651 research outputs found

    Fairness and efficiency for probabilistic allocations with endowments

    Get PDF
    We propose to use endowments as a policy instrument in market design. Endowments give agents the right to enjoy certain resources. For example in school choice, one can ensure that low-income families have a shot at high-quality schools by endowing them with a chance of admission. We introduce two new criteria in resource allocation problems with endowments. The first adapts the notion of justified envy to a model with endowments, while the second is based on market equilibrium. Using either criteria, we show that fairness (understood as the absence of justified envy, or as a market outcome) can be obtained together with efficiency and individual rationality

    Fairness and efficiency for probabilistic allocations with endowments

    Get PDF
    We propose to use endowments as a policy instrument in market design. Endowments give agents the right to enjoy certain resources. For example in school choice, one can ensure that low-income families have a shot at high-quality schools by endowing them with a chance of admission. We introduce two new criteria in resource allocation problems with endowments. The fi�rst adapts the notion of justi�fied envy to a model with endowments, while the second is based on market equilibrium. Using either criteria, we show that fairness (understood as the absence of justifi�ed envy, or as a market outcome) can be obtained together with efficiency and individual rationality

    Cake Cutting Algorithms for Piecewise Constant and Piecewise Uniform Valuations

    Full text link
    Cake cutting is one of the most fundamental settings in fair division and mechanism design without money. In this paper, we consider different levels of three fundamental goals in cake cutting: fairness, Pareto optimality, and strategyproofness. In particular, we present robust versions of envy-freeness and proportionality that are not only stronger than their standard counter-parts but also have less information requirements. We then focus on cake cutting with piecewise constant valuations and present three desirable algorithms: CCEA (Controlled Cake Eating Algorithm), MEA (Market Equilibrium Algorithm) and CSD (Constrained Serial Dictatorship). CCEA is polynomial-time, robust envy-free, and non-wasteful. It relies on parametric network flows and recent generalizations of the probabilistic serial algorithm. For the subdomain of piecewise uniform valuations, we show that it is also group-strategyproof. Then, we show that there exists an algorithm (MEA) that is polynomial-time, envy-free, proportional, and Pareto optimal. MEA is based on computing a market-based equilibrium via a convex program and relies on the results of Reijnierse and Potters [24] and Devanur et al. [15]. Moreover, we show that MEA and CCEA are equivalent to mechanism 1 of Chen et. al. [12] for piecewise uniform valuations. We then present an algorithm CSD and a way to implement it via randomization that satisfies strategyproofness in expectation, robust proportionality, and unanimity for piecewise constant valuations. For the case of two agents, it is robust envy-free, robust proportional, strategyproof, and polynomial-time. Many of our results extend to more general settings in cake cutting that allow for variable claims and initial endowments. We also show a few impossibility results to complement our algorithms.Comment: 39 page

    Random assignment with multi-unit demands

    Full text link
    We consider the multi-unit random assignment problem in which agents express preferences over objects and objects are allocated to agents randomly based on the preferences. The most well-established preference relation to compare random allocations of objects is stochastic dominance (SD) which also leads to corresponding notions of envy-freeness, efficiency, and weak strategyproofness. We show that there exists no rule that is anonymous, neutral, efficient and weak strategyproof. For single-unit random assignment, we show that there exists no rule that is anonymous, neutral, efficient and weak group-strategyproof. We then study a generalization of the PS (probabilistic serial) rule called multi-unit-eating PS and prove that multi-unit-eating PS satisfies envy-freeness, weak strategyproofness, and unanimity.Comment: 17 page

    Aggregate efficiency in random assignment problems

    Get PDF
    We introduce aggregate efficiency (AE) for random assignments (RA) by requiring higher expected numbers of agents be assigned to their more preferred choices. It is shown that the realizations of any aggregate efficient random assignment (AERA) must be an AE permutation matrix. While AE implies ordinally efficiency, the reverse does not hold. And there is no mechanism treating equals equally while satisfying weak strategyproofness and AE. But, a new mechanism, the reservation-1 (R1), is identified and shown to provide an improvement on grounds of AE over the probabilistic serial mechanism of Bogomolnaia and Moulin (2001). We prove that R1 is weakly strategyproof, ordinally efficient, and weak envy--free. Moreover, the characterization of R1 displays that it is the probabilistic serial mechanism updated by a principle decreed by the Turkish parliament concerning the random assignment of new doctors: Modifying the axioms of Hasimoto, et. al. (2012) characterizing the probabilistic serial mechanism to satisfy this principle, fully characterizes R1
    corecore