4,725 research outputs found

    Factors of sums and alternating sums involving binomial coefficients and powers of integers

    Full text link
    We study divisibility properties of certain sums and alternating sums involving binomial coefficients and powers of integers. For example, we prove that for all positive integers n1,...,nmn_1,..., n_m, nm+1=n1n_{m+1}=n_1, and any nonnegative integer rr, there holds {align*} \sum_{k=0}^{n_1}\epsilon^k (2k+1)^{2r+1}\prod_{i=1}^{m} {n_i+n_{i+1}+1\choose n_i-k} \equiv 0 \mod (n_1+n_m+1){n_1+n_m\choose n_1}, {align*} and conjecture that for any nonnegative integer rr and positive integer ss such that r+sr+s is odd, ∑k=0nϵk(2k+1)r((2nn−k)−(2nn−k−1))s≡0mod  (2nn), \sum_{k=0}^{n}\epsilon ^k (2k+1)^{r}({2n\choose n-k}-{2n\choose n-k-1})^{s} \equiv 0 \mod{{2n\choose n}}, where ϵ=±1\epsilon=\pm 1.Comment: 14 pages, to appear in Int. J. Number Theor

    Multiple (inverse) binomial sums of arbitrary weight and depth and the all-order epsilon-expansion of generalized hypergeometric functions with one half-integer value of parameter

    Full text link
    We continue the study of the construction of analytical coefficients of the epsilon-expansion of hypergeometric functions and their connection with Feynman diagrams. In this paper, we show the following results: Theorem A: The multiple (inverse) binomial sums of arbitrary weight and depth (see Eq. (1.1)) are expressible in terms of Remiddi-Vermaseren functions. Theorem B: The epsilon expansion of a hypergeometric function with one half-integer value of parameter (see Eq. (1.2)) is expressible in terms of the harmonic polylogarithms of Remiddi and Vermaseren with coefficients that are ratios of polynomials. Some extra materials are available via the www at this http://theor.jinr.ru/~kalmykov/hypergeom/hyper.htmlComment: 24 pages, latex with amsmath and JHEP3.cls; v2: some typos corrected and a few references added; v3: few references added
    • …
    corecore