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Prediction of the heating value of municipal solid waste: A case study of the 

city of Johannesburg  

In this study, a municipality-based model was developed for predicting the Lower heating 

value (LHV) of waste which is capable of overcoming the demerit of generalized model in 

capturing the peculiarity and characteristics of waste generated locally. The city of 

Johannesburg was used as a case study. Artificial Neural Network (ANN) and Adaptive 

Neuro Fuzzy-Inference System (ANFIS) models were developed using the percentage 

composition of waste streams such as paper, plastics, organic, textile and glass as input 

variables and LHV as the output variable. The ANFIS model used three clustering 

techniques, namely Grid Partitioning (ANFIS-GP), Fuzzy C-means (ANFIS-FCM) and 

Subtractive Clustering (ANFIS-SC). ANN architectures with a range of 1-30 neurons in a 

single hidden layer were tested with three training algorithms and activation functions. The 

GP-clustered ANFIS model (ANFIS-GP) outperformed all other models with root mean 

square error (RMSE), mean absolute deviation (MAD), and mean absolute percentage error 

(MAPE) values of 0.1944, 0.1389 and 4.2982 respectively. Based on the result of this study, 

a GP-clustered ANFIS model is viable and recommended for predicting LHV of waste in a 

municipality. 

Keywords: Physical Composition, Lower heating value, Municipal Solid Waste, 

Johannesburg, Clustering techniques, ANFIS, ANN 

 

 

Nomenclature 

𝑃𝑃𝑎𝑎  Percentage composition of paper  

𝑃𝑃𝑃𝑃  Percentage composition of Plastic 

𝐶𝐶  Percentage composition of Carbon 

𝐻𝐻  Percentage composition of Hydrogen 



𝑂𝑂  Percentage composition of Oxygen 

𝑤𝑤𝑤𝑤  Wood waste fraction 

𝑇𝑇𝑇𝑇  Textile waste fraction 

𝐹𝐹𝑤𝑤  Food waste fraction 

𝑆𝑆   Percentage composition of Sulphur 

𝐶𝐶𝑃𝑃  Percentage composition of Chlorine 

𝑁𝑁  Percentage composition of Nitrogen 

𝐺𝐺𝐺𝐺  Garbage waste stream composition  

𝑀𝑀𝐶𝐶  Moisture Content 

𝑉𝑉𝑀𝑀  Volatile Matter 

𝑤𝑤𝑜𝑜𝑜𝑜   Organic waste fraction 

𝑉𝑉𝑉𝑉𝐹𝐹   Variance Inflation Factor 

𝐹𝐹𝐶𝐶  Fixed Carbon 

𝐹𝐹𝐹𝐹𝑁𝑁𝑁𝑁   Feed Forward Neural Network 

𝑅𝑅𝑅𝑅𝐹𝐹𝑅𝑅𝑁𝑁𝑁𝑁  Radial Basis Artificial Neural Network 

 

 

 

1. Introduction 

Increase in population, urbanization, standard of living, and anthropogenic activities have 

increased the rate at which municipal solid waste (MSW) are generated. Statistic shows that about 

3.5 million tonnes of waste was generated daily across the globe in 2010, it is further predicted to 

increase to about 6 million tonnes per day by 2025 (Hoornweg and Bhada-Tata 2012). This upsurge 



cannot be overlooked nor its impacts on the environment underestimated as long as the underlying 

causal components of MSW generation in the biosphere remain active. For instance, in Indonesia, 

one tonne of waste has the potential to generate power of about  21 kW and electricity capacity of 

0.5 MWh which can lessen the use of coal by 19.5% (Anshar et al. 2015). The energy potential 

based on average incineration capacity of about 1500 tonnes/day and calorific value of about 2200 

kcal/kg of MSW in Malaysia was estimated as 640 kW/day (Kathirvale et al. 2004). Islam and 

Nazmul (2016) forecasted the electrical energy potential of MSW at two cities in Bangladesh, 

Dhaka and Chittagong city in 2050 as 1444 GWh and 1394 GWh respectively through incineration. 

The total quantity of  MSW generated in Africa has energy potential of 1125 PJ in 2012 and 2199 

PJ in 2025 (Scarlat et al. 2015). Similarly, a total of 41998 tonnes of waste generated monthly in 

Kano, Nigeria has electrical energy potential of 805 MWh/day, which has the capacity to supply 

power to about 70009 houses in Kano, Nigeria assuming each house consumes 4200 kWh/year 

(Daura 2016).  A similar study in Ilorin, Kwara state, Nigeria reveals that about 584 tonnes of 

waste has energy potential of 3244 MW covering about 15% of the total power demand in Kwara 

state (Ibikunle et al. 2019). Average energy content of waste was estimated in Ghana as 16.95 

MJ/kg (Fobil, Carboo, and Armah 2005) and in Jordan as 2747 kcal/kg (Abu-Qudais and Abu-

Qdais 2000).  

In South Africa, like most developing countries, the prominent waste disposal method is 

uncontrolled landfill. About 54.2 million tonnes of general waste and 66.9 million tonnes of 

hazardous waste was generated in South Africa in 2017 (DEA, 2018). A larger percentage (about 

90%) of the total general waste generated are disposed of in landfill which is identified as the 

major source of anthropogenic methane and it is believed to be 21 times weightier than carbon 

dioxide (CO2) (Couth and Trois 2012). Average greenhouse gas (GHG) emission from landfilling 



of waste in South Africa depends on the landfill sites but it is in the range 145 – 1016 kgCO2 

equivalent (CO2e) per tonne of waste when carbon storage is accounted for, more so landfill sites 

without engineered gas collection has the highest emission factor per unit of wet waste of all waste 

management associated emissions (Friedrich and Trois 2013). Methane emission from landfills in 

South Africa was predicted at about 531735 tCH4 per annum and 635207 tCH4 per annum in 2015 

and 2020 respectively (Bhailall 2015). These emissions associated with landfill sites contribute to 

climate change and have adverse effect on the environment. In addition, leachate produced from 

landfill sites contaminates the ground water causing a serious water pollution (Vaish et al. 2019) 

Globally, renewable energy accounts for 25% of the total electrical energy demand. It 

experienced an increase of about 6.3% in 2017, with China and US representing 50% of this 

increase, European Union covers 8%, while Japan and Indian covers 6% each (IEA 2018). The use 

of fossil fuel has consequently declined globally, however, despite this development, South Africa 

still depend largely on non-renewable sources mainly coal and nuclear-based energy to generate 

about 95% of its electricity (Alex and Pouris 2015). The renewable energy share of the total energy 

mix of South Africa is considerably low. About 244,364 GWh and 237,006 GWh of electricity 

was generated in 2013 and 2016 respectively, coal has a share of 88.3% and 85.67% in the total 

power generation capacity in 2013 and 2016 respectively, while hydro, wind, solar and Biomass 

has a share of 0.33 %, 0.89 %, 0.91 % and 1.24 % respectively in 2016 (Maluleke 2016). The rate 

of depletion of these fossil fuels and the increase in the burden of daily energy demands in South 

Africa have necessitated the search for sustainable and renewable energy sources. 

Recovery of energy from waste has been efficient is combating both the challenges of 

waste management and energy crisis. It is a sustainable technique of managing the huge amount 

of waste generated and add to the share of renewable energy in the global energy mix. The calorific 



value of waste is an important indicator of the amount of energy inherent in the waste. The calorific 

value can be presented in two forms; the Gross Calorific Value (GCV) or the Higher Heating Value 

(HHV) and the Net Calorific Value (NCV) or Lower Heating Value (LHV). They are estimated in 

different units such as MJ/kg, Btu/lb and kJ/mol. The calorific value of different waste streams 

depends on the thermal and chemical properties of the waste stream such as elemental composition 

(carbon, Sulphur, hydrogen, oxygen), moisture content, volatile matter, fixed carbon and ash 

content. The technique of estimating the heating value of waste involves an experimental process 

using a sophisticated instrument i.e. bomb calorimeter by measuring the enthalpy change between 

the reactant and the product (Yin, 2011). However, this technique could laborious and expensive 

and are not always within the reach of researchers. More so, this instrument is limited in measuring 

the real-time heating value of waste due to the tendency of its variations during thermal process 

(Bagheri et al. 2019). Therefore, several empirical correlations and intelligent predictive models 

have been developed by researchers based on the ultimate analysis, proximate analysis and 

physical composition of the waste for estimating the heating value of MSW. The application of 

predictive model is cost-effective and it is a viable alternatives to the experimental procedure for 

estimating the heating value of waste.  

Predictive models developed based on the ultimate analysis takes into account the 

elemental composition of the waste such as carbon, hydrogen, Sulphur and oxygen. Model based 

on proximate analysis takes into account waste properties such as Fixed Carbon (FC), Volatile 

Matter (VM), and Moisture Content (MC), while estimation based on physical composition uses 

the weight ratio of different streams in the MSW such as paper, plastics, textile etc. Prediction of 

HHV based on proximate analysis using MC, VM and FC as inputs were developed with linear 

regression models (Kathiravale et al. 2003; Titiladunayo et al. 2018) and Neural network model 



(Hung et al. 2006). An ANFIS model optimized with Particle Swarm Optimization (PSO) was 

developed by Olatunji et al. (2019) to predict the HHV of MSW based on the elemental 

components, moisture and ash content. 

Hung et al. (2006) used 220 experimental data of MSW to develop and compare the 

accuracy of predicting the LHV based on elemental composition, physical composition and 

proximate analysis using a Feed-Forward Neural Network (FFNN). The prediction result gave R-

values of 0.93, 0.84 and 0.83 respectively, revealing the estimation of heating value using the 

elemental composition of waste as inputs gives as the most accurate. Similarly, Kathiravale et al. 

(2003) used 30 samples of waste to perform a comparative study of the effect of different waste 

properties on its HHV by developing an empirical model for heating value prediction based on 

proximate, ultimate analysis and physical composition of waste giving a prediction R-value of 

0.625, 0.691 and 0.779 respectively and then concluded that prediction based on physical 

composition is the most accurate. More researches were found in literature based on waste 

elemental components using linear regression (Shi et al. 2016; Eboh, Ahlström, and Richards 

2016; Khuriati, Nur, and Istadi 2015)  and ANN (Abidoye and Mahdi 2014; Gong et al. 2017; 

Akkaya and Demir 2010). Mathematical equations were correlated for HHV prediction based on 

waste physical composition (Abu-Qudais and Abu-Qdais 2000; Lin et al. 2015; Chang et al. 2007; 

Drudi et al. 2019). Feed-forward neural network was developed for similar prediction using 

physical waste streams such as paper, Plastics, Textile, food waste (Ogwueleka and Ogwueleka 

2010; Ozveren 2016; Dong et al. 2003).  Table 1 and 2 present selected models in literature 

developed using linear regression and artificial intelligent approach respectively. 

Table 1 Linear Regression model for prediction of heating value of MSW 

S/N Model  Performance Correlation Equation Reference 



Basis index 

1 Physical 

Composition 

R2= 0.940 𝐿𝐿𝐻𝐻𝑉𝑉 = 267.0�𝑃𝑃𝑃𝑃 𝑃𝑃𝐺𝐺� � + 2285.7 (Abu-Qudais and 

Abu-Qdais 2000) 

2 Ultimate 

Analysis 

R2= 0.936 𝐻𝐻𝐻𝐻𝑉𝑉 = 0.350 𝐶𝐶 + 1.01 𝐻𝐻 − 0.0826 𝑂𝑂 

 

(Shi et al. 2016) 

3 Physical 

Composition 

MAPE= 

18.21% 

𝐿𝐿𝐻𝐻𝑉𝑉 = 𝐿𝐿𝐻𝐻𝑉𝑉𝑝𝑝𝑝𝑝𝑃𝑃𝑝𝑝𝑝𝑝 + 𝐿𝐿𝐻𝐻𝑉𝑉𝑝𝑝𝑎𝑎𝑃𝑃𝑝𝑝𝑎𝑎 

+𝐿𝐿𝐻𝐻𝑉𝑉𝑤𝑤𝑤𝑤𝑃𝑃𝑤𝑤𝑤𝑤 + 𝐿𝐿𝐻𝐻𝑉𝑉𝑇𝑇𝑇𝑇𝑃𝑃𝑇𝑇𝑇𝑇 

+𝐿𝐿𝐻𝐻𝑉𝑉𝐹𝐹𝐹𝐹𝑃𝑃𝐹𝐹𝐹𝐹 

(Lin et al. 2015) 

4 Ultimate 

Analysis 

R2 = 0.92 𝐻𝐻𝐻𝐻𝑉𝑉 = 0.364 𝐶𝐶 + 0.863 𝐻𝐻 − 0.075 𝑂𝑂 

+0.028 𝑁𝑁 − 1.633 𝑆𝑆 + 0.062 𝐶𝐶𝑃𝑃 

(Eboh, Ahlström, 

and Richards 2016) 

5 Ultimate 

Analysis 

R2 = 0.95 𝐻𝐻𝐻𝐻𝑉𝑉 = 0.3491 𝐶𝐶 + 1.1783 𝐻𝐻 

+0.1005 𝑆𝑆 − 0.1034 𝑂𝑂 − 0.015 𝑁𝑁 

−0.0211 𝑅𝑅𝐴𝐴ℎ 

(Channiwala and 

Parikh 2002) 

6 Physical 

composition 

R2 = 0.9672 𝐻𝐻𝐻𝐻𝑉𝑉 = 2229.21 + 28.16𝑃𝑃𝑃𝑃 + 7.09𝑃𝑃𝐺𝐺 +

4.87𝐺𝐺𝐺𝐺 − 37.38MC 

(Chang et al. 2007) 



7 Ultimate 

Analysis 

Proximate 

Analysis 

Physical 

composition 

R2 = 0.625 

 

R2 = 0.690 

 

R2=0.779 

𝐻𝐻𝐻𝐻𝑉𝑉 = 416.638𝐶𝐶 − 570.017𝐻𝐻 

+259.031 𝑂𝑂 + 598.955𝑁𝑁 − 5829.078 

𝐻𝐻𝐻𝐻𝑉𝑉 = 356.047𝑉𝑉𝑀𝑀 − 118.035𝐹𝐹𝐶𝐶 

−5600.613 

𝐻𝐻𝐻𝐻𝑉𝑉 = 112.815𝐺𝐺𝐺𝐺 + 184.366𝑃𝑃𝐺𝐺 

+298.343𝑃𝑃𝑃𝑃 − 1.920𝑀𝑀𝐶𝐶 + 5130.380 

(Kathiravale et al. 

2003) 

8 Ultimate 

Analysis 

R2=0.9963 𝐿𝐿𝐻𝐻𝑉𝑉 = [(16.55𝑤𝑤𝑜𝑜𝑜𝑜 + 24.42 𝑆𝑆 + 36.17𝑃𝑃𝑃𝑃

+ 9.06𝑃𝑃𝐺𝐺 + 22.81𝑇𝑇𝑇𝑇)

× (1 −𝑀𝑀𝐶𝐶)] − 

[(2.442 × (9𝐻𝐻 + 𝑀𝑀𝐶𝐶 − (9𝐻𝐻 × 𝑀𝑀𝐶𝐶)] 

(Drudi et al. 2019) 

9 Proximate 

Analysis 

VIF>10% 𝐻𝐻𝑉𝑉 = −7.19477 + 0.116768𝐹𝐹𝐶𝐶 

−0.3472𝑀𝑀𝐶𝐶 + 0.151701𝑉𝑉𝑀𝑀 

(Titiladunayo et al. 

2018) 

10 Ultimate 

Analysis 

R2=0.99 𝐻𝐻𝐻𝐻𝑉𝑉 = −2762.68 + 114.63𝐶𝐶 

+310.55𝐻𝐻 

(Khuriati, Nur, and 

Istadi 2015) 

 

 

Table 2 Artificial Intelligent Model for MSW Heating value prediction 

S/N Model Basis Model type Performance Output Reference 

1 Physical composition BRFF R=0.993 LHV (Ozveren 2016) 

2 Physical Composition FFNN R=0.9557 LHV (Ogwueleka and 

Ogwueleka 2010) 



3 Physical Composition FFNN RE=5% LHV (Dong et al. 2003) 

4 Ultimate Analysis FFNN R=0.9914 HHV (Akkaya and Demir 

2009) 

5 Ultimate Analysis FFNN R=0.9914 HHV (Abidoye and 

Mahdi 2014) 

6 Ultimate Analysis RBFANN R=0.9924 HHV (Gong et al. 2017) 

7 Ultimate Analysis 

Physical Composition 

Proximate Analysis 

MLP NN R=0.93 

R=0.84 

R=0.83 

LHV (Hung et al. 2006) 

8 Ultimate Analysis ANFIS-PSO R = 0.8673 HHV (Olatunji et al. 

2019) 

 

 

Waste-to-energy (WTE) is gaining traction in most countries with more energy generated 

from waste and biomass resources through different conversion processes. This helps to manage 

the huge amount of waste generated and at the same time add to the share of renewable energy in 

the global energy mix.  However, inadequate information regarding the heating value and other 

energetic properties of waste as potential feedstock in thermal plants is a major setback limiting 

the implementation of a large scale WTE projects in most countries (Bagheri et al. 2019). Owing 

to the heterogeneous nature of MSW, it is important to have a knowledge of its characteristics such 

as the heating value in a thermal process. The design, operation and the combustion efficiency of 

waste combustion systems depends largely on the heating value, therefore to monitor and control 



the combustion process for maximum energy recovery from waste, predictability of the heating 

value of MSW is vital because of the high cost and time involved in the experimental method of 

estimating the heating value. The literature is replete with models under the nomenclature of 

generalized global models for general application in predicting the heating value of MSW. 

However less attention has been given to municipality-based predictive model despite its 

significance. These generalized models are limited in applications owing to their deficiency in 

capturing the distinctiveness and peculiarity of locally generated waste at different municipalities 

which might result into inaccurate predictions. The characteristics of locally generated waste varies 

significantly across different municipalities in terms of its physical and elemental composition and 

its energy content. A report of characterization studies of MSW in the city of Johannesburg was 

given by Ayeleru et al. (2018) at both Daily Non-Compacted (DNC) and Round Collected Refuse 

(RCR) sources . The study of  Masebinu et al. (2017) among others estimated the energy content 

of waste generated in Johannesburg calorimetrically based on its gross calorific value. Therefore, 

in order to capture the peculiarity in the characteristics, composition and energy content of waste 

generated in the city of Johannesburg, this study develops municipality-based artificial intelligent 

models using the physical composition of MSW generated in the city of Johannesburg to predict 

its LHV. To author’s best knowledge, this has not been reported in literature.  

Network topologies ranging from 1-30 neurons in a single hidden layer were selected for 

training and the best network was selected based on the prediction accuracy. Three ANFIS models 

with different clustering techniques: Grid Partitioning (ANFIS-GP), Fuzzy C-means (ANFIS-

FCM) and Subtractive Clustering (ANFIS-SC) were developed for the modelling and the 

prediction accuracy of these models were compared. Subsequent sections in this paper are 

structured as follows; Section 2 introduces the methodology, the waste management service, waste 



generation and composition in the case study, data description, modelling tools, the processes 

followed to achieve optimal performance of the models and the statistical metrics used to evaluate 

the performance of the models. Section 3 discusses the results of the models while section 4 

concludes the study with recommendations for further studies. 

2. Methodology 

2.1 Study area: The city of Johannesburg 

The city of Johannesburg, also known as Joburg, Jozi and often referred to as city of Gold 

is the largest city and the constitutional headquarters of South Africa located in the Witwatersrand 

range of hills (Bwalya 2019). The latitude and longitude of the city of Johannesburg is 

26012𝑖𝑖08𝑖𝑖𝑖𝑖  𝑆𝑆 and 28002𝑖𝑖37𝑖𝑖𝑖𝑖 𝐸𝐸 respectively with an area of 1645km2 and elevation of 1767m 

(Masebinu et al. 2017). The city has a population of about 4.3 million, the largest in Gauteng 

Province. The city is the commercial and economic hub of South Africa as it contributes 17% to 

the total GDP of South Africa and 47% of Gauteng Province’s (Mbuli 2015). The city of 

Johannesburg owns and operates a municipality-based waste management Service by Pikitup 

Company which carries out about 900,000 waste services and collects 1.6 million tonnes of waste 

per annum, operates four (4) different landfill sites with 8 years airspace (Mbuli 2015). 

 Landfill is the most prominent waste disposal method in this city, there are no large and 

commercial scale waste-to-energy (WTE) technological Projects that can recover energy from 

waste in the city through biological and thermal processes. However there are small scale WTE 

projects that are already implemented or at test-run stage. For instance,  the recovery of  1756m3/h 

landfill gas, flared at Marie Louise landfill sites in May 2011 to 2012 was meant to divert a 

considerable volume of landfill gas from escaping into the environment as Green House Gas 

(GHG) (Dlamini and Serge 2019). 



 A proposal of a 20 years no-cost Landfill gas structure was made to meet the power 

demand of 12500 middle income houses based on the agreement reached with Joburg EnerG 

System, (Baker and Letsoela 2016). There was an initiation of project to produce electricity from 

landfill gas by Joburg Department of Infrastructure and Service in 2007 to support the city’s 2040 

Growth and Development Strategy (GDS) goal of mitigating the environmental effect of landfill 

gas through transition to low carbon economy and climatic change (Baker and Letsoela 2016). 

Figure 1 represents the map of Gauteng Province showing major landfill sites in Johannesburg. 

Based on the information available on the database of the Statistics South Africa (STATS 

SA) and the baseline waste quantity guideline provided by the Department of environmental 

affairs, the population of the city of Johannesburg in 2019 is 5.636 million, while the quantity of 

waste generated in the same year is 1.663 million tonnes. Figure 2 presents the population and the 

quantity of waste generated in the city of Johannesburg from 2013 to 2019. Some of the 

characteristics of waste generated in the city of Johannesburg is presented in Table 3 



 

Figure 1 Map of Gauteng showing major landfill sites in Johannesburg (Sibiya, Olukunle, and 

Okonkwo 2017) 



 

Figure 2 Population and waste quantity generated in the city of Johannesburg (2013-2019) 

 

Table 3 Characteristics of waste generated in the city of Johannesburg (Adapted from Ayeleru et 

al., (2018)) 

Waste Characteristics Range of values Average 

Recyclables (w/w)% 26.0 - 34.0 30.0 

Non-recyclables (w/w)% 18.0 - 21.0 19.5 

Moisture content (%) 60.9 - 67.1 63.9 

Volatile Matter (%) 21.8 - 23.0 22.9 

Fixed Carbon (%) 4.4 - 11.9 8.2 

Organic (%) 13.9 - 28.7 21.4 

Paper (%) 13.5 - 18.9 16.2 

Plastic (%) 18.2 - 26.9 22.6 

Textile (%) 4.9 - 7.8 6.4 

Metals (%) 4.9 - 8.5 6.7 

 

2013 2014 2015 2016 2017 2018 2019
Population (million) 4,676 4,798 4,919 4,949 5,314 5,486 5,635
Waste quantity (million

tonnes) 1,511 1,319 1,452 1,461 1,589 1,619 1,663

0

1

2

3

4

5

6

Population (million) Waste quantity (million tonnes)



 

2.2 Methods of Data collection 

The dataset comprises samples of waste collected from two landfill sites in the city of 

Johannesburg, which collects larger quantity of the total waste generated in Johannesburg. These 

landfill sites have waste collected from different collection points across the city from two different 

sources namely; Daily Non-Compacted (DNC) and the Round Collected Refuse (RCR) (Ayeleru, 

Okonta, and Ntuli 2018). The DNC are collected from hotels, restaurant and food stores on a daily 

basis while the RCR are collected weekly from households. The percentage composition of waste 

streams at these sources vary significantly, consequently the heating value and energy content 

varies depending on the source. The waste streams considered as input for this study are Plastics, 

Paper, Organics, Textile, Metal and Glass with Lower Heating Value, LHV (MJ/kg) as the output. 

The waste stream in the raw waste data set tagged “others” having constituents like Waste 

Electrical Products, Ceramics, bulky waste, car seat, composite wastes are believed to have a 

negligible effect on the heating value of waste and are therefore not considered in this study. Table 

4 presents the statistical analysis of the input and output data. 

 

Table 4 Statistical Description of Input and Output variables 

Variables Minimum Maximum Mean 

Input Variables (%) 

Paper 1.90 46.70 15.02 

Plastics 5.00 36.50 20.73 

Organics 3.10 50.30 25.11 



Metal 0.00 18.90 5.94 

Textile 0.00 34.20 7.47 

Glass 0.00 31.90 6.73 

Output Variables    

LHV (MJ/kg) 1.039 5.795 3.6682 

 

 

2.3 Modelling tools for Heating value Prediction 

2.3.1 Artificial Neural Network 

ANN is a machine learning tool that is inspired by the neurological system and functions 

of the human brain in such a way that it learns to carry out a task without being explicitly 

programmed (Dong et al. 2003). It consists of units called neuron which are intertwined with 

weighted communication strand and arranged in three layers; input layer, hidden layer and output 

layer (You et al. 2017). The network can be trained by adjusting the weights and bias assigned to 

each layer. It can be expressed mathematically using equation 1 

                           𝑦𝑦 = 𝐹𝐹 ��𝑤𝑤𝑖𝑖. 𝑇𝑇𝑖𝑖 + 𝑏𝑏
𝑚𝑚

𝑖𝑖=0

�                                                 (1) 

Where 𝑇𝑇𝑖𝑖 = input value,  𝑤𝑤𝑖𝑖 = Weight value,  𝑏𝑏 = Bias,  𝑦𝑦 = Output,  𝐹𝐹 = Activation 

function 

 
The activation function represents the rate of firing in the cell and determines the output 

from a set of inputs. It gives the mathematical relationship between input and output in terms of 



spatial or temporal frequency (Dorofki et al. 2012). It could be a linear or non-linear function. 

Non-linear transfer functions were used in this study and explained below:                               

(1)  Sigmoid (logsig) function: Sigmoid function is a non-linear function existing in the 

range 0 𝐺𝐺𝑎𝑎𝑎𝑎 1. The sigmoid function finds application in outcome probability prediction, 

since the probability of the outcome of an event lies between0 𝐺𝐺𝑎𝑎𝑎𝑎 1. This function is 

differentiable and mathematically expressed in equation 2  

                                     𝑃𝑃𝑤𝑤𝑜𝑜𝐴𝐴𝑙𝑙𝑜𝑜 =
1

1 + 𝑒𝑒−𝑛𝑛
                                                          (2) 

(2) Tansigmoid (tansig) function: This function is similar to hyperbolic tangent (tanh) 

function. It is a non-linear differentiable function in the range −1 𝐺𝐺𝑎𝑎𝑎𝑎 1. Tansigmoid 

(tansig) function is faster than the hyperbolic tangent (tanh) function, therefore it is used 

when speed is a priority (Dorofki et al. 2012), which is the case in this study. Equation 3 

represents the tansigmoid function. 

                                        𝑡𝑡𝐺𝐺𝑎𝑎𝐴𝐴𝑙𝑙𝑜𝑜 =
2

1 + 𝑒𝑒−2𝑛𝑛
− 1                                          (3) 

(3) Softmax function: This function gives an output value which represents the probability 

outcome that adds up to 1. It has an output range between 0 and 1. It is represented in 

equation 4 

                                     𝐴𝐴𝑤𝑤𝑠𝑠𝑡𝑡𝑠𝑠𝐺𝐺𝑇𝑇 =  
𝑒𝑒𝑇𝑇𝑖𝑖

∑ 𝑒𝑒𝑇𝑇𝑗𝑗𝑘𝑘
𝑗𝑗=1

                                                 (4) 

The training data was normalized to fall within these transfer functions by using equation 

5 



                                                𝑦𝑦 =
𝑇𝑇 − 𝑇𝑇𝑚𝑚𝑖𝑖𝑛𝑛

𝑇𝑇𝑚𝑚𝑎𝑎𝑇𝑇 − 𝑇𝑇𝑚𝑚𝑖𝑖𝑛𝑛
                                               (5) 

 
Where 𝑇𝑇 the mean of the variable, 𝑇𝑇𝑚𝑚𝑖𝑖𝑛𝑛 is the maximum variable and 𝑇𝑇𝑚𝑚𝑎𝑎𝑇𝑇  is the 

minimum variable  

 
The procedures in the process flowchart presented in figure 3 was carefully observed to 

obtain the best performing neural network in this study.  
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Figure 3 Neural Network Modelling Process flowchart 

 

 

The model structure of the optimal network in this study is represented in figure 4.  A single 

hidden layer was used because of its proven accuracy and requirement for a lower size of training 

data which affect the network efficiency (Elhewy, Mesbahi, and Pu 2006).  A range of 1-30 

neurons in the hidden layer were tested. Each network topology was tested with the combinations 



of three different activation functions namely; logsig, tansig and softmax and three different 

training algorithms; the Leverberg-Marquardt (LM), Scaled-Conjugate (SCG) and the Gradient 

Descent Algorithm (GDA). This was carried out to investigate the influence of the choice of 

training and activation function on the prediction accuracy of the model. In all the trials, the best 

20 networks were selected based on the result of the performance evaluation. The generalization 

capacity of the developed model is of utmost importance in this study, therefore the performance 

of these models developed to predict heating value was evaluated and compared using the 

following performance metrics; Root Means Square Errors (RMSE), Mean Absolute Deviation 

(MAD), Mean Absolute Percentage Error (MAPE), and determination Co-efficient (R) represented 

in equations 5-7. The dataset was divided into 70 % for training and 30 % for validation in each 

of these trials. 

                             𝑅𝑅𝑀𝑀𝑆𝑆𝐸𝐸 = ��
(𝑃𝑃𝑖𝑖 − 𝑂𝑂𝑖𝑖)2

𝑁𝑁

𝑁𝑁

𝑖𝑖=1

�

1
2�

                                     (6) 

                                 𝑀𝑀𝑅𝑅𝑀𝑀 = �
(𝑂𝑂𝑖𝑖 − 𝑃𝑃𝑖𝑖)

𝑁𝑁

𝑁𝑁

𝑖𝑖=1

                                               (7) 

                             𝑀𝑀𝑅𝑅𝑃𝑃𝐸𝐸 =  
1
𝑁𝑁
��

𝑂𝑂𝑖𝑖 − 𝑃𝑃𝑖𝑖
𝑂𝑂𝑖𝑖

� × 100%
𝑁𝑁

𝑖𝑖=1

                          (8) 

Where i = sample index, 𝑁𝑁=number of samples, 𝑃𝑃𝑖𝑖 = Predicted LHV value for the ith 

sample and 𝑂𝑂𝑖𝑖 = Observed LHV for the ith sample. 
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Figure 4 Optimal Neural Network structure with 6 inputs and 5 neurons in a hidden layer 

 

2.3.2 Adaptive Neuro Fuzzy Inference System 

ANFIS is a multilayer feedforward network which uses neural network learning algorithm 

and fuzzy reasoning for mapping input to output, thus integrating the benefits of both neural 

network and fuzzy logic in a single network (Chang and Chang 2006). It has five layers as shown 

in Figure 5. For optimization of premise and consequent parameters, ANFIS employs hybrid 

learning rule which involves back-propagation gradient descent and least square method (Azad et 

al. 2019) 

A system with two inputs, 𝑇𝑇1 𝐺𝐺𝑎𝑎𝑎𝑎 𝑇𝑇2, two Sugeno-type and fuzzy Takagi If-then rules and 

one output can be described by the set of Equations 9 and 10 (Azad et al. 2019) 



Rule 1: If (𝑇𝑇1 𝑙𝑙𝐴𝐴 𝑅𝑅1) and (𝑇𝑇2 𝑙𝑙𝐴𝐴 𝑅𝑅1) then 𝑠𝑠1 = 𝑃𝑃1𝑇𝑇1 + 𝑞𝑞1𝑇𝑇2 + 𝑜𝑜1                                   (9) 

Rule 2: If (𝑇𝑇1 𝑙𝑙𝐴𝐴 𝑅𝑅2) and (𝑇𝑇2 𝑙𝑙𝐴𝐴 𝑅𝑅2) then 𝑠𝑠2 = 𝑃𝑃2𝑇𝑇1 + 𝑞𝑞2𝑇𝑇2 + 𝑜𝑜2                                   (10) 

Where B and A are fuzzy sets, 𝑞𝑞,𝑝𝑝 𝐺𝐺𝑎𝑎𝑎𝑎 𝑜𝑜 are the nodal consequent parameters 
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Figure 5 ANFIS architecture with two rules and two inputs 

 

Layer 1: This layer is called the fuzzy layer with premise parameters and consists of fuzzy 

membership functions. Each node has an output function as given in Equation 11 

                                        𝑂𝑂1,𝑖𝑖 = 𝜇𝜇𝑖𝑖𝑇𝑇𝑖𝑖                                                  (11) 



Layers 2: The output of the nodes in this layer represents the firing strength and product of the 

input. It has all nodes fixed. A multiplication operator is used for computing in this layer as 

represented in equation 12, thus; 

                                 𝑂𝑂2,𝑖𝑖 = 𝑤𝑤𝑖𝑖 = � 𝜇𝜇𝑗𝑗                                        (12)
𝑖𝑖

 

Layer 3: This is called the normalized layer. Nodes in this layer are adaptive. Output in this layer 
is computed using equation 13 

                                  𝑂𝑂3,𝑖𝑖 = 𝑤𝑤�𝑖𝑖 =
𝑤𝑤𝑖𝑖

∑ 𝑤𝑤𝑖𝑖𝑗𝑗
                                        (13) 

Layer 4: The de-fuzzing layer uses a nodal function to compute the effect of rule at each node 

towards the output as represented in equation 14. It has consequent parameters. 

             𝑂𝑂4,𝑖𝑖 = 𝑂𝑂3,𝑖𝑖𝑠𝑠𝑖𝑖 = 𝑤𝑤�𝑖𝑖𝑠𝑠𝑖𝑖 = 𝑤𝑤�𝑖𝑖(𝑝𝑝𝑖𝑖𝑇𝑇 + 𝑞𝑞𝑖𝑖𝑦𝑦 + 𝑜𝑜𝑖𝑖)              (14) 

Where, 𝑤𝑤�𝑖𝑖 𝑙𝑙𝐴𝐴 the normalized firing strength of layer 3, and   𝑝𝑝, 𝑞𝑞, 𝑜𝑜 are parameter sets  

Layer 5: This is the output layer. It has a single node which sum the output as represented in 
equation 15 

                           𝑂𝑂5,𝑖𝑖 = �𝑤𝑤�𝑖𝑖
𝑖𝑖

𝑠𝑠𝑖𝑖 =
∑ 𝑤𝑤𝑖𝑖𝑖𝑖 𝑠𝑠𝑖𝑖
∑ 𝑤𝑤𝑖𝑖𝑖𝑖

                                (15) 

Building and effective ANFIS model requires the following steps (Zounemat-kermani and 

Teshnehlab 2008). 

1. Selection of fuzzy model type 

2. Selection of model input and output variables 

3. Determining the number and type of membership function per variable 

4. Determination of the number of initial fuzzy rules 



5. Identification of fitting parameters, antecedent and consequent 

In this study, these processes were considered to design the optimal ANFIS model to 

predict the heating value of waste.  

2.3.2.1 Clustering technique 

The key element in the ANFIS modelling techniques is the data clustering which involves grouping 

of data sets into similar group and assigning them a cluster. It also entails assigning membership 

function to each cluster and generating a fuzzy inference system from the data (Adedeji et al. 

2020). Clustering techniques has found applications in image segmentation (Dhanachandra, 

Manglem, and Chanu 2015), fault diagnosis (Zuo et al. 2010) and pattern recognition (Rezaei and 

Zarandi 2011). Commonly used clustering techniques in ANFIS modelling are, Grid Partitioning 

(GP), Subtractive clustering (SC) and Fuzzy c-means clustering (FCM). 

2.3.2.1.1 Grid Partitioning  

Grid Partitioning is one of the three fuzzy partitioning technique. The other two are, tree and scatter 

partitioning. They are used to obtain fuzzy member from a data set (Adedeji et al. 2020). This 

techniques clusters by diving the input space into rectangular subspaces using some local fuzzy 

regions by axis-paralleled partition based on predefined number of membership function and their 

types in each dimension(Wei et al. 2007). Only a small number of membership function is required 

for each input as an exponential relationship exists between the number of input and number of 

fuzzy rules. A problem of prohibitively large fuzzy rules may be encountered at a moderate or 

higher number of input, this phenomenon is termed as curse dimensionality (Roger et al. 2000). 

This is a major demerit of this technique. A finer grid definition often produce a better performance 



in Grid partitioning (Adedeji et al. 2020). More details for grid partitioning in ANFIS application 

can be found in Abonyi et al. (1999) 

2.3.2.1.2 Subtractive Clustering 

The subtractive clustering technique computes tendency that each data point will establish 

a cluster center, depending on the density of the surrounding data point (Chiu 1994) and identifies 

the highest potential as a cluster centre (Adedeji et al. 2020). The potential for the each data set is 

computed when the distributed over a grid point, the grip point with the highest potential is selected 

as the first cluster. The potential 𝑃𝑃𝑖𝑖 of the 𝑙𝑙th data and 𝑎𝑎 data point is given by; 

                                        𝑃𝑃𝑖𝑖 = �𝑒𝑒−𝛼𝛼𝑃𝑃𝑖𝑖−𝑃𝑃𝑗𝑗
2

𝑛𝑛

𝑗𝑗=1

                                                       (16) 

Where 𝛼𝛼 = Euclidean distance= 4
𝑜𝑜𝑎𝑎2� , 𝑜𝑜𝑎𝑎 is a positive constant which defines the radius of 

cluster in the dimensional space, while 𝑃𝑃𝑖𝑖 𝐺𝐺𝑎𝑎𝑎𝑎 𝑃𝑃𝑗𝑗  are data vectors. Second or next cluster center 

is selected by computing the new potential in the remaining grid as; 

                                        𝑃𝑃𝑖𝑖 = 𝑃𝑃𝑖𝑖 − 𝑃𝑃𝑘𝑘∗𝜁𝜁                                                            (17) 

Where 𝜁𝜁= 𝑒𝑒−𝛽𝛽𝑃𝑃𝑖𝑖−𝑐𝑐𝑘𝑘
2
 𝐺𝐺𝑎𝑎𝑎𝑎 𝛽𝛽 = 4

𝑟𝑟𝑏𝑏2
 , 𝑜𝑜𝑏𝑏 = 𝑎𝑎∗𝑜𝑜𝑎𝑎.  𝑃𝑃𝑘𝑘 is the potential of kth cluster, 𝑐𝑐𝑘𝑘 is the kth cluster 

center, n is the squash factor. Potential subtracted from each data point is a function of the distance 

from first data point (Dhanachandra, Manglem, and Chanu 2015). The number of clusters is 

influenced by the radius for clustering in the data space, therefore a meticulous effort is needed is 

selecting the radius, a small radius implies a small cluster in data and consequently more rules and 



vice versa (Sanikhani et al. 2012). The numbers of rules and performance of the subtractive cluster 

can be impacted by cluster radius, squash factor, reject ratio and aspect ratio (Adedeji et al. 2020)  

2.3.2.1.3 Fuzzy c-means clustering 

FCM clustering technique is a soft clustering technique and a fuzzy form of k-means 

clustering algorithm which assigns a data point to a cluster and membership degree to each data 

(Adedeji et al. 2020). Instead of wholly belonging to a single group, FCM clustering technique 

allows a partial membership to different group as no acute boundary exists between clusters 

(Abdulshahed, Longstaff, and Fletcher 2015). FCM determines a cluster for each fuzzy group of 

n vectors 𝑇𝑇𝑖𝑖, 𝑙𝑙 = 1,2 … . .𝑎𝑎 and the distance of data center to each data point is minimized using a 

goal function: 

                                     𝐸𝐸 = ��𝑈𝑈𝑖𝑖𝑗𝑗𝑚𝑚�𝑇𝑇𝑖𝑖 − 𝑐𝑐𝑗𝑗�
2

𝐶𝐶

𝑗𝑗=1

𝑁𝑁

𝑖𝑖=1

                           (18)                                                    

       Where  𝑠𝑠 = Fuzzier i.e. any real number greater than one (1 ≤ 𝑠𝑠 ≤ ∞), 𝑈𝑈𝑖𝑖𝑗𝑗  𝑙𝑙𝐴𝐴 degree of 

membership, 𝑈𝑈𝑖𝑖𝑗𝑗 ∈ (0,1),   𝑇𝑇𝑖𝑖 is the data points,  𝑐𝑐𝑗𝑗 is the centroid of clusters and c is the number 

of clusters. The degree of membership of the data point 𝑇𝑇𝑖𝑖 in 𝑗𝑗 cluster at any iteration is given by 

equation 3 

                                                      𝑈𝑈𝑖𝑖𝑗𝑗 = �∑ �
�𝑇𝑇𝑖𝑖−𝑐𝑐𝑗𝑗�
�𝑇𝑇𝑖𝑖−𝑐𝑐𝑗𝑗�

�
2

𝑚𝑚−1𝐶𝐶
𝑘𝑘=1 �

−1

                         (19)  

 

In this study ANFIS models were developed using three different clustering techniques, 



thus presenting three-clustering based ANFIS models. The resulting ANFIS models then becomes 

ANFIS-FCM model, which uses fuzzy c-means clustering technique, ANFIS-GP model, which 

uses the grid partitioning clustering technique, and the ANFIS-SC model, which uses the 

subtractive clustering technique. 

3. Results and Discussion 

The models developed in this study were computed on MATLAB (R2015a) installed on a 

computing device with 64bits, 4GB ram Intel(R) core(TM)i3 configuration. Presented in Table 5 

is the performance evaluation result of the best 20 neural network model selected based on 

minimum error values and maximum R-values. The network with 5 neurons in a single hidden 

layer trained with a Leverberg-Marquardt training algorithm and logsig activation function is 

selected as the optimal network. The performance of the optimal network expressed in terms of 

RMSE, MAD, MAPE and R-value were 0.0279, 0.0178, 0.0886 and 0.9998 respectively at the 

training phase and 0.5168, 0.3051, 0.9660 and 12.7157 respectively at the testing phase. These 

performance metric values of the optimal network show that the network is the most eligible and 

most accurate in predicting the lower heating value of MSW generated in the city of Johannesburg. 

Based on the MAPE value of 12.7157, the optimal model is 87.3% accurate, this shows an 

acceptable fit between the experimental and the predicted value of the lower heating value. The 

RMSE and MAD values of the optimal model present it as an eligible model for predicting lower 

heating value. 

 

Table 5 Performance metrics of the best 20 neural networks 

S/N Training Performance indicator 



Network 

topology 

Activation 

Function 

Algorithm  RMSE MAD MAPE R 

1 6-30-1 LOGSIG SCG Training 0.1821 0.0763 1.9959 0.9904 

Testing 0.8087 0.4644 16.4436 0.9374 

2 6-30-1 LOGSIG LM Training 0.2810 0.1180 2.0088 0.9911 

Testing 0.9089 0.3822 16.6166 0.7741 

3 6-29-1 TANSIG LM Training 0.2688 0.0999 2.5369 0.9845 

Testing 0.9570 0.6503 26.7820 0.8434 

4 6-28-1 TANSIG GDA Training 0.8020 0.3120 2.7431 0.9613 

Testing 1.2097 0.9214 21.5321 0.8076 

5 6-28-1 LOGSIG GDA Training 0.3278 0.2382 4.8905 0.9784 

Testing 0.6495 0.4423 18.9525 0.8929 

6 6-27-1 LOGSIG GDA Training 0.4065 0.2882 4.8541 0.9821 

Testing 0.8282 0.5669 21.1348 0.9289 

7 6-26-1 LOGSIG SCG Training 0.2857 0.0863 4.0450 0.9833 

Testing 0.9110 0.5461 18.8067 0.9218 

8 6-25-1 LOGSIG LM Training 0.2453 0.1518 1.8338 0.9960 

Testing 1.1717 0.5798 8.77237 0.9762 

9 6-24-1 LOGSIG LM Training 0.1569 0.0942 0.4729 0.9993 

Testing 0.7087 0.4094 14.6502 0.9537 

10 6-22-1 LOGSIG GDA Training 0.3272 0.2393 5.5423 0.9796 

Testing 1.1288 0.7223 14.4229 0.9426 

11 6-21-1 LOGSIG SCG Training 0.2100 0.1147 1.6912 0.9900 



Testing 0.8624 0.4646 18.8678 0.8701 

12 6-20-1 SOFTMAX SCG Training 0.0821 0.0347 0.4016 0.9992 

Testing 0.6095 0.3328 14.6339 0.9525 

13 6-19-1 SOFTMAX SCG Training 0.0180 0.0094 0.6239 0.9991 

Testing 0.5370 0.3078 13.5715 0.9614 

14 6-18-1 LOGSIG SCG Training 0.0775 0.0408 4.2388 0.9885 

Testing 0.5671 0.3576 18.5921 0.9352 

15 6-18-1 TANSIG SCG Training 0.0624 0.0374 5.6882 0.9275 

Testing 0.7652 0.5172 24.3393 0.8702 

16 6-13-1 TANSIG LM Training 0.1188 0.0619 1.8836 0.9944 

Testing 0.9027 0.5367 18.0932 0.8611 

17 6-9-1 SOFTMAX LM Training 0.0640 0.0318 0.5261 0.9993 

Testing 0.5791 0.3381 12.8556 0.9710 

18 6-7-1 SOFTMAX LM Training 0.0541 0.0219 0.2626 0.9998 

Testing 0.5991 0.3095 12.7709 0.9575 

19 6-5-1 SOFTMAX SCG Training 0.0306 0.0160 0.2523 0.9998 

Testing 0.6183 0.3337 13.6189 0.9542 

20 6-5-1 LOGSIG LM Training 0.0279 0.0178 0.0886 0.9999 

Testing 0.5168 0.3051 12.7157 0.9660 

 

 

 



Evaluating the performance of the networks based on the activation functions used in this 

study, Softmax function gave the most accurate results. All networks trained with the softmax 

function have a RMSE value between 0.0180-0.082 at the training phase and 0.5370-0.6183 at the 

testing phase. The best prediction result using the logsig activation function was with the topology 

6-5-1, with RMSE of 0.0279 for training while the least accurate prediction using the logsig 

activation function was with the 6-27-1 topology giving a RMSE value of 0.4065 for training. The 

tansig function based network predicted with a lesser accuracy compared with logsig function. 

However, the best prediction result based on the tansig function was obtained with the topology 

6-13-1, with RMSE and MAPE of 0.1188 and 0.1619 respectively for training, while tansig 

function tested with 6-28-1 predicted with the least accuracy with RMSE and MAPE value of 

0.8020 and 0.3120 respectively for training.  

It can be observed from Table 5 that the training R-value increased as the number of 

neurons in the hidden layer reduced which implies that the network trained better when the 

numbers of neurons in the hidden layer reduced. The training was stopped at 30 neurons, because 

no significant improvement was noticed in the network performance above 30 neurons. It was also 

observed that all the networks trained with the softmax activation function gave the highest R-

values ranging from 0.9991-0.9998. Based on MAPE, the network with a topology 6-29-1 trained 

with LM algorithm and tansig activation function was considered the least accurate network, it is 

78.2% accurate (MAPE=26.7820). The network trained with LM training algorithms were 

observed to be best trained, while the GDA trained the least with the data set. Generally, the 

performance of the network improved as the percentage error reduces when the number of neurons 

in the hidden layer reduced progressively from 30 to 5. The post regression plot of the training 

state and the testing plot of the best network are shown in figures 6 and 7 



Figure 6 Post regression training plot for the optimal neural network  



Figure 7 Test Plot of the optimal neural network 

 

 

In training the ANFIS network, 70% of the data was used for training and 30% for testing. 

Two input membership function was used for training the ANFIS-GP model using grid partitioning 

clustering technique and a gaussian-type input membership function. In training the ANFIS FCM 

model, the parameters of the network were specified, the fuzzy C-means clustering technique with 

Sugeno-type Fuzzy Inference System were selected. The FCM clustered ANFIS model was 

developed with 10 cluster numbers. Other parameters of the FCM clustering like the exponent was 



set at 2 and the maximum Iterations was set at 20. The cluster radius of the subtractive clustering 

for the ANFIS-SC model was set at the recommended value of 0.55. The accuracy of the three 

models were also assessed using the performance indicator Root Means Square Errors (RMSE), 

Mean Absolute Deviation (MAD), Mean Absolute Percentage Error (MAPE), and Correlation Co-

efficient (R) 

 Table 6 presents the result of the performance of the best ANN network, ANFIS-FCM, 

ANFIS-GP and ANFIS-SC in term of the RMSE, MAD, MAPE, and R. Given the Mean Absolute 

Percentage error of the four models, the selected ANN model predicted with an accuracy of 87.3% 

and considered the least accurate model. The ANFIS-GP predicted with the highest prediction 

accuracy of 95.1%, ANFIS-FCM and ANFIS-SC were 93.6% and 91.6% accurate respectively. 

Owing to the nature of the data and the computational complexity of the ANFIS-GP, a lower 

number of membership function was selected, however this model recorded the longest 

computational time. Comparatively, the ANFIS models trained better, all having correlation co-

efficient of training of 1.000, and predicted more accurately than the ANN models. In the overall 

performance of the four models, ANFIS-GP is the most accurate in predicting the heating value of 

MSW generated in Johannesburg. It trained and predicted with the lowest error. Its RMSE, MAD, 

MAPE and R-values for testing were 0.2916, 0.2286, 8.4736 and 0.9731 respectively. 

 

Table 6 Comparison Performance of the optimal ANN and ANFIS model 

Model  RMSE MAD MAPE R 

ANN (6-5-1) training 0.0279 0.0178 0.886 0.9999 

testing 0.5168 0.3051 12.7157 0.9660 

ANFIS-SC training 4.16×10-7 1.88×10-7 5.03×10-6 1.0000 



testing 0.2916 0.2286 8.4736 0.9731 

ANFIS-GP training 8.61×10-8 0.64×10-8 1.77×10-6 1.0000 

testing 0.1944 0.1389 4.2982 0.9874 

ANFIS-FCM training 1.56×10-7 1.08×10-7 2.9×10-6 1.0000 

 Testing 0.1944 0.1389 4.2982 0.9874 

 

 

 

Figure 8-10 presents the regression test plot of the observed and predicted values by the 

ANFIS models. Both the predicted and experimental heating value had no significant variation 

and are highly correlated with co-efficient 0.9731, 0.9874 and 0.9766 for ANFIS-SC, ANFIS-GP 

and ANFIS-FCM respectively. The ANFIS-GP was more computationally intensive with the 

highest computational time, this is due to the large computer memory requirement that may result 

from the exponential relationship that exist between fuzzy rules and number of input (Roger et al. 

2000), hence two (2) membership functions were selected in this study. The ANFIS-FCM 

computed in the shortest time. The computational time were 4.2, 6.19 and 3.76 seconds for ANFIS-

SC, ANFIS-GP and ANFIS-FCM models respectively                             



 

Figure 8 Regression plot of ANFIS-FCM Predicted LHV versus observed LHV 
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Figure 9 Regression of ANFIS-SC Predicted LHV versus observed LHV  
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Figure 10 Regression plot of ANFIS-GP Predicted LHV versus observed LHV  

 

 

The combined test sample plots of the four models used in this study is presented in figure 

11. There is a similar trend noticed in the four model plots with a very slight variation in the 

predicted values. The rise and fall trend depicted in the plot of the predicted values of the four 

models in figure 11 is similar to the trend in the experimental heating values. This reveals the 

significant variation in the energy content of the waste collected at the landfill sites in 
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Johannesburg. This noticed trend resulted from the variation in the composition of plastic and 

organic waste from the DNC and RCR sources. Averagely, waste from DNC sources has about 

28% plastics and 13% organic, while RCR waste has about 29% organics and 18% plastics 

(Ayeleru, Okonta, and Ntuli 2018). The highest points in figure 11, especially at samples index 5, 

11, 16 and 18 with the maximum heating values are identified as waste samples from the Daily 

Non-Compacted (DNC) source with the higher plastic waste streams and low organic waste 

stream. Plastic waste streams have higher calorific value, therefore more plastic waste stream in 

waste, indicates higher energy content. The lowest points in figure 11, especially at samples 4, 6, 

8, 9, 13, 17 and 19 with the minimum heating values represent waste from the RCR source with 

lesser plastic waste and a higher fraction of organic waste. More organic waste stream in a waste, 

indicates a lesser energy content, due to the lower calorific value of organic waste. The ANN 

model over-predicted LHV values especially at samples 5, 11 16 and 18, this may be due to the 

sensitivity of the ANN model to sudden changes in the data samples of LHV at these points, 

resulting in over-prediction 



 

Figure 11 Combined Prediction test plot of the four models 

 

4. Conclusion and Recommendations 

This study evaluated the relationship between the physical composition and energy content of 

waste generated in Johannesburg, South Africa. The accuracy of the ANN and ANFIS model to 

predict the heating value of waste has been unveiled. Four models were developed with laudable 

performance, ANN, ANFIS-GP, ANFIS-FCM and ANFIS-SC. It was observed that the 

performance of the network improved as the neurons in the hidden layer reduced. The network 
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with a topology 6-5-1 trained with a Levenberg-Marquardt algorithm and logsig transfer function 

emerged as the best network predicting with minimum errors values RMSE, MAD and MAPE of 

0.5168, 0.3051 and 12.7157 respectively. The ANFIS-GP performed better than all other models 

with 95.1% accuracy, and RMSE and MAD value of 0.1944 and 0.1389 respectively. More so, it 

was noted that the percentage composition of some waste streams like plastics and organic waste 

had a significant impact on the energy content of the waste. Waste from the DNC, with about 28% 

plastic waste were identified as having the highest heating  value while the RCR source with about 

19% plastic had the lowest heating value. This trend was depicted in the predicted values using 

the four models. Due to limited availability of calorimetric heating value published data of waste 

in Johannesburg, this study was constrained to the use of meagre sample data set. The use of a 

large experimental waste data set is hereby recommended for further researches into prediction of 

the energy content of waste in Johannesburg. ANFIS model optimized with an evolutionary 

algorithm like Genetic Algorithm (GA) or Particle Swarm Optimization (PSO) is recommended 

for further researches. 
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