940 research outputs found

    Intrinsic Dynamic Shape Prior for Fast, Sequential and Dense Non-Rigid Structure from Motion with Detection of Temporally-Disjoint Rigidity

    No full text
    While dense non-rigid structure from motion (NRSfM) has been extensively studied from the perspective of the reconstructability problem over the recent years, almost no attempts have been undertaken to bring it into the practical realm. The reasons for the slow dissemination are the severe ill-posedness, high sensitivity to motion and deformation cues and the difficulty to obtain reliable point tracks in the vast majority of practical scenarios. To fill this gap, we propose a hybrid approach that extracts prior shape knowledge from an input sequence with NRSfM and uses it as a dynamic shape prior for sequential surface recovery in scenarios with recurrence. Our Dynamic Shape Prior Reconstruction (DSPR) method can be combined with existing dense NRSfM techniques while its energy functional is optimised with stochastic gradient descent at real-time rates for new incoming point tracks. The proposed versatile framework with a new core NRSfM approach outperforms several other methods in the ability to handle inaccurate and noisy point tracks, provided we have access to a representative (in terms of the deformation variety) image sequence. Comprehensive experiments highlight convergence properties and the accuracy of DSPR under different disturbing effects. We also perform a joint study of tracking and reconstruction and show applications to shape compression and heart reconstruction under occlusions. We achieve state-of-the-art metrics (accuracy and compression ratios) in different scenarios

    3D Shape Estimation from 2D Landmarks: A Convex Relaxation Approach

    Full text link
    We investigate the problem of estimating the 3D shape of an object, given a set of 2D landmarks in a single image. To alleviate the reconstruction ambiguity, a widely-used approach is to confine the unknown 3D shape within a shape space built upon existing shapes. While this approach has proven to be successful in various applications, a challenging issue remains, i.e., the joint estimation of shape parameters and camera-pose parameters requires to solve a nonconvex optimization problem. The existing methods often adopt an alternating minimization scheme to locally update the parameters, and consequently the solution is sensitive to initialization. In this paper, we propose a convex formulation to address this problem and develop an efficient algorithm to solve the proposed convex program. We demonstrate the exact recovery property of the proposed method, its merits compared to alternative methods, and the applicability in human pose and car shape estimation.Comment: In Proceedings of CVPR 201

    POSE: Pseudo Object Space Error for Initialization-Free Bundle Adjustment

    Get PDF
    Bundle adjustment is a nonlinear refinement method for camera poses and 3D structure requiring sufficiently good initialization. In recent years, it was experimentally observed that useful minima can be reached even from arbitrary initialization for affine bundle adjustment problems (and fixed-rank matrix factorization instances in general). The key success factor lies in the use of the variable projection (VarPro) method, which is known to have a wide basin of convergence for such problems. In this paper, we propose the Pseudo Object Space Error (pOSE), which is an objective with cameras represented as a hybrid between the affine and projective models. This formulation allows us to obtain 3D reconstructions that are close to the true projective reconstructions while retaining a bilinear problem structure suitable for the VarPro method. Experimental results show that using pOSE has a high success rate to yield faithful 3D reconstructions from random initializations, taking one step towards initialization-free structure from motion
    • …
    corecore