6,510 research outputs found

    Fracton pairing mechanism for "strange" superconductors: Self-assembling organic polymers and copper-oxide compounds

    Full text link
    Self-assembling organic polymers and copper-oxide compounds are two classes of "strange" superconductors, whose challenging behavior does not comply with the traditional picture of Bardeen, Cooper, and Schrieffer (BCS) superconductivity in regular crystals. In this paper, we propose a theoretical model that accounts for the strange superconducting properties of either class of the materials. These properties are considered as interconnected manifestations of the same phenomenon: We argue that superconductivity occurs in the both cases because the charge carriers (i.e., electrons or holes) exchange {\it fracton excitations}, quantum oscillations of fractal lattices that mimic the complex microscopic organization of the strange superconductors. For the copper oxides, the superconducting transition temperature TcT_c as predicted by the fracton mechanism is of the order of 150\sim 150 K. We suggest that the marginal ingredient of the high-temperature superconducting phase is provided by fracton coupled holes that condensate in the conducting copper-oxygen planes owing to the intrinsic field-effect-transistor configuration of the cuprate compounds. For the gate-induced superconducting phase in the electron-doped polymers, we simultaneously find a rather modest transition temperature of (23)\sim (2-3) K owing to the limitations imposed by the electron tunneling processes on a fractal geometry. We speculate that hole-type superconductivity observes larger onset temperatures when compared to its electron-type counterpart. This promises an intriguing possibility of the high-temperature superconducting states in hole-doped complex materials. A specific prediction of the present study is universality of ac conduction for TTcT\gtrsim T_c.Comment: 12 pages (including separate abstract page), no figure

    Current-Mode Techniques for the Implementation of Continuous- and Discrete-Time Cellular Neural Networks

    Get PDF
    This paper presents a unified, comprehensive approach to the design of continuous-time (CT) and discrete-time (DT) cellular neural networks (CNN) using CMOS current-mode analog techniques. The net input signals are currents instead of voltages as presented in previous approaches, thus avoiding the need for current-to-voltage dedicated interfaces in image processing tasks with photosensor devices. Outputs may be either currents or voltages. Cell design relies on exploitation of current mirror properties for the efficient implementation of both linear and nonlinear analog operators. These cells are simpler and easier to design than those found in previously reported CT and DT-CNN devices. Basic design issues are covered, together with discussions on the influence of nonidealities and advanced circuit design issues as well as design for manufacturability considerations associated with statistical analysis. Three prototypes have been designed for l.6-pm n-well CMOS technologies. One is discrete-time and can be reconfigured via local logic for noise removal, feature extraction (borders and edges), shadow detection, hole filling, and connected component detection (CCD) on a rectangular grid with unity neighborhood radius. The other two prototypes are continuous-time and fixed template: one for CCD and other for noise removal. Experimental results are given illustrating performance of these prototypes

    Describing the Flow Curve of Shear-Banding Fluids Through a Structural Minimal Model

    Get PDF
    Main characteristics of colloidal systems that develop fluid phases with different mechanical properties, namely shear-banding fluids, are briefly reviewed both from experimental and theoretical (modelling) point of view. A non-monotonic shear stress vs. shear rate constitutive relation is presented. This relation derives from a phenomenological model of a shear ratedependent viscosity describing structural changes and involves the possibility of multivalued shear rates under a given shear stress. In the case of a stress-dependent viscosity, the same model allows one to predict vorticity banding. Predictions of this model under controlled stress are discussed, namely occurrence of a kind of top- and bottom-jumping of the shear rate in response to stress increasing-decreasing. Applying this model to evaluation of the flow curve of such colloidal systems is performed. Particular emphasis is placed on the adequate computation of the shear rate function in cylindrical Couette cells in order to handle the corresponding flow curve which exhibits the well-known shear stress plateau. Indeed, as different fluid phases coexist in the flow domain, measured (torque vs. angular velocity) data cannot be directly converted into rheometric (shear stress vs. shear rate) functions. As the lacking non-local terms in the model prevents the direct determination of the stress-plateau, this value is included as an adjustable parameter. Thus model predictions satisfactorily match up experimental data of wormlike micellar solutions from the literature.Comment: 22 pages, 9 fi

    A study of transonic aerodynamic analysis methods for use with a hypersonic aircraft synthesis code

    Get PDF
    A means of performing routine transonic lift, drag, and moment analyses on hypersonic all-body and wing-body configurations were studied. The analysis method is to be used in conjunction with the Hypersonic Vehicle Optimization Code (HAVOC). A review of existing techniques is presented, after which three methods, chosen to represent a spectrum of capabilities, are tested and the results are compared with experimental data. The three methods consist of a wave drag code, a full potential code, and a Navier-Stokes code. The wave drag code, representing the empirical approach, has very fast CPU times, but very limited and sporadic results. The full potential code provides results which compare favorably to the wind tunnel data, but with a dramatic increase in computational time. Even more extreme is the Navier-Stokes code, which provides the most favorable and complete results, but with a very large turnaround time. The full potential code, TRANAIR, is used for additional analyses, because of the superior results it can provide over empirical and semi-empirical methods, and because of its automated grid generation. TRANAIR analyses include an all body hypersonic cruise configuration and an oblique flying wing supersonic transport

    Domain Agnostic Fourier Neural Operators

    Full text link
    Fourier neural operators (FNOs) can learn highly nonlinear mappings between function spaces, and have recently become a popular tool for learning responses of complex physical systems. However, to achieve good accuracy and efficiency, FNOs rely on the Fast Fourier transform (FFT), which is restricted to modeling problems on rectangular domains. To lift such a restriction and permit FFT on irregular geometries as well as topology changes, we introduce domain agnostic Fourier neural operator (DAFNO), a novel neural operator architecture for learning surrogates with irregular geometries and evolving domains. The key idea is to incorporate a smoothed characteristic function in the integral layer architecture of FNOs, and leverage FFT to achieve rapid computations, in such a way that the geometric information is explicitly encoded in the architecture. In our empirical evaluation, DAFNO has achieved state-of-the-art accuracy as compared to baseline neural operator models on two benchmark datasets of material modeling and airfoil simulation. To further demonstrate the capability and generalizability of DAFNO in handling complex domains with topology changes, we consider a brittle material fracture evolution problem. With only one training crack simulation sample, DAFNO has achieved generalizability to unseen loading scenarios and substantially different crack patterns from the trained scenario. Our code and data accompanying this paper are available at https://github.com/ningliu-iga/DAFNO

    Shear-induced transitions and instabilities in surfactant wormlike micelles

    Full text link
    In this review, we report recent developments on the shear-induced transitions and instabilities found in surfactant wormlike micelles. The survey focuses on the non-linear shear rheology and covers a broad range of surfactant concentrations, from the dilute to the liquid-crystalline states and including the semi-dilute and concentrated regimes. Based on a systematic analysis of many surfactant systems, the present approach aims to identify the essential features of the transitions. It is suggested that these features define classes of behaviors. The review describes three types of transitions and/or instabilities : the shear-thickening found in the dilute regime, the shear-banding which is linked in some systems to the isotropic-to-nematic transition, and the flow-aligning and tumbling instabilities characteristic of nematic structures. In these three classes of behaviors, the shear-induced transitions are the result of a coupling between the internal structure of the fluid and the flow, resulting in a new mesoscopic organization under shear. This survey finally highlights the potential use of wormlike micelles as model systems for complex fluids and for applications.Comment: 64 pages, 31 figures, 2 table
    corecore