906 research outputs found

    Solving Shift Register Problems over Skew Polynomial Rings using Module Minimisation

    Get PDF
    For many algebraic codes the main part of decoding can be reduced to a shift register synthesis problem. In this paper we present an approach for solving generalised shift register problems over skew polynomial rings which occur in error and erasure decoding of \ell-Interleaved Gabidulin codes. The algorithm is based on module minimisation and has time complexity O(μ2)O(\ell \mu^2) where μ\mu measures the size of the input problem.Comment: 10 pages, submitted to WCC 201

    Fast Computation of Common Left Multiples of Linear Ordinary Differential Operators

    Full text link
    We study tight bounds and fast algorithms for LCLMs of several linear differential operators with polynomial coefficients. We analyze the arithmetic complexity of existing algorithms for LCLMs, as well as the size of their outputs. We propose a new algorithm that recasts the LCLM computation in a linear algebra problem on a polynomial matrix. This algorithm yields sharp bounds on the coefficient degrees of the LCLM, improving by one order of magnitude the best bounds obtained using previous algorithms. The complexity of the new algorithm is almost optimal, in the sense that it nearly matches the arithmetic size of the output.Comment: The final version will appear in Proceedings of ISSAC 201

    Optimal ancilla-free Clifford+T approximation of z-rotations

    Full text link
    We consider the problem of approximating arbitrary single-qubit z-rotations by ancilla-free Clifford+T circuits, up to given epsilon. We present a fast new probabilistic algorithm for solving this problem optimally, i.e., for finding the shortest possible circuit whatsoever for the given problem instance. The algorithm requires a factoring oracle (such as a quantum computer). Even in the absence of a factoring oracle, the algorithm is still near-optimal under a mild number-theoretic hypothesis. In this case, the algorithm finds a solution of T-count m + O(log(log(1/epsilon))), where m is the T-count of the second-to-optimal solution. In the typical case, this yields circuit approximations of T-count 3log_2(1/epsilon) + O(log(log(1/epsilon))). Our algorithm is efficient in practice, and provably efficient under the above-mentioned number-theoretic hypothesis, in the sense that its expected runtime is O(polylog(1/epsilon)).Comment: 40 pages. New in v3: added a section on worst-case behavio
    corecore