76,548 research outputs found
Systems and methods for monitoring solids using mechanical resonator
Multi-phase system monitoringmethods, systems and apparatus aredisclosed. Preferred embodiments comprise one or more mechanical resonator sensing elements. In preferred embodiments a sensor or a sensor subassembly is ported to a fluidized bed vessel such as a fluidized bed polymerization reactor
Comparison of fibre optical measurements and discrete element simulations for the study of granulation in a spout fluidized bed
Spout fluidized beds are frequently used for the production of granules or particles through granulation. The products find application in a large variety of applications, for example detergents, fertilizers, pharmaceuticals and food. Spout fluidized beds have a number of advantageous properties, such as a high mobility of the particles, which prevents undesired agglomeration and yields excellent heat transfer properties. The particle growth mechanism in a spout fluidized bed as function of particle-droplet interaction has a profound influence on the particle morphology and thus on the product quality. Nevertheless, little is known about the details of the granulation process. This is mainly due to the fact that the granulation process is not visually accessible. In this work we use fundamental, deterministic models to enable the detailed investigation of granulation behaviour in a spout fluidized bed. A discrete element model is used describing the dynamics of the continuous gas-phase and the discrete droplets and particles. For each element momentum balances are solved. The momentum transfer among each of the three phases is described in detail at the level of individual elements. The results from the discrete element model simulations are compared with local measurements of particle volume fractions as well as particle velocities by using a novel fibre optical probe in a fluidized bed of 400 mm I.D. Simulations and experiments were carried out for three different cases using Geldart B type aluminium oxide particles: a freely bubbling fluidized bed; a spout fluidized bed without the presence of droplets and a spout fluidized bed with the presence of droplets. It is demonstrated how the discrete element model can be used to obtain information about the interaction of the discrete phases, i.e. the growth zone in a spout fluidized bed. Eventually this kind of information can be used to obtain closure information required in more coarse grained models
Method for Particle Size Control During the Drying and Granulation in Fluidized Bed
The fluidized bed process presented in this paper is suitable for recovery of solids from
solutions in the form of granules. The solution is sprayed into the bed and as solvent
evaporates, solid material is deposited on the surface of fluidizing particles. During this
process, particle growth takes place by surface layering and/or agglomeration. A special
grinder is used in the fluidized bed to control particle growth by causing selective
disintegration of large particles. For steady state operation, the most important task is to
determine the existing particle size distribution in the fluidized bed. A special method
was developed to measure torque and stress fluctuations* in the bed of particles. Using a
correlation between torque and stress fluctuations and particle size, this method and
device can be used for direct control of the rotation speed of the grinder to produce
granules of given size in the fluidized bed. Results of torque and stress measurements
and their correlation to particle size are presented
Measurement of Flow Characteristics in a Bubbling Fluidized Bed Using Electrostatic Sensor Arrays
Fluidized beds are widely applied in a range of industrial processes. In order to maintain the efficient operation of a fluidized bed, the flow parameters in the bed should be monitored continuously. In this paper, electrostatic sensor arrays are used to measure the flow characteristics in a bubbling fluidized bed. In order to investigate the electrostatic charge distribution and the flow dynamics of solid particles in the dense region, time and frequency domain analysis of the electrostatic signals is conducted. In addition, the correlation velocities and weighted average velocity of Geldart A particles in the dense and transit regions are calculated, and the flow dynamics of Geldart A and D particles in the dense and transit regions are compared. Finally, the influence of liquid antistatic agents on the performance of the electrostatic sensor array is investigated. According to the experimental results, it is proved that the flow characteristics in the dense and transit regions of a bubbling fluidized bed can be measured using electrostatic sensor arrays
Fluidized-bed development at JPL
Silicon deposition on silicon seed particles by silane pyrolysis in a fluidized bed reactor (FBR) was investigated as a low cost, high throughput method to produce high purity polysilicon for solar cell applications. The emphasis of the research is fundamental understanding of fluidized bed silicon deposition. The mechanisms involved were modeled as a six-path process: heterogeneous deposition; homogeneous decomposition; coalescence; coagulation; scavenging; and chemical vapor deposition growth on fines
Modeling of fluidized bed silicon deposition process
The model is intended for use as a means of improving fluidized bed reactor design and for the formulation of the research program in support of the contracts of Silicon Material Task for the development of the fluidized bed silicon deposition process. A computer program derived from the simple modeling is also described. Results of some sample calculations using the computer program are shown
Design and evaluation of fluidized bed heat recovery for diesel engine systems
The potential of utilizing fluidized bed heat exchangers in place of conventional counter-flow heat exchangers for heat recovery from adiabatic diesel engine exhaust gas streams was studied. Fluidized bed heat recovery systems were evaluated in three different heavy duty transport applications: (1) heavy duty diesel truck; (2) diesel locomotives; and (3) diesel marine pushboat. The three applications are characterized by differences in overall power output and annual utilization. For each application, the exhaust gas source is a turbocharged-adiabatic diesel core. Representative subposed exhaust gas heat utilization power cycles were selected for conceptual design efforts including design layouts and performance estimates for the fluidized bed heat recovery heat exchangers. The selected power cycles were: organic rankine with RC-1 working fluid, turbocompound power turbine with steam injection, and stirling engine. Fuel economy improvement predictions are used in conjunction with capital cost estimates and fuel price data to determine payback times for the various cases
Particle Size Control by Torque Measurements in Fluidized Beds during Drying and Granulation from Solutions
The fluidized bed process presented in this paper is suitable to recover solids from solution in
form of granules. Solution is sprayed into the bed and, as the solvent evaporates, solid
material is deposited on the surface of fluidizing particles. During this process, particle
growth takes place by surface layering and/or agglomeration. A special grinder is used in the
fluidized bed to control particle growth by causing selective disintegration of large particles.
For steady state operation, the most important task is to determine the existing particle size
distribution in the fluidized bed. A special method was developed to measure torque and
stress fluctuations in the bed of particles. Using a correlation between torque and particle size,
this method and device can be used for direct control of the rotation speed of the grinder to
produce granules of given size in the fluidized bed. In this paper, the results of torque
measurements and their correlation with particle size are presented
Pengaruh Massa Jenis Partikel dan Ketinggian Partikel terhadap Fenomena Fluidisasi dalam Fluidized Bed dengan Menggunakan Cfd
Fenomena fluidisasi pada fluidized bed yaitu kecepatan minimum dan tekanan statis partikel merupakan hal fenomena yang penting dalam desain fluidized bed. Fenomena-fenomena tersebut dipengaruhi oleh banyak faktor dalam fluidized bed diantaranya massa jenis dan tinggi partikel di dalam fluidized bed. Penelitian ini menggunakan jenis partikel yang berbeda-beda dan rasio ketinggian partikel terhadap diameter fluidized bed (H/D) dengan menggunakan Computational Fluid Dynamics. Partikel yang digunakan adalah partikel dengan jenis Geldart B yaitu glass beads (ρ=2600 kg/m3), ground walnut shell (ρ=1200 kg/m3) dan ground corncob (ρ=800 kg/m3), sedangkan rasio ketinggian partikel yang digunakan yaitu 0.5, 1, 1.5, 2, dan 2.5. Hasil penelitian menunjukkan bahwa massa jenis partikel berbanding lurus dengan kecepatan minimum fluidisasi dan ketinggian partikel tidak mempengaruhi kecepatan minimum fluidisasi
Fast pyrolysis of halogenated plastics recovered from waste computers
The disposal of waste computers is an issue that is gaining increasing interest around the world. In this paper, results from the fast pyrolysis in a fluidized bed reactor of three different waste computer monitor casings composed of mainly acrylonitrile-butadiene-styrene (ABS) copolymer and two different waste computer body casings composed of mostly poly(vinyl chloride) (PVC) type polymers are presented. Preliminary characterization of the waste plastics was investigated using coupled thermogravimetric analysis-Fourier transform infrared spectrometry (TGA-FT-IR). The results showed that the plastics decomposed in two stages. For the ABS-containing monitor casings, aromatic and aliphatic material were released in the first and second stages. The PVC-containing computer body casing samples showed a first-stage evolution of HCl and a second stage evolution of aromatic and aliphatic material and further HCl. In addition, each of the five plastics was fast-pyrolyzed in a laboratory-scale fluidized bed reactor at 500 °C. The fluidized bed pyrolysis led to the conversion of most of the plastics to pyrolysis oil, although the two PVC computer body cases produced large quantities of HCl. The pyrolysis oils were characterized by GC-MS and it was found that they were chemically very heterogeneous and contained a wide range of aliphatic, aromatic, halogenated, oxygenated, and nitrogenated compounds
- …
