2,968 research outputs found

    Dynamic Face Video Segmentation via Reinforcement Learning

    Full text link
    For real-time semantic video segmentation, most recent works utilised a dynamic framework with a key scheduler to make online key/non-key decisions. Some works used a fixed key scheduling policy, while others proposed adaptive key scheduling methods based on heuristic strategies, both of which may lead to suboptimal global performance. To overcome this limitation, we model the online key decision process in dynamic video segmentation as a deep reinforcement learning problem and learn an efficient and effective scheduling policy from expert information about decision history and from the process of maximising global return. Moreover, we study the application of dynamic video segmentation on face videos, a field that has not been investigated before. By evaluating on the 300VW dataset, we show that the performance of our reinforcement key scheduler outperforms that of various baselines in terms of both effective key selections and running speed. Further results on the Cityscapes dataset demonstrate that our proposed method can also generalise to other scenarios. To the best of our knowledge, this is the first work to use reinforcement learning for online key-frame decision in dynamic video segmentation, and also the first work on its application on face videos.Comment: CVPR 2020. 300VW with segmentation labels is available at: https://github.com/mapleandfire/300VW-Mas

    Speech-driven Animation with Meaningful Behaviors

    Full text link
    Conversational agents (CAs) play an important role in human computer interaction. Creating believable movements for CAs is challenging, since the movements have to be meaningful and natural, reflecting the coupling between gestures and speech. Studies in the past have mainly relied on rule-based or data-driven approaches. Rule-based methods focus on creating meaningful behaviors conveying the underlying message, but the gestures cannot be easily synchronized with speech. Data-driven approaches, especially speech-driven models, can capture the relationship between speech and gestures. However, they create behaviors disregarding the meaning of the message. This study proposes to bridge the gap between these two approaches overcoming their limitations. The approach builds a dynamic Bayesian network (DBN), where a discrete variable is added to constrain the behaviors on the underlying constraint. The study implements and evaluates the approach with two constraints: discourse functions and prototypical behaviors. By constraining on the discourse functions (e.g., questions), the model learns the characteristic behaviors associated with a given discourse class learning the rules from the data. By constraining on prototypical behaviors (e.g., head nods), the approach can be embedded in a rule-based system as a behavior realizer creating trajectories that are timely synchronized with speech. The study proposes a DBN structure and a training approach that (1) models the cause-effect relationship between the constraint and the gestures, (2) initializes the state configuration models increasing the range of the generated behaviors, and (3) captures the differences in the behaviors across constraints by enforcing sparse transitions between shared and exclusive states per constraint. Objective and subjective evaluations demonstrate the benefits of the proposed approach over an unconstrained model.Comment: 13 pages, 12 figures, 5 table

    Going Deeper into Action Recognition: A Survey

    Full text link
    Understanding human actions in visual data is tied to advances in complementary research areas including object recognition, human dynamics, domain adaptation and semantic segmentation. Over the last decade, human action analysis evolved from earlier schemes that are often limited to controlled environments to nowadays advanced solutions that can learn from millions of videos and apply to almost all daily activities. Given the broad range of applications from video surveillance to human-computer interaction, scientific milestones in action recognition are achieved more rapidly, eventually leading to the demise of what used to be good in a short time. This motivated us to provide a comprehensive review of the notable steps taken towards recognizing human actions. To this end, we start our discussion with the pioneering methods that use handcrafted representations, and then, navigate into the realm of deep learning based approaches. We aim to remain objective throughout this survey, touching upon encouraging improvements as well as inevitable fallbacks, in the hope of raising fresh questions and motivating new research directions for the reader

    Video Propagation Networks

    Full text link
    We propose a technique that propagates information forward through video data. The method is conceptually simple and can be applied to tasks that require the propagation of structured information, such as semantic labels, based on video content. We propose a 'Video Propagation Network' that processes video frames in an adaptive manner. The model is applied online: it propagates information forward without the need to access future frames. In particular we combine two components, a temporal bilateral network for dense and video adaptive filtering, followed by a spatial network to refine features and increased flexibility. We present experiments on video object segmentation and semantic video segmentation and show increased performance comparing to the best previous task-specific methods, while having favorable runtime. Additionally we demonstrate our approach on an example regression task of color propagation in a grayscale video.Comment: Appearing in Computer Vision and Pattern Recognition, 2017 (CVPR'17
    • …
    corecore