4 research outputs found

    Stochastic Spin-Orbit Torque Devices as Elements for Bayesian Inference

    Full text link
    Probabilistic inference from real-time input data is becoming increasingly popular and may be one of the potential pathways at enabling cognitive intelligence. As a matter of fact, preliminary research has revealed that stochastic functionalities also underlie the spiking behavior of neurons in cortical microcircuits of the human brain. In tune with such observations, neuromorphic and other unconventional computing platforms have recently started adopting the usage of computational units that generate outputs probabilistically, depending on the magnitude of the input stimulus. In this work, we experimentally demonstrate a spintronic device that offers a direct mapping to the functionality of such a controllable stochastic switching element. We show that the probabilistic switching of Ta/CoFeB/MgO heterostructures in presence of spin-orbit torque and thermal noise can be harnessed to enable probabilistic inference in a plethora of unconventional computing scenarios. This work can potentially pave the way for hardware that directly mimics the computational units of Bayesian inference

    Implementing Bayesian Networks with Embedded Stochastic MRAM

    Full text link
    Magnetic tunnel junctions (MTJ's) with low barrier magnets have been used to implement random number generators (RNG's) and it has recently been shown that such an MTJ connected to the drain of a conventional transistor provides a three-terminal tunable RNG or a pp-bit. In this letter we show how this pp-bit can be used to build a pp-circuit that emulates a Bayesian network (BN), such that the correlations in real world variables can be obtained from electrical measurements on the corresponding circuit nodes. The pp-circuit design proceeds in two steps: the BN is first translated into a behavioral model, called Probabilistic Spin Logic (PSL), defined by dimensionless biasing (h) and interconnection (J) coefficients, which are then translated into electronic circuit elements. As a benchmark example, we mimic a family tree of three generations and show that the genetic relatedness calculated from a SPICE-compatible circuit simulator matches well-known results
    corecore