319 research outputs found

    ROYALE: A Framework for Universally Composable Card Games with Financial Rewards and Penalties Enforcement

    Get PDF
    While many tailor made card game protocols are known, the vast majority of those suffer from three main issues: lack of mechanisms for distributing financial rewards and punishing cheaters, lack of composability guarantees and little flexibility, focusing on the specific game of poker. Even though folklore holds that poker protocols can be used to play any card game, this conjecture remains unproven and, in fact, does not hold for a number of protocols (including recent results). We both tackle the problem of constructing protocols for general card games and initiate a treatment of such protocols in the Universal Composability (UC) framework, introducing an ideal functionality that captures general card games constructed from a set of core card operations. Based on this formalism, we introduce Royale, the first UC-secure general card games which supports financial rewards/penalties enforcement. We remark that Royale also yields the first UC-secure poker protocol. Interestingly, Royale performs better than most previous works (that do not have composability guarantees), which we highlight through a detailed concrete complexity analysis and benchmarks from a prototype implementation

    Lower Bounds on Implementing Robust and Resilient Mediators

    Full text link
    We consider games that have (k,t)-robust equilibria when played with a mediator, where an equilibrium is (k,t)-robust if it tolerates deviations by coalitions of size up to k and deviations by up to tt players with unknown utilities. We prove lower bounds that match upper bounds on the ability to implement such mediators using cheap talk (that is, just allowing communication among the players). The bounds depend on (a) the relationship between k, t, and n, the total number of players in the system; (b) whether players know the exact utilities of other players; (c) whether there are broadcast channels or just point-to-point channels; (d) whether cryptography is available; and (e) whether the game has a k+t)−punishmentstrategy;thatis,astrategythat,ifusedbyallbutatmostk+t)-punishment strategy; that is, a strategy that, if used by all but at most k+t$ players, guarantees that every player gets a worse outcome than they do with the equilibrium strategy

    Computer Science and Game Theory: A Brief Survey

    Full text link
    There has been a remarkable increase in work at the interface of computer science and game theory in the past decade. In this article I survey some of the main themes of work in the area, with a focus on the work in computer science. Given the length constraints, I make no attempt at being comprehensive, especially since other surveys are also available, and a comprehensive survey book will appear shortly.Comment: To appear; Palgrave Dictionary of Economic

    Conflicts with Multiple Battlefields

    Get PDF
    This paper examines conflicts in which performance is measured by the players' success or failure in multiple component conflicts, commonly termed “battlefields”. In multi-battlefield conflicts, behavioral linkages across battlefields depend both on the technologies of conflict within each battlefield and the nature of economies or diseconomies in how battlefield out-comes and costs aggregate in determining payoffs in the overall conflict.conflict, contest, battlefield, Colonel Blotto Game, auction, lottery

    Conflicts with Multiple Battlefields

    Get PDF
    This paper examines conflicts in which performance is measured by the players' success or failure in multiple component conflicts, commonly termed "battlefields." In multi-battlefield conflicts, behavioral linkages across battlefields depend both on the technologies of conflict within each battlefield and the nature of economies or diseconomies in how battlefield out- comes and costs aggregate in determining payoffs in the overall conflict.Con ict, Contest, Battleeld, Colonel Blotto Game, Auction, Lottery

    Rational Multiparty Computation

    Get PDF
    The field of rational cryptography considers the design of cryptographic protocols in the presence of rational agents seeking to maximize local utility functions. This departs from the standard secure multiparty computation setting, where players are assumed to be either honest or malicious. ^ We detail the construction of both a two-party and a multiparty game theoretic framework for constructing rational cryptographic protocols. Our framework specifies the utility function assumptions necessary to realize the privacy, correctness, and fairness guarantees for protocols. We demonstrate that our framework correctly models cryptographic protocols, such as rational secret sharing, where existing work considers equilibrium concepts that yield unreasonable equilibria. Similarly, we demonstrate that cryptography may be applied to the game theoretic domain, constructing an auction market not realizable in the original formulation. Additionally, we demonstrate that modeling players as rational agents allows us to design a protocol that destabilizes coalitions. Thus, we establish a mutual benefit from combining the two fields, while demonstrating the applicability of our framework to real-world market environments.^ We also give an application of game theory to adversarial interactions where cryptography is not necessary. Specifically, we consider adversarial machine learning, where the adversary is rational and reacts to the presence of a data miner. We give a general extension to classification algorithms that returns greater expected utility for the data miner than existing classification methods
    • 

    corecore