11 research outputs found

    Fairly Allocating Many Goods with Few Queries

    Full text link
    We investigate the query complexity of the fair allocation of indivisible goods. For two agents with arbitrary monotonic valuations, we design an algorithm that computes an allocation satisfying envy-freeness up to one good (EF1), a relaxation of envy-freeness, using a logarithmic number of queries. We show that the logarithmic query complexity bound also holds for three agents with additive valuations. These results suggest that it is possible to fairly allocate goods in practice even when the number of goods is extremely large. By contrast, we prove that computing an allocation satisfying envy-freeness and another of its relaxations, envy-freeness up to any good (EFX), requires a linear number of queries even when there are only two agents with identical additive valuations

    Developments in Multi-Agent Fair Allocation

    Full text link
    Fairness is becoming an increasingly important concern when designing markets, allocation procedures, and computer systems. I survey some recent developments in the field of multi-agent fair allocation

    The Convergence of Finite-Averaging of AIMD for Distributed Heterogeneous Resource Allocations

    Full text link
    In several social choice problems, agents collectively make decisions over the allocation of multiple divisible and heterogeneous resources with capacity constraints to maximize utilitarian social welfare. The agents are constrained through computational or communication resources or privacy considerations. In this paper, we analyze the convergence of a recently proposed distributed solution that allocates such resources to agents with minimal communication. It is based on the randomized additive-increase and multiplicative-decrease (AIMD) algorithm. The agents are not required to exchange information with each other, but little with a central agent that keeps track of the aggregate resource allocated at a time. We formulate the time-averaged allocations over finite window size and model the system as a Markov chain with place-dependent probabilities. Furthermore, we show that the time-averaged allocations vector converges to a unique invariant measure, and also, the ergodic property holds

    Fairly allocating many goods with few queries

    No full text
    We investigate the query complexity of the fair allocation of indivisible goods. For two agents with arbitrary monotonic valuations, we design an algorithm that computes an allocation satisfying envy-freeness up to one good (EF1), a relaxation of envy-freeness, using a logarithmic number of queries. We show that the logarithmic query complexity bound also holds for three agents with additive valuations. These results suggest that it is possible to fairly allocate goods in practice even when the number of goods is extremely large. By contrast, we prove that computing an allocation satisfying envyfreeness and another of its relaxations, envy-freeness up to any good (EFX), requires a linear number of queries even when there are only two agents with identical additive valuations

    Fairly allocating many goods with few queries

    No full text
    We investigate the query complexity of the fair allocation of indivisible goods. For two agents with arbitrary monotonic valuations, we design an algorithm that computes an allocation satisfying envy-freeness up to one good (EF1), a relaxation of envy-freeness, using a logarithmic number of queries. We show that the logarithmic query complexity bound also holds for three agents with additive valuations. These results suggest that it is possible to fairly allocate goods in practice even when the number of goods is extremely large. By contrast, we prove that computing an allocation satisfying envyfreeness and another of its relaxations, envy-freeness up to any good (EFX), requires a linear number of queries even when there are only two agents with identical additive valuations

    Fairly Allocating Many Goods with Few Queries

    No full text

    Fairly Allocating Many Goods with Few Queries

    No full text

    Efficient Fair Division with Minimal Sharing

    Full text link
    A collection of objects, some of which are good and some are bad, is to be divided fairly among agents with different tastes, modeled by additive utility-functions. If the objects cannot be shared, so that each of them must be entirely allocated to a single agent, then a fair division may not exist. What is the smallest number of objects that must be shared between two or more agents in order to attain a fair and efficient division? We focus on Pareto-optimal, envy-free and/or proportional allocations. We show that, for a generic instance of the problem -- all instances except of a zero-measure set of degenerate problems -- a fair Pareto-optimal division with the smallest possible number of shared objects can be found in polynomial time, assuming that the number of agents is fixed. The problem becomes computationally hard for degenerate instances, where agents' valuations are aligned for many objects.Comment: Add experiments with Spliddit.org dat

    The Price of Connectivity in Fair Division

    Full text link
    We study the allocation of indivisible goods that form an undirected graph and quantify the loss of fairness when we impose a constraint that each agent must receive a connected subgraph. Our focus is on well-studied fairness notions including envy-freeness and maximin share fairness. We introduce the price of connectivity to capture the largest gap between the graph-specific and the unconstrained maximin share, and derive bounds on this quantity which are tight for large classes of graphs in the case of two agents and for paths and stars in the general case. For instance, with two agents we show that for biconnected graphs it is possible to obtain at least 3/43/4 of the maximin share with connected allocations, while for the remaining graphs the guarantee is at most 1/21/2. In addition, we determine the optimal relaxation of envy-freeness that can be obtained with each graph for two agents, and characterize the set of trees and complete bipartite graphs that always admit an allocation satisfying envy-freeness up to one good (EF1) for three agents. Our work demonstrates several applications of graph-theoretic tools and concepts to fair division problems
    corecore