5,241 research outputs found

    Learning Social Relation Traits from Face Images

    Full text link
    Social relation defines the association, e.g, warm, friendliness, and dominance, between two or more people. Motivated by psychological studies, we investigate if such fine-grained and high-level relation traits can be characterised and quantified from face images in the wild. To address this challenging problem we propose a deep model that learns a rich face representation to capture gender, expression, head pose, and age-related attributes, and then performs pairwise-face reasoning for relation prediction. To learn from heterogeneous attribute sources, we formulate a new network architecture with a bridging layer to leverage the inherent correspondences among these datasets. It can also cope with missing target attribute labels. Extensive experiments show that our approach is effective for fine-grained social relation learning in images and videos.Comment: To appear in International Conference on Computer Vision (ICCV) 201

    Group Membership Prediction

    Full text link
    The group membership prediction (GMP) problem involves predicting whether or not a collection of instances share a certain semantic property. For instance, in kinship verification given a collection of images, the goal is to predict whether or not they share a {\it familial} relationship. In this context we propose a novel probability model and introduce latent {\em view-specific} and {\em view-shared} random variables to jointly account for the view-specific appearance and cross-view similarities among data instances. Our model posits that data from each view is independent conditioned on the shared variables. This postulate leads to a parametric probability model that decomposes group membership likelihood into a tensor product of data-independent parameters and data-dependent factors. We propose learning the data-independent parameters in a discriminative way with bilinear classifiers, and test our prediction algorithm on challenging visual recognition tasks such as multi-camera person re-identification and kinship verification. On most benchmark datasets, our method can significantly outperform the current state-of-the-art.Comment: accepted for ICCV 201

    Fine-grained Categorization and Dataset Bootstrapping using Deep Metric Learning with Humans in the Loop

    Full text link
    Existing fine-grained visual categorization methods often suffer from three challenges: lack of training data, large number of fine-grained categories, and high intraclass vs. low inter-class variance. In this work we propose a generic iterative framework for fine-grained categorization and dataset bootstrapping that handles these three challenges. Using deep metric learning with humans in the loop, we learn a low dimensional feature embedding with anchor points on manifolds for each category. These anchor points capture intra-class variances and remain discriminative between classes. In each round, images with high confidence scores from our model are sent to humans for labeling. By comparing with exemplar images, labelers mark each candidate image as either a "true positive" or a "false positive". True positives are added into our current dataset and false positives are regarded as "hard negatives" for our metric learning model. Then the model is retrained with an expanded dataset and hard negatives for the next round. To demonstrate the effectiveness of the proposed framework, we bootstrap a fine-grained flower dataset with 620 categories from Instagram images. The proposed deep metric learning scheme is evaluated on both our dataset and the CUB-200-2001 Birds dataset. Experimental evaluations show significant performance gain using dataset bootstrapping and demonstrate state-of-the-art results achieved by the proposed deep metric learning methods.Comment: 10 pages, 9 figures, CVPR 201
    • …
    corecore