203,502 research outputs found

    Seeing through the Mask: Multi-task Generative Mask Decoupling Face Recognition

    Full text link
    The outbreak of COVID-19 pandemic make people wear masks more frequently than ever. Current general face recognition system suffers from serious performance degradation,when encountering occluded scenes. The potential reason is that face features are corrupted by occlusions on key facial regions. To tackle this problem, previous works either extract identity-related embeddings on feature level by additional mask prediction, or restore the occluded facial part by generative models. However, the former lacks visual results for model interpretation, while the latter suffers from artifacts which may affect downstream recognition. Therefore, this paper proposes a Multi-task gEnerative mask dEcoupling face Recognition (MEER) network to jointly handle these two tasks, which can learn occlusionirrelevant and identity-related representation while achieving unmasked face synthesis. We first present a novel mask decoupling module to disentangle mask and identity information, which makes the network obtain purer identity features from visible facial components. Then, an unmasked face is restored by a joint-training strategy, which will be further used to refine the recognition network with an id-preserving loss. Experiments on masked face recognition under realistic and synthetic occlusions benchmarks demonstrate that the MEER can outperform the state-ofthe-art methods

    Quality-based Multimodal Classification Using Tree-Structured Sparsity

    Full text link
    Recent studies have demonstrated advantages of information fusion based on sparsity models for multimodal classification. Among several sparsity models, tree-structured sparsity provides a flexible framework for extraction of cross-correlated information from different sources and for enforcing group sparsity at multiple granularities. However, the existing algorithm only solves an approximated version of the cost functional and the resulting solution is not necessarily sparse at group levels. This paper reformulates the tree-structured sparse model for multimodal classification task. An accelerated proximal algorithm is proposed to solve the optimization problem, which is an efficient tool for feature-level fusion among either homogeneous or heterogeneous sources of information. In addition, a (fuzzy-set-theoretic) possibilistic scheme is proposed to weight the available modalities, based on their respective reliability, in a joint optimization problem for finding the sparsity codes. This approach provides a general framework for quality-based fusion that offers added robustness to several sparsity-based multimodal classification algorithms. To demonstrate their efficacy, the proposed methods are evaluated on three different applications - multiview face recognition, multimodal face recognition, and target classification.Comment: To Appear in 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2014

    Joint & Progressive Learning from High-Dimensional Data for Multi-Label Classification

    Get PDF
    Despite the fact that nonlinear subspace learning techniques (e.g. manifold learning) have successfully applied to data representation, there is still room for improvement in explainability (explicit mapping), generalization (out-of-samples), and cost-effectiveness (linearization). To this end, a novel linearized subspace learning technique is developed in a joint and progressive way, called \textbf{j}oint and \textbf{p}rogressive \textbf{l}earning str\textbf{a}teg\textbf{y} (J-Play), with its application to multi-label classification. The J-Play learns high-level and semantically meaningful feature representation from high-dimensional data by 1) jointly performing multiple subspace learning and classification to find a latent subspace where samples are expected to be better classified; 2) progressively learning multi-coupled projections to linearly approach the optimal mapping bridging the original space with the most discriminative subspace; 3) locally embedding manifold structure in each learnable latent subspace. Extensive experiments are performed to demonstrate the superiority and effectiveness of the proposed method in comparison with previous state-of-the-art methods.Comment: accepted in ECCV 201

    Unconstrained Face Verification using Deep CNN Features

    Full text link
    In this paper, we present an algorithm for unconstrained face verification based on deep convolutional features and evaluate it on the newly released IARPA Janus Benchmark A (IJB-A) dataset. The IJB-A dataset includes real-world unconstrained faces from 500 subjects with full pose and illumination variations which are much harder than the traditional Labeled Face in the Wild (LFW) and Youtube Face (YTF) datasets. The deep convolutional neural network (DCNN) is trained using the CASIA-WebFace dataset. Extensive experiments on the IJB-A dataset are provided
    • …
    corecore