has cardinality SN = 300 in the scenario with 

100 Agents (S = 3 and N = 100), and SN = 3000 in the 

scenario with 1000 Agents (S = 3 and N = 1000). If the 

original Joint Action Space were used, a solution relying 

on the MARL-Q algorithm would be unfeasible, since the 

cardinality would be SN = 3100 = 5.2  1047, and SN = 31000= 

1.42  10477 in the two scenarios, respectively. 

The results obtained with the H-MARL-Q algorithm are 

compared with the performance of a Static algorithm 

which adopts a static CoS assignment policy. The 

comparison with the MARL-Q algorithm is impossible 

due to the curse of dimensionality (as explained in Section 

3.1).  

The obtained results are expressed in terms of two 

quantities: 

(i) the Average Absolute QoE Error, computed as the 

absolute value of the QoE Error expressed by (1), 

averaged over all the considered Agents and all the 

simulation episodes (see Figs. 3 and 4); 

(ii) the QoE Error Standard Deviation, computed as the 

standard deviation of the QoE Error vector (e1, e2, …, 

eN) (where ei, for i = 1, 2, …, N, is expressed as in (1)) 

averaged over all the simulation episodes (see Figs. 5 

and 6).  

Note that the standard deviation accounts for the 

fairness among Agents: the smaller the standard deviation, 

the higher the fairness among Agents, as discussed in 

Section 2.1.  

Figs. 3-6 clearly show that the H-MARL-Q algorithm 

remarkably outperforms the Static algorithm in all of the 

considered simulation cases. In particular, while under the 

Static algorithm the Average Absolute QoE Error is 

appreciably smaller in Medium rather than in High Traffic 

conditions, under the H-MARL-Q algorithm, for both N = 

100 and N = 1000, the Average QoE Error bars 

corresponding to High and Medium Traffic conditions 

(see Figs. 3 and 4) exhibit values that are really close to 

each other: this means that the presented algorithm also 

allows to overcome the disadvantages related to the 

impact that the traffic congestion conditions produce on 

the bottleneck link. 

Furthermore, the QoE Error Standard Deviation shown 

in Figs. 5 and 6 confirms the virtues of the H-MARL-Q 

algorithm, since the dispersion of the QoE Error values of 

the different Agents at the end of the learning procedure 

is significantly closer to zero than in the case when the 

Static algorithm is applied. 

All these results evidently show that the dynamic and 

personalized selection of the most appropriate CoS for the 

ongoing application instances yields improved 

performance results, if compared with a static CoS 

assignment policy. 

In addition, Fig. 7 shows the Average Absolute QoE 

Error trend, i.e., the evolution of the Average Absolute 

QoE Error over time.  

Let the settling time denote the time needed by the 

Average Absolute QoE Error to reach a steady state. Once 

an acceptable preliminary agreement among Agents – 

yielding the selection of the most “promising” joint 

actions for solving the dynamic CoS assignment problem 

– has been reached in step (a), the error dynamics, as 

highlighted in Fig. 7, experiences a rapid decrease over 

the first 100 iterations of step (b) and then it takes some 

time to settle down to the steady-state value: in the figure, 

the settling time is approximately equal to 9000 iterations. 

So, the overall runtime required by the H-MARL-Q 

algorithm is the sum of the time ta necessary to reach the 

preliminary agreement in step (a) plus the time tb 

necessary to perform step (b), where tb amounts to 

approximately 9000 iterations for N = 100 and ta is 

negligible with respect to tb. This is indeed an encouraging 

result which shows that the H-MARL-Q algorithm has to 

be preferred to the MARL-Q algorithm as the former 

achieves a satisfactory approximate solution in a 

reasonably smaller amount of runtime than the latter – 

whose runtime, instead, actually turns out to be unfeasibly 

long in scenarios where the number of Agents is counted 

in the order of hundreds or thousands. 

The proposed approach to QoE Control enables a 

dynamic Class of Service selection aimed at reducing the 

error between the personalized Perceived QoE and the 

personalized Target QoE levels by properly driving the 

control procedures that handle the underlying networks. 

This result could be obtained by embedding an innovative 

Multi-Agent Reinforcement Learning algorithm, namely 

the proposed H-MARL-Q algorithm, in a centralized QoE 

Controller. Such an algorithm has been tested in a simple 

simulation scenario, with just the aim of providing a 

proof-of-concept and without claiming to represent any 

real network. 

 

5. CONCLUSION 

 

The proposed method presents several practical 

advantages:  
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(i) it does not require any a-priori knowledge of the 

environment (i.e., it is model-free) thanks to the 

adoption of a Reinforcement Learning based 

approach;  

(ii) it is decoupled from QoE Evaluation, i.e., it can work 

in conjunction with any algorithm computing the 

Target QoE and the Perceived QoE values, and it 

allows a personalization level up to the single 

application instance, since the only signal exchanged 

at the interface between the QoE Controller and the 

QoE Evaluator is the QoE Error provided by (1); 

(iii) it requires minimal signalling overhead since no 

communication exchange among Agents is needed 

and very little information has to be exchanged 

among the centralized QoE Controller and the 

distributed Agents;   

(iv) it is characterized by a very good degree of 

scalability (thus being able to handle several 

hundreds of Agents) due to the fact that, as the joint 

action to be carried out at each time step is sought 

within a suitable Reduced Joint Action Space, the 

complexity of the proposed H-MARL-Q algorithm 

is linear in the number of Agents (as opposed to the 

well-known MARL-Q algorithm whose complexity 

is exponential in the number of Agents). 

Note that the algorithm presented in this paper assumes 

the time-invariance of the Target QoE. However, the 

authors are carrying out further studies, based on concept 

drift in web/telecommunication systems [32], so as to 

address also the case of a time-varying Target QoE. In this 

last case, the Target QoE depends not only on the 

commercial profile of the users but also on the relevant 

feedbacks provided by the users themselves. 

Moreover, the authors are presently carrying out further 

research based on a combinatorial multi-armed bandit 

approach to cooperative online learning [33, 34], with the 

aim of overcoming the centralized paradigm and, 

consequently, of developing a solution in which the QoE 

Control functionalities  

can be fully distributed into the Agents.  

Finally, note that the overall modular architecture 

sketched in Fig. 1 – within which Reinforcement Learning 

algorithms embedded in a QoE Controller play the role of 

dynamically selecting (on the basis of real-time feedbacks 

provided by a proper QoE Evaluator) appropriate 

Reference Values which should drive environment-

specific procedures – has proved to be so flexible that the 

authors are reproducing it also in the domains of 

intelligent transport systems and telemedicine within the 

framework of EU-funded research projects. 
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Fig. 3. Average Absolute QoE Error for N = 100. The 

dark-grey bar and the light-grey bar represent the Average 

Absolute QoE Error in High and Medium Traffic 

conditions, respectively. 

 

 

 
 

Fig. 4. Average Absolute QoE Error for N = 1000. The 

dark-grey bar and the light-grey bar represent the Average 

Absolute QoE Error in High and Medium Traffic 

conditions, respectively. 
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Fig. 5. QoE Error Standard Deviation for N = 100. The 

dark-grey bar and the light-grey bar represent the QoE 

Error Standard Deviation in High and Medium Traffic 

conditions, respectively. 

 

 

 
 

Fig. 6. QoE Error Standard Deviation for N = 1000. The 

dark-grey bar and the light-grey bar represent the QoE 

Error Standard Deviation in High and Medium Traffic 

conditions, respectively. 

 

  

Fig. 7. Average Absolute QoE Error trend, corresponding to step (b) of the H-MARL-Q algorithm, in High (black line) 

and Medium (grey line) Traffic conditions with N = 100. 
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