362,122 research outputs found

    Developing an inter-enterprise alignment maturity model: research challenges and solutions

    Get PDF
    Business-IT alignment is pervasive today, as organizations strive to achieve competitive advantage. Like in other areas, e.g., software development, maintenance and IT services, there are maturity models to assess such alignment. Those models, however, do not specifically address the aspects needed for achieving alignment between business and IT in inter-enterprise settings. In this paper, we present the challenges we face in the development of an inter-enterprise alignment maturity model, as well as the current solutions to counter these problems

    Discriminative Appearance Models for Face Alignment

    Get PDF
    The proposed face alignment algorithm uses local gradient features as the appearance representation. These features are obtained by pixel value comparison, which provide robustness against changes in illumination, as well as partial occlusion and local deformation due to the locality. The adopted features are modeled in three discriminative methods, which correspond to different alignment cost functions. The discriminative appearance modeling alleviate the generalization problem to some extent

    Active orientation models for face alignment in-the-wild

    Get PDF
    We present Active Orientation Models (AOMs), generative models of facial shape and appearance, which extend the well-known paradigm of Active Appearance Models (AAMs) for the case of generic face alignment under unconstrained conditions. Robustness stems from the fact that the proposed AOMs employ a statistically robust appearance model based on the principal components of image gradient orientations. We show that when incorporated within standard optimization frameworks for AAM learning and fitting, this kernel Principal Component Analysis results in robust algorithms for model fitting. At the same time, the resulting optimization problems maintain the same computational cost. As a result, the main similarity of AOMs with AAMs is the computational complexity. In particular, the project-out version of AOMs is as computationally efficient as the standard project-out inverse compositional algorithm, which is admittedly one of the fastest algorithms for fitting AAMs. We verify experimentally that: 1) AOMs generalize well to unseen variations and 2) outperform all other state-of-the-art AAM methods considered by a large margin. This performance improvement brings AOMs at least in par with other contemporary methods for face alignment. Finally, we provide MATLAB code at http://ibug.doc.ic.ac.uk/resources
    • …
    corecore