795 research outputs found

    Multi-Modal Human-Machine Communication for Instructing Robot Grasping Tasks

    Full text link
    A major challenge for the realization of intelligent robots is to supply them with cognitive abilities in order to allow ordinary users to program them easily and intuitively. One way of such programming is teaching work tasks by interactive demonstration. To make this effective and convenient for the user, the machine must be capable to establish a common focus of attention and be able to use and integrate spoken instructions, visual perceptions, and non-verbal clues like gestural commands. We report progress in building a hybrid architecture that combines statistical methods, neural networks, and finite state machines into an integrated system for instructing grasping tasks by man-machine interaction. The system combines the GRAVIS-robot for visual attention and gestural instruction with an intelligent interface for speech recognition and linguistic interpretation, and an modality fusion module to allow multi-modal task-oriented man-machine communication with respect to dextrous robot manipulation of objects.Comment: 7 pages, 8 figure

    CobotTouch: AR-based Interface with Fingertip-worn Tactile Display for Immersive Operation/Control of Collaborative Robots

    Full text link
    Complex robotic tasks require human collaboration to benefit from their high dexterity. Frequent human-robot interaction is mentally demanding and time-consuming. Intuitive and easy-to-use robot control interfaces reduce the negative influence on workers, especially inexperienced users. In this paper, we present CobotTouch, a novel intuitive robot control interface with fingertip haptic feedback. The proposed interface consists of a projected Graphical User Interface on the robotic arm to control the position of the robot end-effector based on gesture recognition, and a wearable haptic interface to deliver tactile feedback on the user's fingertips. We evaluated the user's perception of the designed tactile patterns presented by the haptic interface and the intuitiveness of the proposed system for robot control in a use case. The results revealed a high average recognition rate of 75.25\% for the tactile patterns. An average NASA Task Load Index (TLX) indicated small mental and temporal demands proving a high level of the intuitiveness of CobotTouch for interaction with collaborative robots.Comment: 12 pages, 11 figures, Accepted paper in AsiaHaptics 202

    Human-computer interaction based on hand gestures using RGB-D sensors

    Get PDF
    In this paper we present a new method for hand gesture recognition based on an RGB-D sensor. The proposed approach takes advantage of depth information to cope with the most common problems of traditional video-based hand segmentation methods: cluttered backgrounds and occlusions. The algorithm also uses colour and semantic information to accurately identify any number of hands present in the image. Ten different static hand gestures are recognised, including all different combinations of spread fingers. Additionally, movements of an open hand are followed and 6 dynamic gestures are identified. The main advantage of our approach is the freedom of the user’s hands to be at any position of the image without the need of wearing any specific clothing or additional devices. Besides, the whole method can be executed without any initial training or calibration. Experiments carried out with different users and in different environments prove the accuracy and robustness of the method which, additionally, can be run in real-time

    Hand gesture recognition based on signals cross-correlation

    Get PDF

    The Future of Humanoid Robots

    Get PDF
    This book provides state of the art scientific and engineering research findings and developments in the field of humanoid robotics and its applications. It is expected that humanoids will change the way we interact with machines, and will have the ability to blend perfectly into an environment already designed for humans. The book contains chapters that aim to discover the future abilities of humanoid robots by presenting a variety of integrated research in various scientific and engineering fields, such as locomotion, perception, adaptive behavior, human-robot interaction, neuroscience and machine learning. The book is designed to be accessible and practical, with an emphasis on useful information to those working in the fields of robotics, cognitive science, artificial intelligence, computational methods and other fields of science directly or indirectly related to the development and usage of future humanoid robots. The editor of the book has extensive R&D experience, patents, and publications in the area of humanoid robotics, and his experience is reflected in editing the content of the book
    • …
    corecore