5 research outputs found

    Indium Phosphide Based Optical Waveguide MEMS for Communications and Sensing

    Get PDF
    Indium phosphide (InP) is extensively used for integrated waveguide and photonic devices due to its suitability as a substrate for direct bandgap materials (e.g. In1-XGaXAsYP1-Y) operating at the lambda=1550 nm communications wavelength. However, little work has been reported on InP optical waveguide micro-electro-mechanical systems (MEMS). In this work, InP cantilever and doubly-clamped beams were micromachined on an In0.53Ga0.47As "sacrificial layer" on (100) InP substrates. Young's modulus was measured using nanoindentation and microbeam-bending. Intrinsic stress and material uniformity (stress gradient) were obtained by measuring the profile of doubly-clamped and cantilever beams using confocal microscopy. The study resulted in a Young's modulus of 80.4-106.5 GPa (crystal orientation-dependent). Although InP was grown lattice-matched to the substrate, arsenic from the underlying In0.53Ga0.47As sacrificial layer resulted in intrinsic compressive stress. Adding trace amounts of gallium to the InP layer during epitaxial growth induced tensile stress to offset the effect of arsenic. The materials characterization was extended to develop optical waveguide switches and sensors. In the first device, two parallel waveguides were actuated to vary the spacing between them. By modulating the gap using electrostatic pull-in actuation, the optical coupling strength was controlled via the evanescent field. Low voltage switching (<10 V), high speed (4 us), low crosstalk (-47 dB), and low-loss (<10 %) were achieved. Variable coupling over a 17.4 dB dynamic range was also demonstrated. The second device utilized a single movable input waveguide, which was actuated via electrostatic comb-drives to end-couple with one of several output waveguides. Low voltage switching (<7 V), 140 us switching speed (2 ms settling time), low crosstalk (-26 dB), and low-loss (<3.2 dB) were demonstrated. Sensing techniques based on mass-loading were developed using end-coupled cantilever waveguides. Here, the mechanical resonance frequency was measured by actuating the cantilever and measuring the end-coupled optical power at the output waveguide. A proof-of-concept experiment utilized a focused-ion-beam to mill the cantilever tip and resulted in a measurable resonance shift with mass-sensitivity delta_m/delta_f=5.1 fg/Hz. The cantilever waveguide devices and measurement techniques enable accurate resonance detection in mass-based cantilever sensors and also enable single-chip sensors with on-chip optical detection to be realized

    Focused optical beams for driving and sensing helical and biological microobjects

    Get PDF
    A novel and interesting approach to detect microfluidic dynamics at a very small scale is given by optically trapped particles that are used as optofluidic sensors for microfluidic flows. These flows are generated by artificial as well as living microobjects, which possess their own dynamics at the nanoscale. Optical forces acting on a small particle in a laser beam can evoke a three dimensional trapping of the particle. This phenomenon is called optical tweezing and is a consequence of the momentum transfer from incident photons to the confined object. An optically confined particle shows Brownian motion in an optical tweezer, but is prevented from long term diffusion. A careful analysis of the motion of the confined particle allows a precise detection of microfluidic flows generated by an artificial or living source in the close vicinity of the particle. Thus, the particle can be used as a sensitive optofluidic detector. For this aim, several optical tweezers at different wavelengths are integrated into a dark-field microscope, combined with a high speed camera, to achieve a precise detection of the motion of the center-of-mass of the trapped particle. With this unique experimental system, a gold sphere is used as an optofluidic nanosensor to analyze for the first time the microfluidic oscillations generated by a biological sample. Here, a freely swimming larva of Copepods serves as the living source of flow. However, even if the trapping laser wavelength is off-resonant to the plasmon resonance of the flow detector, a finite heating of the gold nanoparticle occurs which reduces the sensitivity of detection. To increase the sensitivity of the optofluidic detection, a non-absorbing, dielectric microparticle is introduced as the optofluidic sensor for the microflows. It enables a quantitative, two dimensional mapping of the vectorial velocity field around a microscale oscillator in an aqueous environment. This paves the way for an alternative and sensitive detection approach for the microfluidic dynamics of artificial and living objects at a very small scale. To this aim and as a first step, an optically trapped microhelix serves as a model system for the mechanical and dynamical properties of a living microorganism. An optical tweezer is implemented for initiating a light-driven rotation of the chiral microobject in an aqueous environment and the optofluidic detection of its flow field is established. The method is then adopted for the measurement of the microfluidic flow generated by a biological system with similar dynamics, in this case a bacterium. The experimental approach is used to quantify the time-dependent changes of the flow generated by the flagella bundle rotation at a single cell level. This is achieved by observing the hydrodynamic interaction between a dielectric particle and a bacterium that are both trapped next to each other in a dual beam optical tweezer. This novel experimental technique allows the extraction of quantitative information on bacterial motility without the necessity of observing the bacterium directly. These findings can be of great relevance for an understanding of the response of different strains of bacteria to environmental changes and to discriminate between different states of bacterial activity

    Overcoming conventional modeling limitations using image- driven lattice-boltzmann method simulations for biophysical applications

    Get PDF
    The challenges involved in modeling biological systems are significant and push the boundaries of conventional modeling. This is because biological systems are distinctly complex, and their emergent properties are results of the interplay of numerous components/processes. Unfortunately, conventional modeling approaches are often limited by their inability to capture all these complexities. By using in vivo data derived from biomedical imaging, image-based modeling is able to overcome this limitation. In this work, a combination of imaging data with the Lattice-Boltzmann Method for computational fluid dynamics (CFD) is applied to tissue engineering and thrombogenesis. Using this approach, some of the unanswered questions in both application areas are resolved. In the first application, numerical differences between two types of boundary conditions: “wall boundary condition” (WBC) and “periodic boundary condition” (PBC), which are commonly utilized for approximating shear stresses in tissue engineering scaffold simulations is investigated. Surface stresses in 3D scaffold reconstructions, obtained from high resolution microcomputed tomography images are calculated for both boundary condition types and compared with the actual whole scaffold values via image-based CFD simulations. It is found that, both boundary conditions follow the same spatial surface stress patterns as the whole scaffold simulations. However, they under-predict the absolute stress values approximately by a factor of two. Moreover, it is found that the error grows with higher scaffold porosity. Additionally, it is found that the PBC always resulted in a lower error than the WBC. In a second tissue engineering study, the dependence of culture time on the distribution and magnitude of fluid shear in tissue scaffolds cultured under flow perfusion is investigated. In the study, constructs are destructively evaluated with assays for cellularity and calcium deposition, imaged using ”CT and reconstructed for CFD simulations. It is found that both the shear stress distributions within scaffolds consistently increase with culture time and correlate with increasing levels of mineralized tissues within the scaffold constructs as seen in calcium deposition data and ”CT reconstructions. In the thrombogenesis application, detailed analysis of time lapse microscopy images showing yielding of thrombi in live mouse microvasculature is performed. Using these images, image-based CFD modeling is performed to calculate the fluid-induced shear stresses imposed on the thrombi’s surfaces by the surrounding blood flow. From the results, estimates of the yield stress (A critical parameter for quantifying the extent to which thrombi material can resist deformation and breakage) are obtained for different blood vessels. Further, it is shown that the yielding observed in thrombi occurs mostly in the outer shell region while the inner core remains intact. This suggests that the core material is different from the shell. To that end, we propose an alternative mechanism of thrombogenesis which could help explain this difference. Overall, the findings from this work reveal that image-based modeling is a versatile approach which can be applied to different biomedical application areas while overcoming the difficulties associated with conventional modeling

    A novel three-finger IPMC gripper for microscale applications

    Get PDF
    Smart materials have been widely used for control actuation. A robotic hand can be equipped with artificial tendons and sensors for the operation of its various joints mimicking human-hand motions. The motors in the robotic hand could be replaced with novel electroactive-polymer (EAP) actuators. In the three-finger gripper proposed in this paper, each finger can be actuated individually so that dexterous handling is possible, allowing precise manipulation. In this dissertation, a microscale position-control system using a novel EAP is presented. A third-order model was developed based on the system identification of the EAP actuator with an AutoRegresive Moving Average with eXogenous input (ARMAX) method using a chirp signal input from 0.01 Hz to 1 Hz limited to 7 ĂƒĂ‚Â± V. With the developed plant model, a digital PID (proportional-integral-derivative) controller was designed with an integrator anti-windup scheme. Test results on macro (0.8-mm) and micro (50-ĂƒĂ‚ÂŒm) step responses of the EAP actuator are provided in this dissertation and its position tracking capability is demonstrated. The overshoot decreased from 79.7% to 37.1%, and the control effort decreased by 16.3%. The settling time decreased from 1.79 s to 1.61 s. The controller with the anti-windup scheme effectively reduced the degradation in the system performance due to actuator saturation. EAP microgrippers based on the control scheme presented in this paper will have significant applications including picking-and-placing micro-sized objects or as medical instruments. To develop model-based control laws, we introduced an approximated linear model that represents the electromechanical behavior of the gripper fingers. Several chirp voltage signal inputs were applied to excite the IPMC (ionic polymer metal composite) fingers in the interesting frequency range of [0.01 Hz, 5 Hz] for 40 s at a sampling frequency of 250 Hz. The approximated linear Box-Jenkins (BJ) model was well matched with the model obtained using a stochastic power-spectral method. With feedback control, the large overshoot, rise time, and settling time associated with the inherent material properties were reduced. The motions of the IPMC fingers in the microgripper were coordinated to pick, move, and release a macro- or micro-part. The precise manipulation of this three-finger gripper was successfully demonstrated with experimental closed-loop responses

    Focused optical beams for driving and sensing helical and biological microobjects

    Get PDF
    A novel and interesting approach to detect microfluidic dynamics at a very small scale is given by optically trapped particles that are used as optofluidic sensors for microfluidic flows. These flows are generated by artificial as well as living microobjects, which possess their own dynamics at the nanoscale. Optical forces acting on a small particle in a laser beam can evoke a three dimensional trapping of the particle. This phenomenon is called optical tweezing and is a consequence of the momentum transfer from incident photons to the confined object. An optically confined particle shows Brownian motion in an optical tweezer, but is prevented from long term diffusion. A careful analysis of the motion of the confined particle allows a precise detection of microfluidic flows generated by an artificial or living source in the close vicinity of the particle. Thus, the particle can be used as a sensitive optofluidic detector. For this aim, several optical tweezers at different wavelengths are integrated into a dark-field microscope, combined with a high speed camera, to achieve a precise detection of the motion of the center-of-mass of the trapped particle. With this unique experimental system, a gold sphere is used as an optofluidic nanosensor to analyze for the first time the microfluidic oscillations generated by a biological sample. Here, a freely swimming larva of Copepods serves as the living source of flow. However, even if the trapping laser wavelength is off-resonant to the plasmon resonance of the flow detector, a finite heating of the gold nanoparticle occurs which reduces the sensitivity of detection. To increase the sensitivity of the optofluidic detection, a non-absorbing, dielectric microparticle is introduced as the optofluidic sensor for the microflows. It enables a quantitative, two dimensional mapping of the vectorial velocity field around a microscale oscillator in an aqueous environment. This paves the way for an alternative and sensitive detection approach for the microfluidic dynamics of artificial and living objects at a very small scale. To this aim and as a first step, an optically trapped microhelix serves as a model system for the mechanical and dynamical properties of a living microorganism. An optical tweezer is implemented for initiating a light-driven rotation of the chiral microobject in an aqueous environment and the optofluidic detection of its flow field is established. The method is then adopted for the measurement of the microfluidic flow generated by a biological system with similar dynamics, in this case a bacterium. The experimental approach is used to quantify the time-dependent changes of the flow generated by the flagella bundle rotation at a single cell level. This is achieved by observing the hydrodynamic interaction between a dielectric particle and a bacterium that are both trapped next to each other in a dual beam optical tweezer. This novel experimental technique allows the extraction of quantitative information on bacterial motility without the necessity of observing the bacterium directly. These findings can be of great relevance for an understanding of the response of different strains of bacteria to environmental changes and to discriminate between different states of bacterial activity
    corecore