1,516 research outputs found

    High-Quality Facial Photo-Sketch Synthesis Using Multi-Adversarial Networks

    Full text link
    Synthesizing face sketches from real photos and its inverse have many applications. However, photo/sketch synthesis remains a challenging problem due to the fact that photo and sketch have different characteristics. In this work, we consider this task as an image-to-image translation problem and explore the recently popular generative models (GANs) to generate high-quality realistic photos from sketches and sketches from photos. Recent GAN-based methods have shown promising results on image-to-image translation problems and photo-to-sketch synthesis in particular, however, they are known to have limited abilities in generating high-resolution realistic images. To this end, we propose a novel synthesis framework called Photo-Sketch Synthesis using Multi-Adversarial Networks, (PS2-MAN) that iteratively generates low resolution to high resolution images in an adversarial way. The hidden layers of the generator are supervised to first generate lower resolution images followed by implicit refinement in the network to generate higher resolution images. Furthermore, since photo-sketch synthesis is a coupled/paired translation problem, we leverage the pair information using CycleGAN framework. Both Image Quality Assessment (IQA) and Photo-Sketch Matching experiments are conducted to demonstrate the superior performance of our framework in comparison to existing state-of-the-art solutions. Code available at: https://github.com/lidan1/PhotoSketchMAN.Comment: Accepted by 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018)(Oral

    FaceShop: Deep Sketch-based Face Image Editing

    Get PDF
    We present a novel system for sketch-based face image editing, enabling users to edit images intuitively by sketching a few strokes on a region of interest. Our interface features tools to express a desired image manipulation by providing both geometry and color constraints as user-drawn strokes. As an alternative to the direct user input, our proposed system naturally supports a copy-paste mode, which allows users to edit a given image region by using parts of another exemplar image without the need of hand-drawn sketching at all. The proposed interface runs in real-time and facilitates an interactive and iterative workflow to quickly express the intended edits. Our system is based on a novel sketch domain and a convolutional neural network trained end-to-end to automatically learn to render image regions corresponding to the input strokes. To achieve high quality and semantically consistent results we train our neural network on two simultaneous tasks, namely image completion and image translation. To the best of our knowledge, we are the first to combine these two tasks in a unified framework for interactive image editing. Our results show that the proposed sketch domain, network architecture, and training procedure generalize well to real user input and enable high quality synthesis results without additional post-processing.Comment: 13 pages, 20 figure

    r-BTN: Cross-domain Face Composite and Synthesis from Limited Facial Patches

    Full text link
    We start by asking an interesting yet challenging question, "If an eyewitness can only recall the eye features of the suspect, such that the forensic artist can only produce a sketch of the eyes (e.g., the top-left sketch shown in Fig. 1), can advanced computer vision techniques help generate the whole face image?" A more generalized question is that if a large proportion (e.g., more than 50%) of the face/sketch is missing, can a realistic whole face sketch/image still be estimated. Existing face completion and generation methods either do not conduct domain transfer learning or can not handle large missing area. For example, the inpainting approach tends to blur the generated region when the missing area is large (i.e., more than 50%). In this paper, we exploit the potential of deep learning networks in filling large missing region (e.g., as high as 95% missing) and generating realistic faces with high-fidelity in cross domains. We propose the recursive generation by bidirectional transformation networks (r-BTN) that recursively generates a whole face/sketch from a small sketch/face patch. The large missing area and the cross domain challenge make it difficult to generate satisfactory results using a unidirectional cross-domain learning structure. On the other hand, a forward and backward bidirectional learning between the face and sketch domains would enable recursive estimation of the missing region in an incremental manner (Fig. 1) and yield appealing results. r-BTN also adopts an adversarial constraint to encourage the generation of realistic faces/sketches. Extensive experiments have been conducted to demonstrate the superior performance from r-BTN as compared to existing potential solutions.Comment: Accepted by AAAI 201

    Detach and Adapt: Learning Cross-Domain Disentangled Deep Representation

    Full text link
    While representation learning aims to derive interpretable features for describing visual data, representation disentanglement further results in such features so that particular image attributes can be identified and manipulated. However, one cannot easily address this task without observing ground truth annotation for the training data. To address this problem, we propose a novel deep learning model of Cross-Domain Representation Disentangler (CDRD). By observing fully annotated source-domain data and unlabeled target-domain data of interest, our model bridges the information across data domains and transfers the attribute information accordingly. Thus, cross-domain joint feature disentanglement and adaptation can be jointly performed. In the experiments, we provide qualitative results to verify our disentanglement capability. Moreover, we further confirm that our model can be applied for solving classification tasks of unsupervised domain adaptation, and performs favorably against state-of-the-art image disentanglement and translation methods.Comment: CVPR 2018 Spotligh

    SketchyGAN: Towards Diverse and Realistic Sketch to Image Synthesis

    Full text link
    Synthesizing realistic images from human drawn sketches is a challenging problem in computer graphics and vision. Existing approaches either need exact edge maps, or rely on retrieval of existing photographs. In this work, we propose a novel Generative Adversarial Network (GAN) approach that synthesizes plausible images from 50 categories including motorcycles, horses and couches. We demonstrate a data augmentation technique for sketches which is fully automatic, and we show that the augmented data is helpful to our task. We introduce a new network building block suitable for both the generator and discriminator which improves the information flow by injecting the input image at multiple scales. Compared to state-of-the-art image translation methods, our approach generates more realistic images and achieves significantly higher Inception Scores.Comment: Accepted to CVPR 201
    corecore