22,147 research outputs found

    Face image super-resolution using 2D CCA

    Get PDF
    In this paper a face super-resolution method using two-dimensional canonical correlation analysis (2D CCA) is presented. A detail compensation step is followed to add high-frequency components to the reconstructed high-resolution face. Unlike most of the previous researches on face super-resolution algorithms that first transform the images into vectors, in our approach the relationship between the high-resolution and the low-resolution face image are maintained in their original 2D representation. In addition, rather than approximating the entire face, different parts of a face image are super-resolved separately to better preserve the local structure. The proposed method is compared with various state-of-the-art super-resolution algorithms using multiple evaluation criteria including face recognition performance. Results on publicly available datasets show that the proposed method super-resolves high quality face images which are very close to the ground-truth and performance gain is not dataset dependent. The method is very efficient in both the training and testing phases compared to the other approaches. © 2013 Elsevier B.V

    Person re-identification by robust canonical correlation analysis

    Get PDF
    Person re-identification is the task to match people in surveillance cameras at different time and location. Due to significant view and pose change across non-overlapping cameras, directly matching data from different views is a challenging issue to solve. In this letter, we propose a robust canonical correlation analysis (ROCCA) to match people from different views in a coherent subspace. Given a small training set as in most re-identification problems, direct application of canonical correlation analysis (CCA) may lead to poor performance due to the inaccuracy in estimating the data covariance matrices. The proposed ROCCA with shrinkage estimation and smoothing technique is simple to implement and can robustly estimate the data covariance matrices with limited training samples. Experimental results on two publicly available datasets show that the proposed ROCCA outperforms regularized CCA (RCCA), and achieves state-of-the-art matching results for person re-identification as compared to the most recent methods

    Robust correlated and individual component analysis

    Get PDF
    © 1979-2012 IEEE.Recovering correlated and individual components of two, possibly temporally misaligned, sets of data is a fundamental task in disciplines such as image, vision, and behavior computing, with application to problems such as multi-modal fusion (via correlated components), predictive analysis, and clustering (via the individual ones). Here, we study the extraction of correlated and individual components under real-world conditions, namely i) the presence of gross non-Gaussian noise and ii) temporally misaligned data. In this light, we propose a method for the Robust Correlated and Individual Component Analysis (RCICA) of two sets of data in the presence of gross, sparse errors. We furthermore extend RCICA in order to handle temporal incongruities arising in the data. To this end, two suitable optimization problems are solved. The generality of the proposed methods is demonstrated by applying them onto 4 applications, namely i) heterogeneous face recognition, ii) multi-modal feature fusion for human behavior analysis (i.e., audio-visual prediction of interest and conflict), iii) face clustering, and iv) thetemporal alignment of facial expressions. Experimental results on 2 synthetic and 7 real world datasets indicate the robustness and effectiveness of the proposed methodson these application domains, outperforming other state-of-the-art methods in the field
    • …
    corecore