243,858 research outputs found
A comparison of facial expression properties in five hylobatid species
Little is known about facial communication of lesser apes (family Hylobatidae) and how their facial expressions (and use of) relate to social organization. We investigated facial expressions (defined as combinations of facial movements) in social interactions of mated pairs in five different hylobatid species belonging to three different genera using a recently developed objective coding system, the Facial Action Coding System for hylobatid species (GibbonFACS). We described three important properties of their facial expressions and compared them between genera. First, we compared the rate of facial expressions, which was defined as the number of facial expressions per units of time. Second, we compared their repertoire size, defined as the number of different types of facial expressions used, independent of their frequency. Third, we compared the diversity of expression, defined as the repertoire weighted by the rate of use for each type of facial expression. We observed a higher rate and diversity of facial expression, but no larger repertoire, in Symphalangus (siamangs) compared to Hylobates and Nomascus species. In line with previous research, these results suggest siamangs differ from other hylobatids in certain aspects of their social behavior. To investigate whether differences in facial expressions are linked to hylobatid socio-ecology, we used a Phylogenetic General Least Square (PGLS) regression analysis to correlate those properties with two social factors: group-size and level of monogamy. No relationship between the properties of facial expressions and these socio-ecological factors was found. One explanation could be that facial expressions in hylobatid species are subject to phylogenetic inertia and do not differ sufficiently between species to reveal correlations with factors such as group size and monogamy level. Am. J. Primatol. 76:618-628, 2014
Neural responses to facial and vocal expressions of fear and disgust
Neuropsychological studies report more impaired responses to facial expressions of fear than disgust in people with amygdala lesions, and vice versa in people with Huntington's disease. Experiments using functional magnetic resonance imaging (fMRI) have confirmed the role of the amygdala in the response to fearful faces and have implicated the anterior insula in the response to facial expressions of disgust. We used fMRI to extend these studies to the perception of fear and disgust from both facial and vocal expressions. Consistent with neuropsychological findings, both types of fearful stimuli activated the amygdala. Facial expressions of disgust activated the anterior insula and the caudate-putamen; vocal expressions of disgust did not significantly activate either of these regions. All four types of stimuli activated the superior temporal gyrus. Our findings therefore (i) support the differential localization of the neural substrates of fear and disgust; (ii) confirm the involvement of the amygdala in the emotion of fear, whether evoked by facial or vocal expressions; (iii) confirm the involvement of the anterior insula and the striatum in reactions to facial expressions of disgust; and (iv) suggest a possible general role for the perception of emotional expressions for the superior temporal gyrus
Inversion improves the recognition of facial expression in thatcherized images
The Thatcher illusion provides a compelling example of the face inversion effect. However, the marked effect of inversion in the Thatcher illusion contrasts to other studies that report only a small effect of inversion on the recognition of facial expressions. To address this discrepancy, we compared the effects of inversion and thatcherization on the recognition of facial expressions. We found that inversion of normal faces caused only a small reduction in the recognition of facial expressions. In contrast, local inversion of facial features in upright thatcherized faces resulted in a much larger reduction in the recognition of facial expressions. Paradoxically, inversion of thatcherized faces caused a relative increase in the recognition of facial expressions. Together, these results suggest that different processes explain the effects of inversion on the recognition of facial expressions and on the perception of the Thatcher illusion. The grotesque perception of thatcherized images is based on a more orientation-sensitive representation of the face. In contrast, the recognition of facial expression is dependent on a more orientation-insensitive representation. A similar pattern of results was evident when only the mouth or eye region was visible. These findings demonstrate that a key component of the Thatcher illusion is to be found in orientation-specific encoding of the features of the face
Negative emotionality influences the effects of emotion on time perception
In this study I used a temporal bisection task to test if greater overestimation of time due to negative emotion is moderated by individual differences in negative emotionality. The effects of fearful facial expressions on time perception were also examined. After a training phase, participants estimated the duration of facial expressions (anger, happiness, fearfulness) and a neutral-baseline facial expression. In accordance to the operation of an arousal-based process, the duration of angry expressions was consistently overestimated relative to other expressions and the baseline condition. In support of a role for individual differences in negative emotionality on time perception, temporal bias due to angry and fearful expressions was positively correlated to individual differences in self-reported negative emotionality. The results are discussed in relation both to the literature on attentional bias to facial expressions in anxiety and fearfulness and also, to the hypothesis that angry expressions evoke a fear-specific response. © 2008 American Psychological Association
Investigating facial animation production through artistic inquiry
Studies into dynamic facial expressions tend to make use of experimental methods based on objectively manipulated stimuli. New techniques for displaying increasingly realistic facial movement and methods of measuring observer responses are typical of computer animation and psychology facial expression research. However, few projects focus on the artistic nature of performance production. Instead, most concentrate on the naturalistic appearance of posed or acted expressions. In this paper, the authors discuss a method for exploring the creative process of emotional facial expression animation, and ask whether anything can be learned about authentic dynamic expressions through artistic inquiry
Fear and the human amygdala
We have previously reported that bilateral amygdala damage in humans compromises the recognition of fear in facial expressions while leaving intact recognition of face identity (Adolphs et al., 1994). The present study aims at examining questions motivated by this finding. We addressed the possibility that unilateral amygdala damage might be sufficient to impair recognition of emotional expressions. We also obtained further data on our subject with bilateral amygdala damage, in order to elucidate possible mechanisms that could account for the impaired recognition of expressions of fear. The results show that bilateral, but not unilateral, damage to the human amygdala impairs the processing of fearful facial expressions. This impairment appears to result from an insensitivity to the intensity of fear expressed by faces. We also confirmed a double dissociation between the recognition of facial expressions of fear, and the recognition of identity of a face: these two processes can be impaired independently, lending support to the idea that they are subserved in part by anatomically separate neural systems. Based on our data, and on what is known about the amygdala's connectivity, we propose that the amygdala is required to link visual representations of facial expressions, on the one hand, with representations that constitute the concept of fear, on the other. Preliminary data suggest the amygdala's role extends to both recognition and recall of fearful facial expressions
- …
