598 research outputs found

    A Survey on Ear Biometrics

    No full text
    Recognizing people by their ear has recently received significant attention in the literature. Several reasons account for this trend: first, ear recognition does not suffer from some problems associated with other non contact biometrics, such as face recognition; second, it is the most promising candidate for combination with the face in the context of multi-pose face recognition; and third, the ear can be used for human recognition in surveillance videos where the face may be occluded completely or in part. Further, the ear appears to degrade little with age. Even though, current ear detection and recognition systems have reached a certain level of maturity, their success is limited to controlled indoor conditions. In addition to variation in illumination, other open research problems include hair occlusion; earprint forensics; ear symmetry; ear classification; and ear individuality. This paper provides a detailed survey of research conducted in ear detection and recognition. It provides an up-to-date review of the existing literature revealing the current state-of-art for not only those who are working in this area but also for those who might exploit this new approach. Furthermore, it offers insights into some unsolved ear recognition problems as well as ear databases available for researchers

    Face Video Competition

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-642-01793-3_73Person recognition using facial features, e.g., mug-shot images, has long been used in identity documents. However, due to the widespread use of web-cams and mobile devices embedded with a camera, it is now possible to realise facial video recognition, rather than resorting to just still images. In fact, facial video recognition offers many advantages over still image recognition; these include the potential of boosting the system accuracy and deterring spoof attacks. This paper presents the first known benchmarking effort of person identity verification using facial video data. The evaluation involves 18 systems submitted by seven academic institutes.The work of NPoh is supported by the advanced researcher fellowship PA0022121477of the Swiss NSF; NPoh, CHC and JK by the EU-funded Mobio project grant IST-214324; NPC and HF by the EPSRC grants EP/D056942 and EP/D054818; VS andNP by the Slovenian national research program P2-0250(C) Metrology and Biomet-ric System, the COST Action 2101 and FP7-217762 HIDE; and, AAS by the Dutch BRICKS/BSIK project.Poh, N.; Chan, C.; Kittler, J.; Marcel, S.; Mc Cool, C.; Rua, E.; Alba Castro, J.... (2009). Face Video Competition. En Advances in Biometrics: Third International Conference, ICB 2009, Alghero, Italy, June 2-5, 2009. Proceedings. 715-724. https://doi.org/10.1007/978-3-642-01793-3_73S715724Messer, K., Kittler, J., Sadeghi, M., Hamouz, M., Kostyn, A., Marcel, S., Bengio, S., Cardinaux, F., Sanderson, C., Poh, N., Rodriguez, Y., Kryszczuk, K., Czyz, J., Vandendorpe, L., Ng, J., Cheung, H., Tang, B.: Face authentication competition on the BANCA database. In: Zhang, D., Jain, A.K. (eds.) ICBA 2004. LNCS, vol. 3072, pp. 8–15. Springer, Heidelberg (2004)Messer, K., Kittler, J., Sadeghi, M., Hamouz, M., Kostin, A., Cardinaux, F., Marcel, S., Bengio, S., Sanderson, C., Poh, N., Rodriguez, Y., Czyz, J., Vandendorpe, L., McCool, C., Lowther, S., Sridharan, S., Chandran, V., Palacios, R.P., Vidal, E., Bai, L., Shen, L.-L., Wang, Y., Yueh-Hsuan, C., Liu, H.-C., Hung, Y.-P., Heinrichs, A., Muller, M., Tewes, A., vd Malsburg, C., Wurtz, R., Wang, Z., Xue, F., Ma, Y., Yang, Q., Fang, C., Ding, X., Lucey, S., Goss, R., Schneiderman, H.: Face authentication test on the BANCA database. In: Int’l. Conf. Pattern Recognition (ICPR), vol. 4, pp. 523–532 (2004)Phillips, P.J., Flynn, P.J., Scruggs, T., Bowyer, K.W., Chang, J., Hoffman, K., Marques, J., Min, J., Worek, W.: Overview of the Face Recognition Grand Challenge. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 947–954 (2005)Bailly-Baillière, E., Bengio, S., Bimbot, F., Hamouz, M., Kittler, J., Marithoz, J., Matas, J., Messer, K., Popovici, V., Porée, F., Ruiz, B., Thiran, J.-P.: The BANCA Database and Evaluation Protocol. In: Kittler, J., Nixon, M.S. (eds.) AVBPA 2003. LNCS, vol. 2688. Springer, Heidelberg (2003)Turk, M., Pentland, A.: Eigenfaces for Recognition. Journal of Cognitive Neuroscience 3(1), 71–86 (1991)Martin, A., Doddington, G., Kamm, T., Ordowsk, M., Przybocki, M.: The DET Curve in Assessment of Detection Task Performance. In: Proc. Eurospeech 1997, Rhodes, pp. 1895–1898 (1997)Bengio, S., Marithoz, J.: The Expected Performance Curve: a New Assessment Measure for Person Authentication. In: The Speaker and Language Recognition Workshop (Odyssey), Toledo, pp. 279–284 (2004)Poh, N., Bengio, S.: Database, Protocol and Tools for Evaluating Score-Level Fusion Algorithms in Biometric Authentication. Pattern Recognition 39(2), 223–233 (2005)Martin, A., Przybocki, M., Campbell, J.P.: The NIST Speaker Recognition Evaluation Program, ch. 8. Springer, Heidelberg (2005

    Bimodal Biometric Verification Mechanism using fingerprint and face images(BBVMFF)

    Get PDF
    An increased demand of biometric authentication coupled with automation of systems is observed in the recent times. Generally biometric recognition systems currently used consider only a single biometric characteristic for verification or authentication. Researchers have proved the inefficiencies in unimodal biometric systems and propagated the adoption of multimodal biometric systems for verification. This paper introduces Bi-modal Biometric Verification Mechanism using Fingerprint and Face (BBVMFF). The BBVMFF considers the frontal face and fingerprint biometric characteristics of users for verification. The BBVMFF Considers both the Gabor phase and magnitude features as biometric trait definitions and simple lightweight feature level fusion algorithm. The fusion algorithm proposed enables the applicability of the proposed BBVMFF in unimodal and Bi-modal modes proved by the experimental results presented

    Face Recognition: Issues, Methods and Alternative Applications

    Get PDF
    Face recognition, as one of the most successful applications of image analysis, has recently gained significant attention. It is due to availability of feasible technologies, including mobile solutions. Research in automatic face recognition has been conducted since the 1960s, but the problem is still largely unsolved. Last decade has provided significant progress in this area owing to advances in face modelling and analysis techniques. Although systems have been developed for face detection and tracking, reliable face recognition still offers a great challenge to computer vision and pattern recognition researchers. There are several reasons for recent increased interest in face recognition, including rising public concern for security, the need for identity verification in the digital world, face analysis and modelling techniques in multimedia data management and computer entertainment. In this chapter, we have discussed face recognition processing, including major components such as face detection, tracking, alignment and feature extraction, and it points out the technical challenges of building a face recognition system. We focus on the importance of the most successful solutions available so far. The final part of the chapter describes chosen face recognition methods and applications and their potential use in areas not related to face recognition
    corecore