28,729 research outputs found

    Enhancing Infrastructure Resilience Under Conditions of Incomplete Knowledge of Interdependencies

    Get PDF
    Today’s infrastructures — such as road, rail, gas, electricity and ICT — are highly interdependent, and may best be viewed as multi-infrastructure systems. A key challenge in seeking to enhance the resilience of multi-infrastructure systems in practice relates to the fact that many interdependencies may be unknown to the operators of these infrastructures. How can we foster infrastructure resilience lacking complete knowledge of interdependencies? In addressing this question, we conceptualize the situation of a hypothetical infrastructure operator faced with incomplete knowledge of the interdependencies to which his infrastructure is exposed. Using a computer model which explicitly represents failure propagations and cascades within a multi-infrastructure system, we seek to identify robust investment strategies on the part of the operator to enhance infrastructure resilience. Our results show that a strategy of constructing redundant interdependencies may be the most robust option for a financially constrained infrastructure operator. These results are specific to the infrastructure configuration tested. However, the developed model may be tailored to the conditions of real-world infrastructure operators faced with a similar dilemma, ultimately helping to foster resilient infrastructures in an uncertain world

    Multi Hazard Scenarios in the Mendoza/San Juan Provinces, Cuyo Region Argentina

    Get PDF
    This paper exposes major natural hazards inventory encountered in the two San Juan and Mendoza provinces, such as climatic, seismic, gravitational, and social/anthropic ones. The contrast between the high altitude of the region and low one is addressed in order to manage the inhomogeneity of prevention plans. The international road to Chile is greatly affected by gravitational hazards that proceed in out of run period and commercial traffic interruption, and large economic waste more than people vulnerability, as the urban areas are more affected by seismicity scenarios. But as gravitational hazard is affected by the seismicity it is proposed to analyze some co-hazard effect in a multi-scenarios approach from geology geography and mechanical modelling of events to explore the co-effects on the scenarios. Moreover, some similarities with the Rhone-Alpes region of France are evocated and may be of interest.Fil: Daudon, Dominique. University Grenoble Alpes; FranciaFil: Moreiras, Stella Maris. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - Mendoza. Instituto Argentino de NivologĂ­a, GlaciologĂ­a y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de NivologĂ­a, GlaciologĂ­a y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de NivologĂ­a, GlaciologĂ­a y Ciencias Ambientales; ArgentinaFil: Beck, Elise. University Grenoble Alpes; Franci

    Patterns of information security postures for socio-technical systems and systems-of-systems

    Get PDF
    This paper describes a proposal to develop patterns of security postures for computer based socio-technical systems and systems-of-systems. Such systems typically span many organisational boundaries, integrating multiple computer systems, infrastructures and organisational processes. The paper describes the motivation for the proposed work, and our approach to the development, specification, integration and validation of security patterns for socio-technical and system-of-system scale systems

    Seismic Risk Analysis of Revenue Losses, Gross Regional Product and transportation systems.

    Get PDF
    Natural threats like earthquakes, hurricanes or tsunamis have shown seri- ous impacts on communities. In the past, major earthquakes in the United States like Loma Prieta 1989, Northridge 1994, or recent events in Italy like L’Aquila 2009 or Emilia 2012 earthquake emphasized the importance of pre- paredness and awareness to reduce social impacts. Earthquakes impacted businesses and dramatically reduced the gross regional product. Seismic Hazard is traditionally assessed using Probabilistic Seismic Hazard Anal- ysis (PSHA). PSHA well represents the hazard at a specific location, but it’s unsatisfactory for spatially distributed systems. Scenario earthquakes overcome the problem representing the actual distribution of shaking over a spatially distributed system. The performance of distributed productive systems during the recovery process needs to be explored. Scenario earthquakes have been used to assess the risk in bridge networks and the social losses in terms of gross regional product reduction. The proposed method for scenario earthquakes has been applied to a real case study: Treviso, a city in the North East of Italy. The proposed method for scenario earthquakes requires three models: one representation of the sources (Italian Seismogenic Zonation 9), one attenuation relationship (Sa- betta and Pugliese 1996) and a model of the occurrence rate of magnitudes (Gutenberg Richter). A methodology has been proposed to reduce thou- sands of scenarios to a subset consistent with the hazard at each location. Earthquake scenarios, along with Mote Carlo method, have been used to simulate business damage. The response of business facilities to earthquake has been obtained from fragility curves for precast industrial building. Fur- thermore, from business damage the reduction of productivity has been simulated using economic data from the National statistical service and a proposed piecewise “loss of functionality model”. To simulate the economic process in the time domain, an innovative businesses recovery function has been proposed. The proposed method has been applied to generate scenarios earthquakes at the location of bridges and business areas. The proposed selection method- ology has been applied to reduce 8000 scenarios to a subset of 60. Subse- quently, these scenario earthquakes have been used to calculate three system performance parameters: the risk in transportation networks, the risk in terms of business damage and the losses of gross regional product. A novel model for business recovery process has been tested. The proposed model has been used to represent the business recovery process and simulate the effects of government aids allocated for reconstruction. The proposed method has efficiently modeled the seismic hazard using scenario earthquakes. The scenario earthquakes presented have been used to assess possible consequences of earthquakes in seismic prone zones and to increase the preparedness. Scenario earthquakes have been used to sim- ulate the effects to economy of the impacted area; a significant Gross Regional Product reduction has been shown, up to 77% with an earthquake with 0.0003 probability of occurrence. The results showed that limited funds available after the disaster can be distributed in a more efficient way
    • …
    corecore