516 research outputs found

    Robust face anti-spoofing framework with Convolutional Vision Transformer

    Full text link
    Owing to the advances in image processing technology and large-scale datasets, companies have implemented facial authentication processes, thereby stimulating increased focus on face anti-spoofing (FAS) against realistic presentation attacks. Recently, various attempts have been made to improve face recognition performance using both global and local learning on face images; however, to the best of our knowledge, this is the first study to investigate whether the robustness of FAS against domain shifts is improved by considering global information and local cues in face images captured using self-attention and convolutional layers. This study proposes a convolutional vision transformer-based framework that achieves robust performance for various unseen domain data. Our model resulted in 7.3%pp and 12.9%pp increases in FAS performance compared to models using only a convolutional neural network or vision transformer, respectively. It also shows the highest average rank in sub-protocols of cross-dataset setting over the other nine benchmark models for domain generalization.Comment: ICIP 202

    Deep Learning for Face Anti-Spoofing: A Survey

    Full text link
    Face anti-spoofing (FAS) has lately attracted increasing attention due to its vital role in securing face recognition systems from presentation attacks (PAs). As more and more realistic PAs with novel types spring up, traditional FAS methods based on handcrafted features become unreliable due to their limited representation capacity. With the emergence of large-scale academic datasets in the recent decade, deep learning based FAS achieves remarkable performance and dominates this area. However, existing reviews in this field mainly focus on the handcrafted features, which are outdated and uninspiring for the progress of FAS community. In this paper, to stimulate future research, we present the first comprehensive review of recent advances in deep learning based FAS. It covers several novel and insightful components: 1) besides supervision with binary label (e.g., '0' for bonafide vs. '1' for PAs), we also investigate recent methods with pixel-wise supervision (e.g., pseudo depth map); 2) in addition to traditional intra-dataset evaluation, we collect and analyze the latest methods specially designed for domain generalization and open-set FAS; and 3) besides commercial RGB camera, we summarize the deep learning applications under multi-modal (e.g., depth and infrared) or specialized (e.g., light field and flash) sensors. We conclude this survey by emphasizing current open issues and highlighting potential prospects.Comment: IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI

    Restrictive Voting Technique for Faces Spoofing Attack

    Get PDF
    Face anti-spoofing has become widely used due to the increasing use of biometric authentication systems that rely on facial recognition. It is a critical issue in biometric authentication systems that aim to prevent unauthorized access. In this paper, we propose a modified version of majority voting that ensembles the votes of six classifiers for multiple video chunks to improve the accuracy of face anti-spoofing. Our approach involves sampling sub-videos of 2 seconds each with a one-second overlap and classifying each sub-video using multiple classifiers. We then ensemble the classifications for each sub-video across all classifiers to decide the complete video classification. We focus on the False Acceptance Rate (FAR) metric to highlight the importance of preventing unauthorized access. We evaluated our method using the Replay Attack dataset and achieved a zero FAR. We also reported the Half Total Error Rate (HTER) and Equal Error Rate (EER) and gained a better result than most state-of-the-art methods. Our experimental results show that our proposed method significantly reduces the FAR, which is crucial for real-world face anti-spoofing applications

    FedBiometric: Image Features Based Biometric Presentation Attack Detection Using Hybrid CNNs-SVM in Federated Learning

    Get PDF
    In the past few years, biometric identification systems have become popular for personal, national, and global security. In addition to other biometric modalities, facial and fingerprint recognition have gained popularity due to their uniqueness, stability, convenience, and cost-effectiveness compared to other biometric modalities. However, the evolution of fake biometrics, such as printed materials, 2D or 3D faces, makeup, and cosmetics, has brought new challenges. As a result of these modifications, several facial and fingerprint Presentation Attack Detection methods have been proposed to distinguish between live and spoof faces or fingerprints. Federated learning can play a significant role in this problem due to its distributed learning setting and privacy-preserving advantages. This work proposes a hybrid ResNet50-SVM based federated learning model for facial Presentation Attack Detection utilizing Local Binary Pattern (LBP), or Gabor filter-based extracted image features. For fingerprint Presentation Attack Detection (PAD), this work proposes a hybrid CNN-SVM based federated learning model utilizing Local Binary Pattern (LBP), or Histograms of Oriented Gradient (HOG)-based extracted image features

    Deep Learning based Fingerprint Presentation Attack Detection: A Comprehensive Survey

    Full text link
    The vulnerabilities of fingerprint authentication systems have raised security concerns when adapting them to highly secure access-control applications. Therefore, Fingerprint Presentation Attack Detection (FPAD) methods are essential for ensuring reliable fingerprint authentication. Owing to the lack of generation capacity of traditional handcrafted based approaches, deep learning-based FPAD has become mainstream and has achieved remarkable performance in the past decade. Existing reviews have focused more on hand-cratfed rather than deep learning-based methods, which are outdated. To stimulate future research, we will concentrate only on recent deep-learning-based FPAD methods. In this paper, we first briefly introduce the most common Presentation Attack Instruments (PAIs) and publicly available fingerprint Presentation Attack (PA) datasets. We then describe the existing deep-learning FPAD by categorizing them into contact, contactless, and smartphone-based approaches. Finally, we conclude the paper by discussing the open challenges at the current stage and emphasizing the potential future perspective.Comment: 29 pages, submitted to ACM computing survey journa

    PipeNet: Selective Modal Pipeline of Fusion Network for Multi-Modal Face Anti-Spoofing

    Full text link
    Face anti-spoofing has become an increasingly important and critical security feature for authentication systems, due to rampant and easily launchable presentation attacks. Addressing the shortage of multi-modal face dataset, CASIA recently released the largest up-to-date CASIA-SURF Cross-ethnicity Face Anti-spoofing(CeFA) dataset, covering 3 ethnicities, 3 modalities, 1607 subjects, and 2D plus 3D attack types in four protocols, and focusing on the challenge of improving the generalization capability of face anti-spoofing in cross-ethnicity and multi-modal continuous data. In this paper, we propose a novel pipeline-based multi-stream CNN architecture called PipeNet for multi-modal face anti-spoofing. Unlike previous works, Selective Modal Pipeline (SMP) is designed to enable a customized pipeline for each data modality to take full advantage of multi-modal data. Limited Frame Vote (LFV) is designed to ensure stable and accurate prediction for video classification. The proposed method wins the third place in the final ranking of Chalearn Multi-modal Cross-ethnicity Face Anti-spoofing Recognition Challenge@CVPR2020. Our final submission achieves the Average Classification Error Rate (ACER) of 2.21 with Standard Deviation of 1.26 on the test set.Comment: Accepted to appear in CVPR2020 WM
    • …
    corecore