6,491 research outputs found

    Using facial feature extraction to enhance the creation of 3D human models

    Get PDF
    The creation of personalised 3D characters has evolved to provide a high degree of realism in both appearance and animation. Further to the creation of generic characters the capabilities exist to create a personalised character from images of an individual. This provides the possibility of immersing an individual into a virtual world. Feature detection, particularly on the face, can be used to greatly enhance the realism of the model. To address this innovative contour based templates are used to extract an individual from four orthogonal views providing localisation of the face. Then adaptive facial feature extraction from multiple views is used to enhance the realism of the model

    Anatomical curve identification

    Get PDF
    Methods for capturing images in three dimensions are now widely available, with stereo-photogrammetry and laser scanning being two common approaches. In anatomical studies, a number of landmarks are usually identified manually from each of these images and these form the basis of subsequent statistical analysis. However, landmarks express only a very small proportion of the information available from the images. Anatomically defined curves have the advantage of providing a much richer expression of shape. This is explored in the context of identifying the boundary of breasts from an image of the female torso and the boundary of the lips from a facial image. The curves of interest are characterised by ridges or valleys. Key issues in estimation are the ability to navigate across the anatomical surface in three-dimensions, the ability to recognise the relevant boundary and the need to assess the evidence for the presence of the surface feature of interest. The first issue is addressed by the use of principal curves, as an extension of principal components, the second by suitable assessment of curvature and the third by change-point detection. P-spline smoothing is used as an integral part of the methods but adaptations are made to the specific anatomical features of interest. After estimation of the boundary curves, the intermediate surfaces of the anatomical feature of interest can be characterised by surface interpolation. This allows shape variation to be explored using standard methods such as principal components. These tools are applied to a collection of images of women where one breast has been reconstructed after mastectomy and where interest lies in shape differences between the reconstructed and unreconstructed breasts. They are also applied to a collection of lip images where possible differences in shape between males and females are of interest

    Image processing for plastic surgery planning

    Get PDF
    This thesis presents some image processing tools for plastic surgery planning. In particular, it presents a novel method that combines local and global context in a probabilistic relaxation framework to identify cephalometric landmarks used in Maxillofacial plastic surgery. It also uses a method that utilises global and local symmetry to identify abnormalities in CT frontal images of the human body. The proposed methodologies are evaluated with the help of several clinical data supplied by collaborating plastic surgeons

    Fitting a 3D Morphable Model to Edges: A Comparison Between Hard and Soft Correspondences

    Get PDF
    We propose a fully automatic method for fitting a 3D morphable model to single face images in arbitrary pose and lighting. Our approach relies on geometric features (edges and landmarks) and, inspired by the iterated closest point algorithm, is based on computing hard correspondences between model vertices and edge pixels. We demonstrate that this is superior to previous work that uses soft correspondences to form an edge-derived cost surface that is minimised by nonlinear optimisation.Comment: To appear in ACCV 2016 Workshop on Facial Informatic

    Flexible shape extraction for micro/nano scale structured surfaces.

    Get PDF
    Surface feature is the one of the most important factors affecting the functionality and reliability of micro scale patterned surfaces. For micro scale patterned surface characterisation, it’s important to extract the surface feature effectively and accurately. The active contours, known as “snakes”, have been successfully used to segment, match and track the objects of interest. The active contours have been applied to facial boundary detection, medical image processing, motion correction, etc. In this paper, surface feature extraction techniques based on active contours have been investigated. Parametric active contour models and geometric active contour models have been presented. Also, a group of examples has been selected here to demonstrate the feasibility and applicability of the surface pattern extraction techniques based on active contours. At last, experimental results will be given and discussed
    • 

    corecore