1,688 research outputs found

    Document Clustering Based On Max-Correntropy Non-Negative Matrix Factorization

    Full text link
    Nonnegative matrix factorization (NMF) has been successfully applied to many areas for classification and clustering. Commonly-used NMF algorithms mainly target on minimizing the l2l_2 distance or Kullback-Leibler (KL) divergence, which may not be suitable for nonlinear case. In this paper, we propose a new decomposition method by maximizing the correntropy between the original and the product of two low-rank matrices for document clustering. This method also allows us to learn the new basis vectors of the semantic feature space from the data. To our knowledge, we haven't seen any work has been done by maximizing correntropy in NMF to cluster high dimensional document data. Our experiment results show the supremacy of our proposed method over other variants of NMF algorithm on Reuters21578 and TDT2 databasets.Comment: International Conference of Machine Learning and Cybernetics (ICMLC) 201

    Audio-visual speech recognition with background music using single-channel source separation

    Get PDF
    In this paper, we consider audio-visual speech recognition with background music. The proposed algorithm is an integration of audio-visual speech recognition and single channel source separation (SCSS). We apply the proposed algorithm to recognize spoken speech that is mixed with music signals. First, the SCSS algorithm based on nonnegative matrix factorization (NMF) and spectral masks is used to separate the audio speech signal from the background music in magnitude spectral domain. After speech audio is separated from music, regular audio-visual speech recognition (AVSR) is employed using multi-stream hidden Markov models. Employing two approaches together, we try to improve recognition accuracy by both processing the audio signal with SCSS and supporting the recognition task with visual information. Experimental results show that combining audio-visual speech recognition with source separation gives remarkable improvements in the accuracy of the speech recognition system

    The Diagonalized Newton Algorithm for Nonnegative Matrix Factorization

    Full text link
    Non-negative matrix factorization (NMF) has become a popular machine learning approach to many problems in text mining, speech and image processing, bio-informatics and seismic data analysis to name a few. In NMF, a matrix of non-negative data is approximated by the low-rank product of two matrices with non-negative entries. In this paper, the approximation quality is measured by the Kullback-Leibler divergence between the data and its low-rank reconstruction. The existence of the simple multiplicative update (MU) algorithm for computing the matrix factors has contributed to the success of NMF. Despite the availability of algorithms showing faster convergence, MU remains popular due to its simplicity. In this paper, a diagonalized Newton algorithm (DNA) is proposed showing faster convergence while the implementation remains simple and suitable for high-rank problems. The DNA algorithm is applied to various publicly available data sets, showing a substantial speed-up on modern hardware.Comment: 8 pages + references; International Conference on Learning Representations, 201

    Graph Regularized Non-negative Matrix Factorization By Maximizing Correntropy

    Full text link
    Non-negative matrix factorization (NMF) has proved effective in many clustering and classification tasks. The classic ways to measure the errors between the original and the reconstructed matrix are l2l_2 distance or Kullback-Leibler (KL) divergence. However, nonlinear cases are not properly handled when we use these error measures. As a consequence, alternative measures based on nonlinear kernels, such as correntropy, are proposed. However, the current correntropy-based NMF only targets on the low-level features without considering the intrinsic geometrical distribution of data. In this paper, we propose a new NMF algorithm that preserves local invariance by adding graph regularization into the process of max-correntropy-based matrix factorization. Meanwhile, each feature can learn corresponding kernel from the data. The experiment results of Caltech101 and Caltech256 show the benefits of such combination against other NMF algorithms for the unsupervised image clustering

    A multilevel approach for nonnegative matrix factorization

    Get PDF
    Nonnegative Matrix Factorization (NMF) is the problem of approximating a nonnegative matrix with the product of two low-rank nonnegative matrices and has been shown to be particularly useful in many applications, e.g., in text mining, image processing, computational biology, etc. In this paper, we explain how algorithms for NMF can be embedded into the framework of multi- level methods in order to accelerate their convergence. This technique can be applied in situations where data admit a good approximate representation in a lower dimensional space through linear transformations preserving nonnegativity. A simple multilevel strategy is described and is experi- mentally shown to speed up significantly three popular NMF algorithms (alternating nonnegative least squares, multiplicative updates and hierarchical alternating least squares) on several standard image datasets.nonnegative matrix factorization, algorithms, multigrid and multilevel methods, image processing
    corecore