166,559 research outputs found
Fuel Cells
The Environmental and Energy Study Institute hosted two Congressional briefings to discuss the potential of fuel cell technologies in today's market as well as future energy markets. The U.S. Department of Energy, with the support of Sen. Murkowski (R-AK), Sen. Bingaman (D-NM), and Rep. Regula (R-OH), co-sponsored the first briefing to look at the opportunities and challenges facing the fuel cell industry. Global Legislators Organization for a Balanced Environment USA (GLOBE USA), along with GLOBE USA Members Reps. Nancy Johnson (R-CT) and Mark Udall (D-CO) and Sen. Jim Jeffords (I-VT), co-sponsored the second briefing to discuss hydrogen and fuel cell technology as a part of the solution to the energy crisis.The United States is faced with many energy challenges, ranging from regional power supply crises and sharply escalating energy prices to oil extraction. According to the Wall Street Journal, Americans are more concerned about energy now than they have been for decades. The time is ripe for renewable and sustainable energy technologies to play a much larger role in our energy future, and one of the key elements of this new energy economy is hydrogen and fuel cells. Fuel cells are electrochemical engines that convert the energy of a fuel directly into electricity. This simple process involves no combustion, and thus no pollution. The by-products are water and heat
Miniature fuel cells relieve gas pressure in sealed batteries
Miniature fuel cells within sealed silver zinc batteries consume evolved hydrogen and oxygen rapidly, preventing pressure rupturing. They do not significantly increase battery weight and they operate in all battery life phases. Complete gas pressure control requires two fuel cells during all phases of operation of silver zinc batteries
Hydrogen-oxygen proton-exchange membrane fuel cells and electrolyzers
Hydrogen-oxygen solid polymer electrolyte (SPE) fuel cells and SPE electrolyzers (products of Hamilton Standard) both use a Proton-Exchange Membrane (PEM) as the sole electrolyte. These solid electrolyte devices have been under continuous development for over 30 years. This experience has resulted in a demonstrated ten-year SPE cell life capability under load conditions. Ultimate life of PEM fuel cells and electrolyzers is primarily related to the chemical stability of the membrane. For perfluorocarbon proton exchange membranes an accurate measure of the membrane stability is the fluoride loss rate. Millions of cell hours have contributed to establishing a relationship between fluoride loss rates and average expected ultimate cell life. This relationship is shown. Several features have been introduced into SPE fuel cells and SPE electrolyzers such that applications requiring greater than or equal to 100,000 hours of life can be considered. Equally important as the ultimate life is the voltage stability of hydrogen-oxygen fuel cells and electrolyzers. Here again the features of SPE fuel cells and SPE electrolyzers have shown a cell voltage stability in the order of 1 microvolt per hour. That level of stability has been demonstrated for tens of thousands of hours in SPE fuel cells at up to 500 amps per square foot (ASF) current density
Reconstituted asbestos matrix for fuel cells
Method is described for reprocessing commercially available asbestos matrix stock to yield greater porosity and bubble pressure (due to increased surface tension), improved homogeneity, and greater uniformity
Hydrogen-oxygen proton-exchange membrane fuel cells and electrolyzers
Hydrogen-oxygen SPE fuel cells and SPE electrolyzers (products of Hamilton Standard) both use a Proton-Exchange Membrane (PEM) as the sole electrolyte. The SPE cells have demonstrated a ten year life capability under load conditions. Ultimate life of PEM fuel cells and electrolyzers is primarily related to the chemical stability of the membrane. For perfluorocarbon proton-exchange membranes an accurate measure of the membrane stability is the fluoride loss rate. Millions of cell hours have contributed to establishing a relationship between fluroride loss rates and average expected ultimate cell life. Several features were introduced into SPE fuel cells and SPE electrolyzers such that applications requiring greater than or equal to 100,000 hours of life can be considered. Equally important as the ultimate life is the voltage stability of hydrogen-oxygen fuel cells and electrolyzers. Here again the features of SPE fuel cells and SPE electrolyzers have shown a cell voltage stability in the order of 1 microvolt per hour. That level of stability were demonstrated for tens of thousands of hours in SPE fuel cells at up to 500 amps per square foot (ASF) current density. The SPE electrolyzers have demonstrated the same at 1000 ASF. Many future extraterrestrial applications for fuel cells require that they be self recharged. To translate the proven SPE cell life and stability into a highly reliable extraterrestrial electrical energy storage system, a simplification of supporting equipment is required. Static phase separation, static fluid transport and static thermal control will be most useful in producting required system reliability. Although some 200,000 SPE fuel cell hours were recorded in earth orbit with static fluid phase separation, no SPE electrolyzer has, as yet, operated in space
Recommended from our members
Multi-functional anodes boost the transient power and durability of proton exchange membrane fuel cells.
Proton exchange membrane fuel cells have been regarded as the most promising candidate for fuel cell vehicles and tools. Their broader adaption, however, has been impeded by cost and lifetime. By integrating a thin layer of tungsten oxide within the anode, which serves as a rapid-response hydrogen reservoir, oxygen scavenger, sensor for power demand, and regulator for hydrogen-disassociation reaction, we herein report proton exchange membrane fuel cells with significantly enhanced power performance for transient operation and low humidified conditions, as well as improved durability against adverse operating conditions. Meanwhile, the enhanced power performance minimizes the use of auxiliary energy-storage systems and reduces costs. Scale fabrication of such devices can be readily achieved based on the current fabrication techniques with negligible extra expense. This work provides proton exchange membrane fuel cells with enhanced power performance, improved durability, prolonged lifetime, and reduced cost for automotive and other applications
Alcohol Fuel Cells at Optimal Temperatures
High-power-density alcohol fuel cells can relieve many of the daunting challenges facing a hydrogen energy economy. Here, such fuel cells are achieved using CsH2PO4 as the electrolyte and integrating into the anode chamber a Cu-ZnO/Al2O3 methanol steam-reforming catalyst. The temperature of operation, ~250°C, is matched both to the optimal value for fuel cell power output and for reforming. Peak power densities using methanol and ethanol were 226 and 100 mW/cm^2, respectively. The high power output (305 mW/cm^2) obtained from reformate fuel containing 1% CO demonstrates the potential of this approach with optimized reforming catalysts and also the tolerance to CO poisoning at these elevated temperatures
The role of fuel cells in NASA's space power systems
A history of the fuel cell technology is presented and compared with NASA's increasing space power requirements. The role of fuel cells is discussed in perspective with other energy storage systems applicable for space using such criteria as type of mission, weight, reliability, costs, etc. Potential applications of space fuel cells with projected technology advances were examined
- …
