4 research outputs found

    Hybrid neurofuzzy wind power forecast and wind turbine location for embedded generation

    Get PDF
    Abstract:Wind energy uptake in South Africa is significantly increasing both at the micro‐ and macro‐level and the possibility of embedded generation cannot be undermined considering the state of electricity supply in the country. This study identifies a wind hotspot site in the Eastern Cape province, performs an in silico deployment of three utility‐scale wind turbines of 60 m hub height each from different manufacturers, develops machine learning models to forecast very short‐term power production of the three wind turbine generators (WTG) and investigates the feasibility of embedded generation for a potential livestock industry in the area. Windographer software was used to characterize and simulate the net output power from these turbines using the wind speed of the potential site. Two hybrid models of adaptive neurofuzzy inference system (ANFIS) comprising genetic algorithm and particle swarm optimization (PSO) each for a turbine were developed to forecast very short‐term power output. The feasibility of embedded generation for typical medium‐scale agricultural industry was investigated using a weighted Weber facility location model. The analytical hierarchical process (AHP) was used for weight determination. From our findings, the WTG‐1 was selected based on its error performance metrics (root mean square error of 0.180, mean absolute SD of 0.091 and coefficient of determination of 0.914 and CT = 702.3 seconds) in the optimal model (PSO‐ANFIS). Criteria were ranked based on their order of significance to the agricultural industry as proximity to water supply, labour availability, power supply and road network. Also, as a proof of concept, the optimal location of the industrial facility relative to other criteria was X = 19.24 m, Y = 47.11 m. This study reveals the significance of resource forecasting and feasibility of embedded generation, thus improving the quality of preliminary resource assessment and facility location among site developers

    Wind turbine power output short-term forecast : a comparative study of data clustering techniques in a PSO-ANFIS model

    Get PDF
    Abstract:The emergence of new sites for wind energy exploration in South Africa requires an accurate prediction of the potential power output of a typical utility-scale wind turbine in such areas. However, careful selection of data clustering technique is very essential as it has a significant impact on the accuracy of the prediction. Adaptive neurofuzzy inference system (ANFIS), both in its standalone and hybrid form has been applied in offline and online forecast in wind energy studies, however, the effect of clustering techniques has not been reported despite its significance. Therefore, this study investigates the effect of the choice of clustering algorithm on the performance of a standalone ANFIS and ANFIS optimized with particle swarm optimization (PSO) technique using a synthetic wind turbine power output data of a potential site in the Eastern Cape, South Africa. In this study a wind resource map for the Eastern Cape province was developed. Also, autoregressive ANFIS models and their hybrids with PSO were developed. Each model was evaluated based on three clustering techniques (grid partitioning (GP), subtractive clustering (SC), and fuzzy-c-means (FCM)). The gross wind power of the model wind turbine was estimated from the wind speed data collected from the potential site at 10 min data resolution using Windographer software. The standalone and hybrid models were trained and tested with 70% and 30% of the dataset respectively. The performance of each clustering technique was compared for both standalone and PSO-ANFIS models using known statistical metrics. From our findings, ANFIS standalone model clustered with SC performed best among the standalone models with a root mean square error (RMSE) of 0.132, mean absolute percentage error (MAPE) of 30.94, a mean absolute deviation (MAD) of 0.077, relative mean bias error (rMBE) of 0.190 and variance accounted for (VAF) of 94.307. Also, PSO-ANFIS model clustered with SC technique performed the best among the three hybrid models with RMSE of 0.127, MAPE of 28.11, MAD of 0.078, rMBE of 0.190 and VAF of 94.311. The ANFIS-SC model recorded the lowest computational time of 30.23secs among the standalone models. However, the PSO-ANFIS-SC model recorded a computational time of 47.21secs. Based on our findings, a hybrid ANFIS model gives better forecast accuracy compared to the standalone model, though with a trade-off in the computational time. Since, the choice of clustering technique was observed to play a vital role in the forecast accuracy of standalone and hybrid models, this study recommends SC technique for ANFIS modeling at both standalone and hybrid models

    Prediction of the heating value of municipal solid waste : a case study of the city of Johannesburg

    Get PDF
    Abstract: In this study, a municipality-based model was developed for predicting the Lower heating value (LHV) of waste which is capable of overcoming the demerit of generalized model in capturing the peculiarity and characteristics of waste generated locally. The city of Johannesburg was used as a case study. Artificial Neural Network (ANN) and Adaptive Neuro Fuzzy-Inference System (ANFIS) models were developed using the percentage composition of waste streams such as paper, plastics, organic, textile and glass as input variables and LHV as the output variable. The ANFIS model used three clustering techniques, namely Grid Partitioning (ANFIS-GP), Fuzzy C-means (ANFIS-FCM) and Subtractive Clustering (ANFIS-SC). ANN architectures with a range of 1-30 neurons in a single hidden layer were tested with three training algorithms and activation functions. The GP-clustered ANFIS model (ANFIS-GP) outperformed all other models with root mean square error (RMSE), mean absolute deviation (MAD), and mean absolute percentage error (MAPE) values of 0.1944, 0.1389 and 4.2982 respectively. Based on the result of this study, a GP-clustered ANFIS model is viable and recommended for predicting LHV of waste in a municipality

    Facility location via fuzzy modeling and simulation

    Full text link
    This paper presents a continuous facility location model with fuzzy methodology. The developments concern mainly to some drawbacks in the initial model which takes it far from being used in practice. A fuzzy modeling method is proposed to estimate the required functions in the initial model. Structure identification in the proposed fuzzy modeling method is carried out using subtractive clustering, and parameter identification is conducted via some heuristics as well as an optimization problem. Furthermore, a simulation method along with some heuristic relations is used for implementation and evaluation of the modified model. Efficiency of the proposed method to fuzzy modeling as well as the proposed simulation method is presented by a numerical example
    corecore