3,142 research outputs found

    Hereditary Polytopes

    Full text link
    Every regular polytope has the remarkable property that it inherits all symmetries of each of its facets. This property distinguishes a natural class of polytopes which are called hereditary. Regular polytopes are by definition hereditary, but the other polytopes in this class are interesting, have possible applications in modeling of structures, and have not been previously investigated. This paper establishes the basic theory of hereditary polytopes, focussing on the analysis and construction of hereditary polytopes with highly symmetric faces.Comment: Discrete Geometry and Applications (eds. R.Connelly and A.Ivic Weiss), Fields Institute Communications, (23 pp, to appear

    Fat 4-polytopes and fatter 3-spheres

    Full text link
    We introduce the fatness parameter of a 4-dimensional polytope P, defined as \phi(P)=(f_1+f_2)/(f_0+f_3). It arises in an important open problem in 4-dimensional combinatorial geometry: Is the fatness of convex 4-polytopes bounded? We describe and analyze a hyperbolic geometry construction that produces 4-polytopes with fatness \phi(P)>5.048, as well as the first infinite family of 2-simple, 2-simplicial 4-polytopes. Moreover, using a construction via finite covering spaces of surfaces, we show that fatness is not bounded for the more general class of strongly regular CW decompositions of the 3-sphere.Comment: 12 pages, 12 figures. This version has minor changes proposed by the second refere

    Combinatorially two-orbit convex polytopes

    Full text link
    Any convex polytope whose combinatorial automorphism group has two orbits on the flags is isomorphic to one whose group of Euclidean symmetries has two orbits on the flags (equivalently, to one whose automorphism group and symmetry group coincide.) Hence, a combinatorially two-orbit convex polytope is isomorphic to one of a known finite list, all of which are 3-dimensional: the cuboctahedron, icosidodecahedron, rhombic dodecahedron, or rhombic triacontahedron. The same is true of combinatorially two-orbit normal face-to-face tilings by convex polytopes.Comment: 20 page

    The EtE_t-Construction for Lattices, Spheres and Polytopes

    Full text link
    We describe and analyze a new construction that produces new Eulerian lattices from old ones. It specializes to a construction that produces new strongly regular cellular spheres (whose face lattices are Eulerian). The construction does not always specialize to convex polytopes; however, in a number of cases where we can realize it, it produces interesting classes of polytopes. Thus we produce an infinite family of rational 2-simplicial 2-simple 4-polytopes, as requested by Eppstein, Kuperberg and Ziegler. We also construct for each d≥3d\ge3 an infinite family of (d−2)(d-2)-simplicial 2-simple dd-polytopes, thus solving a problem of Gr\"unbaum.Comment: 21 pages, many figure
    • …
    corecore