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ABSTRACT 

 

A Novel Three-Finger IPMC Gripper for Microscale Applications.  

(May 2006) 

Kwan Soo Yun,  

B.S., A-jou University, Suwon, Korea; 

M.S., Texas A&M University 

Chair of Advisory Committee: Dr. Won-jong Kim 

 

Smart materials have been widely used for control actuation. A robotic hand can 

be equipped with artificial tendons and sensors for the operation of its various joints 

mimicking human-hand motions. The motors in the robotic hand could be replaced with 

novel electroactive-polymer (EAP) actuators. In the three-finger gripper proposed in this 

paper, each finger can be actuated individually so that dexterous handling is possible, 

allowing precise manipulation.  

In this dissertation, a microscale position-control system using a novel EAP is 

presented. A third-order model was developed based on the system identification of the 

EAP actuator with an AutoRegresive Moving Average with eXogenous input (ARMAX) 

method using a chirp signal input from 0.01 Hz to 1 Hz  limited to 7± V. With the 

developed plant model, a digital PID (proportional-integral-derivative) controller was 

designed with an integrator anti-windup scheme. Test results on macro (0.8-mm) and 

micro (50-μm) step responses of the EAP actuator are provided in this dissertation and its 

position tracking capability is demonstrated. The overshoot decreased from 79.7% to 
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37.1%, and the control effort decreased by 16.3%. The settling time decreased from 1.79 

s to 1.61 s. The controller with the anti-windup scheme effectively reduced the 

degradation in the system performance due to actuator saturation. EAP microgrippers 

based on the control scheme presented in this paper will have significant applications 

including picking-and-placing micro-sized objects or as medical instruments. 

To develop model-based control laws, we introduced an approximated linear 

model that represents the electromechanical behavior of the gripper fingers. Several chirp 

voltage signal inputs were applied to excite the IPMC (ionic polymer metal composite) 

fingers in the interesting frequency range of [0.01 Hz, 5 Hz] for 40 s at a sampling 

frequency of 250 Hz. The approximated linear Box-Jenkins (BJ) model was well matched 

with the model obtained using a stochastic power-spectral method. With feedback control, 

the large overshoot, rise time, and settling time associated with the inherent material 

properties were reduced. The motions of the IPMC fingers in the microgripper were 

coordinated to pick, move, and release a macro- or micro-part. The precise manipulation 

of this three-finger gripper was successfully demonstrated with experimental closed-loop 

responses. 
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CHAPTER I 

INTRODUCTION 

 

Ionic polymers are a recently discovered class of active materials. Their 

capabilities and limitations must be well understood and documented before they can be 

applied for a new generation of actuators and sensors. To facilitate their design process, 

simple but accurate models must also be developed. In this chapter, the development 

history, current trends’ modeling and applications of ionic polymers are presented. Then, 

research goals and contributions and an overview of this dissertation are given.  

 

1.1 History and Current Trends of Novel Ionic Polymers 

Smart materials exhibit physical responses, such as mechanical deformation and 

heat generation in the presence of applied stimuli, such as electricity, heat, chemical 

reaction, pressure, and mechanical deformation. These responses can be used in 

converting the applied energy into a desired form. Ionic polymers are a subset of a class 

of smart materials known as electro-active polymers (EAPs), polymers that respond to 

electrical stimulus. The EAP is a class of materials composed of polymers, metals, and 

other elements that show unique properties: (1) This composite material produces a 

mechanical motion in response to applied electrical voltage. (2) Conversely, EAP can be 

used as a sensor by measuring the output voltage generated by imposed mechanical 

___________ 
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deformation. These properties can be useful in a variety of applications requiring 

actuation or sensing.   

During the last decade, Sadeghipour et al., Shahinpoor et al., Oguru et al., and 

Tadokoro et al. investigated the bending characteristics of Ionic Polymer Metal 

Composite (IPMC) [1–4]. Bar-Cohen et al. characterized the electromechanical 

properties of IPMC [5]. An empirical control model by Kanno et al. was developed and 

optimized with curve-fit routines based on open-loop step responses with three stages, i.e., 

electrical, stress generation, and mechanical stages [6–8]. Feedback compensators were 

designed using a similar model in a cantilever configuration to study its open-loop and 

closed-loop behaviors [9–10].  

Bhat and Kim [10–11] identified the position and the force modeling of IPMC 

using an empirical control model suggested by Kanno et al. [6]. These models were 

optimized using curve-fit routines on the open-loop step responses. Feedback 

compensators were then designed using these models, and the ionic polymer actuator was 

used in a cantilever configuration to study open-loop and closed-loop feedback control. 

Furthermore, Bhat and Kim [9] demonstrated the novelty of a hybrid control scheme 

switching between position and force control schemes using ionic polymer actuator. This 

work was supposed to use in application to a robotic micro-gripper. 

Many ionic polymers including IPMC or EAP can be also classified as 

viscoelastic materials, so researchers adopted the Golla-Hughes-McTavish (GHM) 

method [12].  It enabled the modeling of linear viscoelastic materials using Young’s 

modulus as a function of frequency [12–13]. Alvarez and Shahinpoor showed the static 

and dynamic deflection with the nonlinear equation for large-angle deflections in an 
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elastic cantilever beam by simulation [14]. Prevailing approaches to controller design 

presume that an applicable model for the plant to be controlled is available. Although 

most real-world dynamic systems are nonlinear, they could usually be approximated in 

their normal ranges of operation, and relatively simple, lumped-parameter input-output 

linearized models can often be used. Some EAP materials are now commercially 

available [15], but their material properties are still under investigation with analytical 

and numerical approaches. 

The step response, as a means for modeling, of EAP was observed to be 

inconsistent and non-repeatable because its stiffness is a function of the hydration level of 

the polymer, which might change with respect to time while in continual use. Damping of 

the ionic polymer actuator in air is much lower than that in water. Feedback control is 

necessary to decrease the response time of an ionic-polymer actuator to a step change in 

the applied electric field and to reduce overshoot. The position control of the EAP was 

investigated by using a linear quadratic regulator (LQR) [12], a PID controller with 

impedance control [16], and a lead-lag compensator [9–10]. Advanced control algorithms 

must be developed for EAP or IPMC to compensate for their highly nonlinear and non-

repeatable open-loop behaviors. 

 

1.2 Modeling and Applications of Ionic Polymers 

Microgrippers are essential tools in industrial processes. An integrated 

microgripper system, which can be easily implemented with any platforms operated with 

objects having a wide range of sizes and shapes, will have a great impact on micro-optics 

manipulation, micro-electro-mechanical systems (MEMS), fiber-optics assembly, 
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biomedical manipulation, and semiconductor manufacturing. The success of 

microgrippers heavily depends on the reliability and durability of the actuator and the 

sensor.  

Researchers in the field of biomimetics anticipate that ionic-polymer materials 

may be applied to many applications of theirs   [17]. Although applications of IPMC are 

still in early stages, they will have the versatility to mimic insect, animal, or even human 

systems (e.g. human artificial muscles) with catheter-steering elements, miniature 

manipulators, dust-wipers, miniature robotic arms, grippers, electro-rheological fluids for 

active damping, miniature boxes, micro-robots, and surgical tools and robots that have 

the ability to assemble other micro-devices [17–18].   

This research focuses on the design of a miniature displacement mechanism and 

the electromechanical characteristics of this IPMC actuator. Strips of EAP composites can 

bend and flap dramatically when an electric voltage is applied. In this sense they are large 

motion actuators; they can move and exert force. Conversely, when a strip is bent, a 

voltage is produced across its thickness, allowing the strip to behave like a sensor that can 

determine a given level of force and motion. These are EAPs that bend in response to an 

electrical activation as a result of the mobility of cations in the polymer network. 

Generally, two types of base polymers are employed to form IPMCs. These are Nafion® 

(perfluorosulphonate manufactured by DuPont) and Flemion® (perfluorocaboxylate 

manufactured by Asahi Glass, Japan) [17]. IPMC requires relatively low voltages (1–10 

V) to generate bending responses at low frequencies below 5 Hz.  

Since micromechanical systems like micro-optical devices, microfluidic 

components or other hybrid microsystems became ever more complex, developing an 
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enabling micro-assembly technique is of great importance. The production of 

microsystems requires a tighter control due to the small size of the microparts to be 

mounted in hybrid microsystems (e.g. microlenses, optical fiber, and microtubes). It also 

needs very high accuracy in the assembly processes, which cannot be achieved with 

conventional assembly equipment. Therefore the demand of micro-assembling tools as 

high-precision robots and microgrippers has increased dramatically. 

Ionic polymer actuators were modeled in various ways by taking relevant physical 

phenomena into consideration. Electromechanical modeling was performed with an 

Euler-Bernoulli beam theory. The governing equation used in [18–19] assumed small 

bending deflection.  Actual bending deflections can be large, which is contradictory to 

this assumption. The material properties of IPMC were not fully considered in [20] since 

the measurement of the deflection of the activated IPMC strip is related to its Young’s 

modulus because the Young’s modulus of IPMC is a function of frequency and 

temperature [21]. Alvarez and Shahinpoor [14] approached the static deflection of the 

nonlinear equation with a hypothetical deflection under a constant moment, not a variable 

moment. Nemat-Nasser and Li [22] developed a model accounting for the coupled ion 

transport, electric field, and elastic deformation to predict the response of the Nafion-

based IPMC. 

The Kanno-Tadokoro model contains the electrical, stress generation, and 

mechanical stages [23]. For the electrical model, the characteristics is approximated by a 

series connection of RC circuits based on an experimental curve. In the stress generation 

stage, the internal stress that plays a key role in bending was represented by a similar 

manner of piezoelectric elements. Bao et al. [24] derived macroscopic models for the 
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electric input and the electromechanical actuation of IPMC. The models that relate the 

electric input and the mechanical output are required for the material characterization, i.e. 

to define and extract the material parameters in order to establish mathematical 

groundwork for actuator design. A lumped RC model for the input current/voltage 

response of IPMC and a distributed RC model were presented. 

In a linear-actuator aspect, Jung and Ryew [25] addressed the bending motion to a 

linear motion of IPMC using the analogy of a centipede. This model still requires to 

improve the efficiency of the effective force and controllable velocity. For a feedback-

control approach, Mallavarapu et al. [26] derived an empirical model of IPMC to 

manipulate the pole-zero locations in the frequency domain and in the state space. LQR 

control was used to optimize the settling time and lower the control input [27]. On the 

other hand, Bhat and Kim [11] identified a force model experimentally, improved the 

performance in the settling time, and reduced the overshoot using a lead-lag compensator. 

Open-loop step responses of the IPMC polymer were observed to be non-repeatable as 

the stiffness is a function of the hydration of the polymer, which might change with 

respect to time during continual use.  

The enhancement of the actuation capability of IPMC materials is studied in this 

dissertation on a fundamental level using black-box-model approaches. The large strain 

response of IPMC to electrical simulation is nonlinear and still requires adequate 

analytical methods for the design and control of related devices based on the material. 

The origin of the electro-activity in IPMC materials must be understood better to improve 

their performance and to offer effective design methods to enhance their robustness. The 

development of a dynamic model of a single-degree-of-freedom mechanism by system 
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identification is necessary to design the control system to manipulate IPMC strips in a 

three-finger gripper simultaneously.  

 

1.3 Research Goals and Contributions 

The primary goal of this work is to characterize and model the behavior of ionic 

polymers at both macroscopic and microscopic levels. Another main goal is to develop 

and implement a new generation of precision position and force control methodologies 

with a smart three-finger gripper system that would enhance manipulation capabilities 

and add intelligence to existing systems with regard to design, performance, and cost. 

This research is aimed at achieving these goals by accomplishing the following tasks: 

1. To compensate for the highly nonlinear behavior of the IPMC to improve 

the actuator and sensor performance by increasing its dynamic range and making it 

less sensitive to measurement noise. 

2. To develop multivariable schemes and implement them in real-time 

applications. 

3. To operate the three-finger gripper to satisfy the control requirements such 

as proper functioning, repeatability, and reliability.  

The main contribution of this dissertation is the design and realization of a three-

finger gripper with very compact mechanical structures and its extensive testing. I 

designed and fabricated the parts for the gripper in the mechanical engineering machine 

shop at Texas A&M University. The precision assembly was performed using the fixtures 

that I designed and built. I performed extensive precision-position-control tests and force-

control tests with the real-time codes I developed.  
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To enhance the transient performance of the IPMC actuator when the control 

input was saturated, the anti-windup control scheme was developed to avoid of the 

saturation effect. The linear approximation of inherently nonlinear IPMC dynamics was 

suitable for the microscale gripping application since the control voltage was below the 

saturation limit.  In the IPMC actuator case where simulations and experiments in this 

research overlap the scope of previously published results [9–11], the new results are still 

useful for the sake of comparison. 

Another contribution of this work is that the system identifications both the 

position and the force have been predicted by the model and demonstrated experimentally. 

In addition, the validated model to predict the IPMC actuator’s dynamic behavior is 

compared with the experimental data. The model presented in this dissertation is a simple, 

linear dynamic model that represents the characteristics of the IPMC actuator with a 

single, frequency-dependent term. This document also describes how the highly nonlinear 

behavior can be treated with an approximated linear model with applying specific chirp 

signal inputs. The model was used to determine the feasibility of the three-finger gripper 

from an electromechanical standpoint. After the IPMC strip was designed, the model of 

the IPMC strip was utilized to predict open-loop and closed-loop performances in both 

position and force control for the purpose of manipulating the IPMC actuator effectively 

in ‘pick-and-place’ operations. The precise manipulation of this three-finger gripper was 

successfully demonstrated with experimental closed-loop responses in both macroscale 

and microscale. This three-finger gripper is an excellent candidate for macro- and micro-

manipulation in the future technology.  
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1.4 Overview of Dissertation 

This dissertation contains seven chapters. Chapter I describes the importance of 

precision position and force control of the three-finger gripper. It presents a literature 

review of published research work with a brief description of EAP and IPMC.  

Chapter II presents the working principle of an IPMC actuator and the advantages 

of using the EAP or IPMC actuator comparing with other smart materials and its practical 

applications.  

Chapter III presents the experimental setup including both position and force 

sensors. The design of the three-finger gripper is also presented.  

Chapter IV describes the system identification for modeling and the dynamic 

behavior of the EAP or IPMC actuator with open-loop force and position responses. The 

model parameters are identified experimentally. To accurately model the system, system- 

identification methods for properly selected model structures are applied. In addition, the 

identified model is validated by comparing predicted and experimental responses. 

Chapter V presents the design of the position and the force controller in 

simulation and the closed-loop experimental results with several modified controllers for 

the IPMC actuator. Precision position control is demonstrated by implementing a digital 

PID controller with an integrator anti-windup scheme that reduces the performance 

degradation due to actuator saturation. The design of the linear estimator observer 

controller using LQR method is explained. The difference between the simulations and 

experimental results is explained.  

Chapter VI provides the controlled precision macro- and micro-scale position and 

force control. Simulated and experimental results obtained with the closed-loop position 
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controller implemented on the IPMC three-finger gripper are presented. The feedback 

control algorithm using a modified PID controller was used for the force control in both 

micro- and macro-scale. The grabbing the object with three-finger gripper is 

demonstrated. 

Lastly, Chapter VII summarizes the conclusions of this research and the 

suggestions for future work. 

 

 



 

 

11

CHAPTER II 

WORKING PRINCIPLE AND PRACTICAL APPLICATIONS OF IPMC 

 

This chapter describes the working principle of an IPMC actuator. Comparison in 

performance parameters with other smart materials shows its advantages and 

disadvantages. Also practical applications of IPMC are presented.  

 

2.1 Working Principle of an IPMC Actuator 

IPMC is made of a perfluorinated membrane (i.e., all of the hydrogen atoms 

attached to carbon atoms are replaced with fluorine atoms) with noble metal plating 

(typically gold or platinum) for electrodes [28], then cut to be of the desired geometry. 

The IPMC samples we used in this research have two metal coatings on the Nafion 

membrane. The first metal coating consists of many small platinum particles dispersed 

inside the surface of the membrane within the polymer.  The depth of penetration is 

usually 10–20 μm. The second metal coating is gold deposited by electroplating. This 

coating is intended to enhance the surface conductivity of the IPMC. 

The chemical structure of Nafion 117 is shown in Fig. 2-1. The particular 

permeability arises from the charged sulfonic acid groups (SO3
–) that are tied up the 

sidechains of the polymer backbone. When the polymer is hydrated, the cations 

(positively charged ions) associated with the SO3
– groups become mobile, allowing the 

polymer to conduct cations.  
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Fig. 2-1. Chemical structure of Nafion [29]. Note that the counter ion can be replaced by 
other mobile cations. 

 

Ionic polymers are typically either Flemion (a perfluorocarboxylate, Asahi Glass, 

Japan) or Nafion (a perfluorosulfonatem, Dupont, USA) that swell in water due to their 

ionic and hydrophilic nature. Anions (negatively charged ions) are located on the polymer 

membrane while cations are present and freely moving in the fluid. A photograph of the 

IPMC membrane is shown in Fig. 2-2. 

 

 

Fig. 2-2. Platinum- and gold-plated Nafion 117 membrane (Lithium counter ion). 



 

 

13

 The thickness of Nafion 117 is approximately 0.18 mm. The IPMC consists of the 

composite by plating Nafion 117 on both sides with an approximately 2 μm-thick film of 

gold or platinum by the chemical plating method. After roughening the surface of Nafion 

117 by mild sand blast, exchange of hydrogen ions and platinum cations took place, 

immersing the film in complex ions of platinum ammine [30]. The IPMC process is 

summarized in Table 2-1.  

 

Table 2-1. IPMC manufacturing process. 

Stage Procedure 
1. Nafion roughening Roughen polymer to ensure platinum 

adheres to polymer surface. 
2. Primary plating Electrochemically deposit a thin layer of  

platinum on the Nafion surface. 
3. Secondary plating Deposit a thicker layer of platinum on top of 

the primary plating. 
 

 

An illustration of a typical IPMC cross-section is shown in Fig. 2-3. The metallic 

layers act as flexible electrodes, generating an electric field across the IPMC’s thickness 

for actuation or collecting charges for sensing. An ionic polymer, due to its molecular 

structure, is permeable exclusively to cations or to anions (negatively charged ions). 

Dupont’s Nafion, the most common base material for an ionic polymer actuator, is 

permeable to cations and water molecular.  

When an electric field is applied to the IPMC, the cations diffuse toward the 

negative electrode, which causes the composite polymer to deform [31] as depicted in Fig. 

2-4. On the other hand, when a mechanical load is applied to the IPMC, a few millivolts 

are generated across the electrodes [31].  
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Fig. 2-3. Cross-section of an ionic polymer metal composite. 
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Fig. 2-4. Redistribution of charges in an ionic polymer due to an imposed electric field. 

 

Typically, the strip of the perfluorinated-ionic-polymer membrane bends toward 

the anode in case of cation-exchange membranes under the influence of an electric 

potential. The appearance of water on the surface of the expansion side and the 

disappearance of water on the surface of the contraction side are common. This 
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electrophoresis-like internal ion-water movement is responsible for creating effective 

deformation for actuation. Water leakage through the porous platinum electrode reduces 

the electromechanical-conversion efficiency [32]. This can support the phenomenon of 

generating the water on the surface of the IPMC strip stuck to the negative electrode. 

Because of its ion selectivity, as well as other desirable material properties, 

Nafion is used in application such as a fuel cell, i.e., an electrochemical device converting 

chemical energy to electric energy as shown in Fig. 2-5.  

 
(a) 

 
(b) 

Fig. 2-5. Biomimetic integrated system: (a) schematic diagram of biomemetic system, (b) 
a prototype biomemetic system [33]. 
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2.2 Various Smart-Material Properties 

Structures and materials that sense external stimuli and respond accordingly in 

real time are called as smart materials. The actuator technologies using smart materials 

under development include shape memory alloys, piezoelectrics, magnetostrictive 

actuators, electroactive polymers, and electrostatic actuators. It is essential to compare the 

performance of these artificial actuators with each other before making a final decision of 

our design. Table 2-2 compares performance parameters of EAP with other actuators. As 

seen in Tables 2-2 and 2-3, IPMC is not the best candidate in any single measure of 

performance aspect. However, its overall performance is good enough that it can be used 

comparatively in energy-efficient actuator as a lightweight, low-cost device with high 

displacement and high power output relative to well-established smart materials such as 

piezoelectrics, shape memory alloys, etc. Other important considerations include the 

repeatability and accuracy such that how well the output of the actuator can be controlled 

and the reliability and endurance such that how long the actuator will last.  

 
 

2.3 Ionic EAP and Its Benefits 

Generally, EAPs can be classified into two major categories based on their 

activation mechanism including ionic and electronic. The electric polymers 

(electrostrictive, electrostatic, piezoelectric, and ferroelectric) can be made to hold the 

induced displacement under activation of a DC voltage, allowing them to be considered 

for robotic applications. These materials also have a greater mechanical energy density 

and can be operated in air. However, they require a high activation field (> 100 V/µm) 

[34]. As contrasted, ionic EAP materials (gel, polymer-metal composites, conductive  
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Table 2-2. Comparison between EAPs, natural muscle and other actuation 
technologies [35–36]. 

 

 

Actuator type Maximum 
Strain (%) 

Maximum 
Pressure 
(MPa) 

Specific 
Elastic 
Energy 
Density 

(J/g) 

Maximum 
Efficiency 

(%) 

Relative 
Speed 
(full 

cycle) 

Carbon Nanotube > 2.5 > 1.0 > 0.013 < 10? Medium 
Liquid Crystal 
Elastomer > 35 > 0.3 > 0.10 < 10? Slow 

IPMC (Nafion) 10 1.0 0.025 < 10? Medium 
Conducting 
Polymer 
(Polyaniline) 

10 450 23 < 10? Slow 

Electrostatic 
Devices 
(Integrated Force 
Array) 

50 0.03 0.0015 > 90 Fast 

Electromagnetic 
(Voice Coil) 50 0.01 0.003 > 90 Fast 

Piezoelectric 
Ceramic (PZT) 
Single Crystal 

(PZN-PT) 
Polymer (PVDF) 

 
0.2 
1.7 
0.1 

 
110 
131 
4.8 

 
0.013 
0.13 

0.0013 

 
90 
90 

~ 80 est. 

 
Fast 
Fast 
Fast 

Shape Memory 
Alloy (TiNi) > 5 > 200 > 15 < 10 Slow 

Magnetostrictive 
(Terfenol-D) 0.2 70 0.0027 60 Fast 

Natural Muscle 
   Peaks in nature 
   Human Skeletal 

 
100 
> 40 

 
0.80 
0.35 

 
0.04 
0.07 

 
- 
- 

 
Slow-Fast 
Medium 

 

polymers, and carbon nanotubes) in Table 2-4 require drive voltages as low as 1–2 V. 

However, there is a need to maintain their wetness, and except for conductive polymers it 

is difficult to keep DC-induced displacements. The induced displacement of both 

electronic and ionic EAPs can be geometrically designed to bend, stretch, or contract.  
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Table 2-3. Actuator technology synopsis [37]. 

 

Actuator type Description 

Carbon Nanotube High stress (> 10 MPa), very small strain (0.2%), low driving 
voltage (~ 2 V), inefficient unilateral actuation expensive. 

Liquid Crystal 
Elastomer 

Low-moderate stress (0.01–0.45 MPa), moderate-high strains (2–
45%, depending on whether thermal or field induced strain), 
moderate-high efficiency difficult to control (creep), new material 
high driving voltages, slow. 

IPMC (Nafion) Large strain, low driving voltage (< 10 V), unilateral actuation low 
efficiency. 

Conducting 
Polymer 

(Polyaniline) 

High stress (5–34 MPa), low strain (2%), high stiffness, low driving 
voltage (~ 2 V), high work density (100 kJ/m³), slow bilateral 
actuation, low efficiency. 

Electromagnetic 
(Voice Coil) 

Low peak stress (0.05–0.1 MPa), large strain (50%), high power 
density (200 W/kg), efficiency varies from high (~ 90%) at high 
speeds and short strokes to low (~ 5%) at low speeds and high 
stroke lengths. Fast, high compliance, form factor compatible with 
human-form design. Produces smooth, backlash-free, quiet motion. 
Low material overhead, few moving parts; robust to overloading, 
bi-directional (push-pull) actuation. High force applications require 
mechanical transformers. 

Piezoelectric 
Ceramic (PZT) 
Single Crystal 

(PZN-PT) 
Polymer (PVDF) 

High peak stress (35 MPa), low strain (1%), very low power density 
(0.1 W/kg), very high speeds (high frequency, very short stroke 
actuators – less practical for robotic applications), moderate 
material (and control), quiet, bilateral actuation. Must be driven 
with high voltages, “Inchworm” and “waverotor”- type actuators 
have been developed with larger strains and lower stresses. 

Shape Memory 
Alloy (TiNi) 

Very high peak stress (200 MPa), low strain (1–8%), very high 
power density (100 kW/kg), very low efficiency (< 5%), very 
difficult to control, slow low voltage activation, low cycle life, 
unilateral actuation. Can have good form factor for mammal-form 
robots. 

Magnetostrictive 
(Terfenol-D) 

High peak stress (10 MPa), low strain (2%), very high power 
density (5 W/kg), high efficiency (~ 80%), high speeds are possible, 
usually unilateral actuation, high material overhead (bulky magnets 
or coils are required for activation). 

 

However, bending actuators have relatively limited applications due to low force or 

torque that can be induced. IPMC actuators require some humidity to work and may 

eventually dry out and stop working. Despite this shortcoming and the fact that they work 
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in bending mode, IPMCs have been the most widely applied actuators, at least at the 

research level. They are easy to drive, produce, and handle. Mechanically, they are much 

stable than gels and can be produced in large sheets from which any form can be cut.  

 

Table 2-4. Advantages and disadvantages of ionic EAP [9]. 

Advantages Disadvantages 

•  Requires low voltage (1.0–5 V) to 
stimulate a bending response with low 
frequency below 1 Hz. 
•  Provides predominately bending 
actuation (longitudinal mechanisms can be 
constructed). 
•  Exhibits large bending displacements 
(deformation).  
•  Longitudinal mechanisms can be 
constructed. 
•  Responses to high frequency input (100 
Hz). 
•  Miniaturization is possible (millimeter 
order). 
•  Durability is high (> 105 cycles). 
•  Moves in water or in a wet condition. 
•  Easily processed/formed. 
•  Performs stress (0.1–1MPa) and strain 
(1–10%). 

•  Except for CP (Conductive Polymers), 
ionic EAPs do not hold strain under DC 
voltage. 
•  Except for CP and CNT (carbon 
nanotubes), it is difficult to produce a 
consistent material (particularly IPMC) 
•  Slow response (fraction of a second). 
•  Bending EAPs induce a relatively low 
actuation force. 
•  Low mechanical energy density and lack 
of robustness. 
•  In aqueous systems the material sustains 
hydrolysis at > 1.23 V. 
•  Poor understanding of processing-
property relationships. 
•  Higher speeds and work capability 
desired. 

 
  

2.4 Prior Applications of IPMC 

Several of the characteristics of the IPMC actuator distinguishing itself from other 

actuators are considered advantages. An example is the fact that actuation is possible with 

low electric fields — typically no more than a few volts are required. These small 

potentials can be easily imbedded by simple control circuits. The fact that they operate at 

low voltages makes ionic polymer actuators well suited to battery-operated devices.  
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As a polymer, EAP materials can be easily formed in various shapes, their 

properties can be engineered and they can potentially be integrated with MEMS sensors 

to produce smart actuators. The most attractive feature of EAP materials is their ability to 

emulate the operation of biological muscles with high fracture toughness, large 

deformation, and inherent vibration damping.  

 EAP-based actuators could eliminate the need for gears, bearings, and other 

components that complicate the construction of robots, which reduce the cost and the 

weight. The following categorizes the practical applications of IPMCs. 

 

• Planetary Application — the NASA Viking and Mars Pathfinder missions notice that 

operation on Mars involves an environment that causes accumulation of dust on 

hardware surfaces. The dust accumulation is a serious concern that obstructs long-

term operation of optical instruments due to loss of visibility and degrades the 

efficiency of solar cells to produce power. Planetary dust wiper can remove dust from 

surfaces [38]. 

• Robotic Applications — combining the bending and longitudinal strain capabilities of 

EAP actuators, a miniature robot arm was designed and constructed at JPL [34]. A 

multi-finger gripper was demonstrated in open loop, but the design of the hooks at the 

end of the fingers represents allowing securing the gripped object encircled by the 

fingers [39]. The University of Pisa in Italy emulated facial anatomy with a robotic 

humanoid head using dielectric elastomer [40]. Mimicking the human face with a 

simplified array of electroactive artificial muscle may improve relations between 

human and machines. Biomimetic fish-like propulsion using Ionic Conducting 
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Polymer Film (ICPF) actuator as a propulsion tail fin for an underwater microrobot 

swimming structure in water or aqueous medium is developed [41]. 

• Medicine and Biotechnology — blood vessels of the brain are narrow and complex, 

and there are many problems and risks of intravascular neurosurgery by using 

traditional catheter with guide wires. A new type of micro active catheters (MAC) 

was proposed [42–45]. Shahinpoor and Kim proposed a heart-assist device [46], and 

Keshavarizi et al. suggested using an ionic-polymer actuator to measure blood 

pressure [47]. 

• Human-Machine Interface — a virtual tactile feel display device for delicate touch of 

cloth was developed using Nafion-platinum-composite-type EAP actuators [48]. 

• Micro-Fluidic Applications – IPMC is a promising material candidate for micorpump 

applications since it can be operated with low input voltages and can produce large 

stroke volumes along with controllable flow rates. Micropump is one of the micro and 

miniature devices, which is installed with sensing and actuating elements [49–52]. 

• Fuel Cell — Artificial Muscle Research Institute (AMRI) IPMC proposed the 

chemical process of IPMC could promise for applications of fuel cells, electrolysis, 

and hydrogen sensors [53]. 

 

Note that ionic polymer actuators are a currently developing technology, and 

researchers are still seeking a niche field to break through the limitations. The 

applications mentioned above are laboratory demonstrations of concepts — ionic-

polymer actuators have not yet found their way into commercial applications due to the 

lack of suitable engineering models, an important issue addressed in this dissertation. 
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CHAPTER III 

EXPERIMENTAL SET-UP AND INSTRUMENTATION 

 

In this chapter we discuss the experimental setup for the measurement of position 

and force. The laser distance sensor was used to measure the position of the IPMC strip. 

For the force measurement, we used the load cell to measure the blocked force. The 

entire experimental setup is also described here. 

 

3.1 Sensors 

A dictionary definition of a ‘sensor’ is a device that detects a change in a physical 

stimulus and turns it into a signal which can be measured or recorded. Fig. 3-1 is a 

schematic diagram of the whole experimental set-up. 

 

 

Fig. 3-1. Schematic diagram of the whole experimental setup. 
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3.1.1 Laser Distance Sensor 

We used a laser distance sensor (Model OADM 20I4540/S14C) from Baumer 

Electric, Ltd. to measure the tip displacements of the IPMC fingers. The analog output of 

this sensor is in the range of 0−10 V or 4−20 mA.  The laser distance sensor has a 

resolution of 5 μm with a position-noise standard deviation of 10 μm and the operation 

range is 10 mm with a 15 mm off from the reference as shown in Fig. 3-2. The response 

time is less than 10 ms.  The sensing principal is based on triangulation between the 

emitter and the receiver.  The bending angle could be measurable down to about 30° [54]. 

 

Laser
Distance
Sensor

Start of 
Range

End of 
Range

Reference = 0 mm

X

 

Fig. 3-2. Schematic view of the operating range of the laser distance sensor. 

 

When the IPMC starts to bend, the laser distance sensor can detect the deflection 

of the tip position on the free end of the IPMC strip. Fig. 3-3 shows a schematic diagram 

of measuring position responses.  
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This position measurement is fed to a 16-bit analog-to-digital (A/D) converter of a 

floating-point digital-signal-processing (DSP) board (Model DS1102 from dSPACE). 

This DSP board communicates with a Pentium III personal computer for user interface. 

The control voltage to actuate the IPMC strip is generated through a 16-bit digital-to-

analog (D/A) converter channel of the DSP board.  

 

 

 
Fig. 3-3. Schematic diagram of measuring position responses. 

 

A clamp (McMaster Inc., GA, USA) was modified by attaching 2 copper 

electrodes of dimensions 11.43 × 4.28 × 1.27 mm (Alfa Aesar, Ward Hill, MA , USA). 

Two holes behind the copper electrodes were drilled, allowing wires to be soldered to the 

electrodes. The copper electrodes between the modified clamps were positioned such that 

the contact area of the IPMC strip could activate safely under the applied voltage input. 

Fig. 3-4 shows a photograph of the experimental set-up for position response. The 

mounted laser distance sensor aims the tip of the IPMC strip, and the modified clamp 

with the copper electrodes holds the IPMC strip.  
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Connect to power supply 
12 Vdc and A/D channel 

Laser distance sensor

EAP or IPMC 
Strip 

 

Fig. 3-4. Experimental set-up used for both open-loop and closed-loop position responses.  
 

 

3.1.2 Force Transducer 

A precision load cell (Model GM2, PTC Electronics Inc., Wyckoff, NJ, USA with 

a full scale of 300 mN, accuracy 0.01 mN), and force resolution of 900 nN was used for 

the force sensing purpose. For load cells and pressure sensors, PTC Electronics Inc., 

Wyckoff, NJ, offers a signal amplifier (SCAIME CMJ-CEB, an enhanced version of the 

CMJ-CE amplifier) that provides a bipolar ±5-V output in addition to 4–20-mA and 0–10 

-V outputs as shown in Fig. 3-5. Since the output signal of the load cell was very small, it 

requires such a signal amplifier. For calibration it needs two adjustments. First is the zero 
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adjustment. Adjust the zero with potentiometer P2 until the voltmeter displays 0 V 

measuring the voltage output. Second is the span adjustment. We need to mount the load 

cell vertically with the armature pointing vertically upwards, and place the 30 g mass on 

it. The voltage measured from the voltage output must display 30 mV. Otherwise, adjust 

the span with potentiometer P1 in order to obtain the requested output. We should point 

out that the output of 6 mV/V, i.e., 30 mV nominal at a 5-V excitation from measuring 

between EX+ and EX– should be compensated for when the voltage signal is measured 

from the load cell.  

 

Zero adjustment (P2) Span adjustment (P1)Power supply 
24 Vdc 

Connect to 
ADA400A 

Connect to 
load cell 

EX+ 

EX-

SIG+

SIG- 

Vout 

Gnd 

+24V 

Gnd 

Iout 

 

Fig. 3-5. Signal amplifier. 
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A differential preamplifier (Model ADA 400A, Tektronix Inc., Beaverton, OR, 

USA) was used not only to amplify the output signal further by a gain value of 1000, but 

also to reject the sensor noise. A Tekprobe power supply (Model 1103, Tektronix) was 

connected to this differential preamplifier. The output signal from the Tekprobe power 

supply was fed to the A/D converter on the dSPACE board. Fig. 3-6 shows the wire 

connection between the load cell and the dSPACE A/D channel. Fig. 3-7 shows an 

oscilloscope (Model 54624A, Agilent), a function generator (Model 33120A, Agilent), 

and a DC power supply (Model E3645A, Agilent).  

 

Connect to Output Signal in CMJ-CEB 

Connect to A/D channel Connect to ADA 400A

 

Fig. 3-6. Wire connection between load cell and dSPACE A/D channel. 
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dSPACE board 

Oscilloscope

Function generator

DC power supply

 
Fig. 3-7. Experimental set-up showing the dSPACE board, oscilloscope, and power 

supply. 

 

After proper calibration, the output signal of the load cell can be read as a force 

signal. For this purpose, the IPMC strip held by the modified clamp sticks to the 

calibrated load cell as shown in Fig. 3-8. 

Load Cell

CPU

Power
Supply 

dSPACE

Copper 
Electrodes

EAP or IPMC
Actuator

Differential preamplifier
+ Signal amplifier
+ Power supply

 

Fig. 3-8. Schematic diagram for force sensing experiment. 
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Fig. 3-9 shows the experimental setup related to the load cell. It was mounted on 

the aluminum platform so that the tip of IPMC held by the modified clamp would touch 

the tip of the load cell as shown in Fig. 3-10. The load cell could then measure the 

blocked force generated from the IPMC strip when it was exited by the applied input 

signal.  Fig. 3-11 is the close-up photograph of the experimental set-up of position and 

force sensing. 

 

Fig. 3-9. Experimental set-up connected to the load cell. 
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Fig. 3-10. Close-up view of the force-sensing set-up with the EAP/IPMC strip. 

EAP or 
IPMC Strip Load Cell

 

 

 

Fig. 3-11. Close-up view of position and force sensing. 
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3.2 Data Acquisition System 

The dSPACE DS1102 DSP (digital signal processor) was used to generate the 

electrical input and the output from the position or the force sensor was fed to a 16-bit 

A/D converter board of a DSP controller board. The unit connects a PC to a maximum of 

4 input channels and 4 output channels. The provided Control Desk Developer Version 

2.1.1 along with Matlab 6.1 (R12.1) Simulink provides user-friendly interface to system 

control and observation. We used 1 input and 1 output channels for force control and 3 

inputs and 3 outputs for position control. The controller board has Texas Instrument 

TMS320C31 floating-point DSP. It is linked directly to a PC running dSPACE software. 

The control desk and DS 1102 are both produced by dSPACE Incorporated. The 

experiments were conducted with a block schematic in Simulink®, a Matlab program. 

The Simulink model was then loaded onto the dSPACE hardware, and which handled 

data acquisition. Currently, the DSP controller board was switched to the DS1104 DSP 

controller board due to software license/compatibility with MATLAB 7.0. The DS1104 

board has a 250-MHz Power PC 603e with Texas Instruments’ DSP TMS320F240 chip. 

It contains four 16-bit A/D channels, four 12-bit A/D channels, eight 16-bit D/A channels, 

and other input/output interfaces. The Control Desk Developer Version 2.6.5 is interfaced 

with Matlab 7.0 (R14). The usage of A/D and D/A channels follows the same pattern 

with the DS1102 board. 

 

3.3 Three-Finger Gripper 

The three-finger gripper consists of three strips of IPMC clamped by cooper 

electrodes. Each IPMC strip can be controlled individually and approach the target object 
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independently. One of the IPMC strips can work as a switch since the IPMC itself 

generates the voltage output with being mechanically touched by the object. This IPMC 

strip can tell when the force control is required to start so that the three-finger gripper can 

grip the target object without damaging it. Fig. 3-12 shows a schematic cross-sectional 

view of this three-finger gripper. The object denoted with a circle has a radius r , and the 

three fingers around it move within the controlled range l independently. The width 

w can be modified to be a wedge in case of handling even more small size object.  

 

l1

l2

l3

t1

t2

t3

r

w1

w2

w3

 

Fig. 3-12. Schematic cross-sectional view of three-finger gripper. 

 

The three-finger gripper was designed to perform the desirable demonstration of 

the capability of the gripper — opening the gripper fingers, bringing the gripper near the 

object, closing the fingers, and lifting the object. By increasing the control voltage, the 
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amount of gripping force is increased, and a firmer grasp is achieved. We provide an 

interesting mechanism to explore how closed-loop-controlled macro- and micro-gripping 

is achieved in Chapter VI. The entire experimental setup is shown in Fig. 3-13 and Fig. 3-

14 and 3-15 are the close-up view of the three-finger gripper and its top view, 

respectively. 

 

 

Fig. 3-13. The entire experimental setup for the three-finger gripper. 
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Fig. 3-14. Close-up view of the three-finger gripper. 

 

 

Fig. 3-15. Top view of the three-finger gripper. 
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CHAPTER IV 

MODELING AND DYNAMIC BEHAVIOR 

 

This chapter describes the system identification process by observing various 

input/output characteristics of EAP and IPMC strips. All the various transfer functions 

from the system identification are used to design the controller in the next chapter. 

 

4.1 System Identification 

System identification focuses on the modeling of dynamical systems based on 

measured data. The model from the system identification could be used for control, 

prediction, signal processing, error detection, or simulation. The purpose of the model 

affects the choice of identification methods and experimental conditions, and it should 

therefore be clearly stated.  Fig. 4-1 shows an algorithm for modeling and system 

identification. System identification is an iterative process and it is often necessary to go 

back and repeat earlier steps. This is illustrated with arrows in the figure. Notice that the 

order of the blocks in the algorithm does not only describe the chronological order the 

tasks are performed, but also how they influence each other. A certain model structure can 

be derived from the physical model such as Piezoelectric material, Shape Memory Alloy 

(SMA), etc. although they might contain unknown parameters to be estimated. Since 

there are a lack of prior information and the limits of the physical modeling, EAP and 

IPMC are treated as black-box identification so that the input and the output relationship 

can describe the behavior of the characteristics of the IPMC system. The black-box 
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identification is important to move to grey-box identification where some part of the 

system is known.  

 

 

Fig. 4-1.  Algorithm for modeling and system identification [55]. 

 

The experiments are done in two steps. In the first step, preliminary experiments, 

such as impulse and step responses are performed to obtain primary knowledge about the 

important system characteristics such as gain, time delay, and time constants. It is also 
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possible to draw conclusions from the experiments about whether or not the system is 

linear and time invariant and if there are disturbances acting on the system. For the 

transient-response analysis, a step response analysis gives information on gain, time delay, 

and time constant. For the frequency-response analysis, this gives an estimated transfer 

function for the system. In the second step, the information obtained from the preliminary 

experiments is then used to determine suitable experimental conditions for the main 

experiments, which will give the data to be used in the System Identification Toolbox 

[56]. In particular, the choice of the input signal is discussed. The system identification 

gives an accurate model at the frequencies where the input signal has contains much 

energy. In other words, the input signal has a good excitation at these frequencies. The 

frequency content of the input signal should therefore be concentrated to frequencies 

where small estimation errors are desired. A pseudo-random binary sequence (PRBS) is a 

common choice of input signal, since it has large energy content in a large frequency 

range. White Gaussian noise is also a good candidate for the input signal since its power 

spectrum density has equal power in any frequency range. In addition, chirp signals or 

swept sinusoids give good control over the excited frequency band [55]. 

 

4.1.1 Model Structure Selection 

The model structure determines the set in which the system identification is 

performed. The most general parametric model structure which called Prediction Error 

Estimate (PEM) shown in Fig. 4-2 in the System Identification Toolbox [55] is given by 

 

( ) ( )( ) ( ) ( ) ( )
( ) ( )k

B q C qA q y t u t n e t
F q D q

= − + ,        (4-1) 
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where y and u are the output and input sequences, respectively, e is a zero-mean white 

noise sequence, and kn is the number of delays from the input to the output [55, 57]. The 

polynomials A, B, C, D, and F are defined in terms of the backward shift operator, 1q− : 

 

1
1( ) 1 na

na
A q a q a q−−= + + ⋅⋅⋅ + ,  11

1 2( ) nb
nb

B q b b q b q− +−= + + ⋅⋅⋅ + , 

1
1( ) 1 nc

ncC q c q c q−−= + + ⋅⋅⋅ + ,  1
1( ) 1 nd

ndD q d q d q−−= + + ⋅⋅⋅ + , 

1
1( ) 1 n f

n f
F q f q f q−−= + + ⋅⋅⋅ + . 

 

B/F

C/D

1/A+
u y

e

 

 

Fig. 4-2. PEM model structure. 

 

Based on the general parameter model structure (4-1), some special forms are set to 

identify as following: 

 

Auto-Regression (AR) model is 

 

( ) ( ) ( )A q y t e t= ,          (4-2) 
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which is a time-series model with no exogenous input (no input u(t)).  

Auto-Regression with eXogeneous input (ARX) model is 

 

( ) ( ) ( ) ( ) ( )kA q y t B q u t n e t= − + .        (4-3) 

 

Auto-Regressive Moving Average with eXogeneous input (ARMAX) model is 

 

( ) ( ) ( ) ( ) ( ) ( )kA q y t B q u t n C q e t= − + .        (4-4) 

 

Output-Error (OE) model is 

 

( )( ) ( ) ( )
( ) k

B qy t u t n e t
F q

= − + .         (4-5) 

 

Box-Jenkins (BJ) model is  

 

( ) ( )( ) ( ) ( )
( ) ( )k

B q C qy t u t n e t
F q D q

= − + .        (4-6) 

 

Within the structure of (4-1), virtually all the usual linear black-box model 

structures are obtained as special cases. The ARX structure is obviously obtained with 

C(q) = D(q) = F(q) = 1. The ARMAX structure corresponds to the case of D(q) = F(q) = 

1. The output-error model is obtained with A(q) = C(q) = D(q) = 1, while the Box-Jenkins 

model corresponds to the case of A(q) = 1.  
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Equation (4-6) can be rewritten as  

 

( ) ( ) ( ) ( ) ( )ky t G q u t n H q e t= − + ,        (4-7) 

 

where ( )( )
( )

B qG q
F q

= , ( )( )
( )

C qH q
D q

= . The symbol G denotes the dynamic properties of the 

system, that is, how the output is formed from the input. For linear systems it is called the 

transfer function from input to output. The symbol H refers to the noise properties, and is 

called the disturbance model. It describes how the disturbances at the output are formed 

from some standardized noise source e(t). For the simulation purpose, the disturbance 

model plays no immediate role since the noise source e(t) for new data will be unknown. 

It is taken as zero in the simulations, so as to study the effect of the input alone (a noise-

free simulation). Making another simulation with e(t) being an arbitrary white noise will 

reveal how reliable the result of the simulation is, but it will not give a more accurate 

simulation result for the actual system’s response.  

It is not at all necessarily true that a model with more parameters or more freedom 

(more polynomials) is better. Finding the best model is a matter of choosing a suitable 

structure in combination with the number of parameters. 

For an output-error parameter estimation case, the one-step-ahead predictor for 

y(t) is following: 

 

       1 1ˆ( 1) ( 1) ( ) ( ) ( 1)nf f k n k bby t t f y t f y t n b u t n b u t n n− = − − − ⋅⋅⋅ − − + − + ⋅⋅⋅ + − − + ,     (4-8) 

where ˆ( 1)y t t − denotes a prediction of ( )y t given the data up to the (t–1) step. Equation 
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(4-8) can be expressed as a linear regression problem via 

 

( 1) ( ) ( ) ( 1)f k k by t y t n u t n u t n nϕ ⎡ ⎤= − − ⋅⋅⋅ − − − ⋅⋅⋅ − − +⎣ ⎦ .      (4-9) 

 

The parameter vector to be determined is 

 

1 1

T

n nb fb b f fθ ⎡ ⎤= ⋅⋅⋅ ⋅⋅⋅⎣ ⎦ .       (4-10) 

 

Rewriting the objective (“loss”) function as 

 

2

1

1min min ( )
N

T

i
V y t

Nθ θ
ϕ θ

=

⎡ ⎤= −⎣ ⎦∑       (4-11) 

 

leads to the well-established linear least-squares solution [54] 

 

1

1 1

1 1ˆ ( ) ( ) ( ) ( )
N N

T

t t
t t t y t

N N
θ ϕ ϕ ϕ

−

= =

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

∑ ∑ .     (4-12) 

 

This procedure can be applied to Box-Jenkins parameter estimation when the error term 

from (4-6) is omitted. 

 

4.1.2 Model Estimation 

Model estimation is the procedure of deriving a model. There are non-parametric 
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models and parametric models. A non-parametric model consists of a time response or a 

frequency response; hence impossible to parameterize it with a few parameters. In 

practice, it is often useful to first derive a non-parametric model, and then using it as a 

coarse estimate of what the parameter model should look like; giving a suggestion of the 

model structure.  

Non-parametric estimation methods are based on either correlation analysis or 

spectral analysis. Correlation analysis directs estimation of impulse response coefficients 

from identification data, and spectral analysis directs estimation of frequency response 

from identification data. A major advantage of the non-parametric methods is that they 

need no specification of the model structure in terms of model structure, model order, etc.  

Parametric estimation models are based on the selected model structures. The next 

steps are then to choose an approximate model order which is required to be specified 

and to estimate the parameters of the polynomials.  

By estimating a high-order model we capture most of the information in the data. 

After estimating the model order and the parameters of the polynomials, the model 

reduction may be necessary to extract the most significant states of the model. This is 

directly related to the minimal realization of the plant model.  

 

4.1.3. Input Signals 

Models describe the relationship between input signals and output signals. The 

signals are functions of time, and the value of the input at time t will be denoted by u (t). 

Measurement equipment typically records the signals at discrete-time with a sampling 

interval of T time units.  
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The frequency response of a linear dynamic model describes how the model 

reacts to sinusoidal inputs. If we let the input u (t) be a sinusoid of a certain frequency, 

the output y (t) will also be a sinusoid of this frequency. Therefore, we apply a linear 

chirp signal to the IPMC and check how it reacts to the given inputs. A chirp signal is 

often used for dynamic structural analysis. In order to identify the system dynamics of 

IPMC, a chirp signal can be implemented for u (t) as follows: 

 

2 1
1( ) u u

u u

f ff t f t
M
−

= + ,         (4-13) 

for 0 t M≤ ≤ , 

  ( )0
( ) sin 2 ( )t

uu t A f dπ τ τ= ∫  

      22 1
1sin 2

2
u u

u
f fA f t t

M
π⎛ − ⎞⎡ ⎤= +⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠

,        (4-14) 

 

where the instantaneous frequency ( )uf t of ( )u t increases from 1uf  to 2uf  over a time 

period M. Therefore this gives a good control over the excited frequency band. Fig. 4-3 

shows the Simulink diagram for the chirp signal generator. Port 1 for a subsystem of the 

chirp signal in Fig. 4-3 is connected to the gain A in Fig. 4-4. A Simulink diagram of the 

open-loop position response is shown in Fig. 4-4.  

The input should provide persistent excitation in the frequency range where the 

model needs to be accurate. The chirp signal inputs were generated in the frequency 

range of [0.01Hz, 1 Hz ] for 30 s for EAP and [0.01Hz, 5 Hz] for 40 s for IPMC at a 

sampling frequency of 250 Hz.  
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Fig. 4-3. Simulink® block diagram for the chirp signal. 
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Fig. 4-4. Simulink® block diagram for the open-loop position response. 

 

4.2 Position-Transduction Models 

In this section the system identification of EAP and IPMC modeling is presented 

in terms of position. The inherent behavior of EAP and IPMC is discussed based on the 

modeling. Here are two types of actuators (EAP and IPMC type) which are identified. 

EAP and IPMC strips were cut in the dimension of 25.18 mm × 4.24 mm × 0.18 mm and 

22.01 mm × 3.01 mm × 0.2 mm, respectively.  

 

4.2.1 Open-Loop Position Response of EAP 

In this section, a dynamic model of the EAP actuator by system identification is 

presented. The persistency of excitation is guaranteed by selecting the reference input 
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signal to have a desired range of frequency with sufficient amplitude [58]. A low-voltage 

signal (0.1–7.0 V) was applied across the thickness of the EAP strip, and the strip 

bending was recorded with the laser displacement sensor. The largest deflection could be 

obtained at the resonant frequency of the EAP strip. Other arbitrary waveforms can also 

be applied to generate desired motion. The chirp signal response offers the control of 

both the amplitude and frequency range of the input [32]. The dwelling time and the 

frequency interval are keys to control the degree of dynamic equilibrium. The chirp-

signal testing is particularly appropriate for nonlinear systems because the analysis of the 

test results is usually easier for sinusoidal excitation than others [59]. 

Fig. 4-5 (a) shows such a chirp-signal response of our EAP-strip actuator. The 

chirp signal input shown in Fig. 4-5 (b) excited the actuator in the interesting frequency 

range of [0.01 Hz, 1 Hz] for 30 s at a sampling frequency of 250 Hz. The frequency of a 

chirp signal such as shown in Fig. 4-5 (b) is strictly controlled to be within the range 

between the starting (0.01 Hz) and ending (1 Hz) frequencies.  

Fig. 4-6 (a) is a fast Fourier transform (FFT) of the output displacement shown in 

Fig. 4-6 (a). The FFT magnitude in Fig. 4-6 (a) decreases with respect to the increasing 

frequency due to the band-limited dynamics of the EAP actuator. Fig. 4-6 (b) shows an 

FFT response of the chirp signal input shown in Fig. 4-5 (b). Since the amplitude of the 

chirp signal input is constant, its FFT magnitude from 0.01 Hz to 1 Hz appears like a flat 

hat. There are many ways to represent the system model, but we used an ARMAX 

method based on the best fit of the input-output data. If the reference input has persistent 

enough frequency components, the estimated parameters will converge in this range [58]. 

For the system identification the discrete-time model structure for the EAP-strip 
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Fig. 4-5. (a) The open-loop response of the EAP strip to (b) a linear swept-frequency 
(chirp) signal with the 7V amplitude. At t = 0 s, the frequency was 0.01 Hz and 

continuously increased to 1 Hz at t = 30 s. 
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Fig. 4-6. (a) FFT magnitude of the measured displacement. (b) FFT magnitude of the 
chirp input signal. 
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actuator was set as following: 

 

( ) ( ) ( ) ( ) ( ) ( )kA q y t B q u t n C q e t= − + ,    (4-15) 

 

where y is the measured output, u is the manipulated or exogenous input sequence, and e 

is the variance of the white noise [54, 56]. The polynomials A(q), B(q), and C(q) in the 

shift operator q were found to be 

 

1 2 3( ) 1 1.995 1.034 0.03881A q q q q− − −= − − − , 

1 2( ) 0.0204 0.03732 0.017B q q q− −= − − ,     (4-16) 

1 2 3( ) 1 1.487 0.5119 0.06948C q q q q− − −= − + − . 

 

The coefficients of the polynomials A(q), B(q), and C(q) were identified by 

minimizing a prediction error with kn =0. The Matlab command ‘armax’ was extensively 

used to design the parametric model structure. From (4-16), we found the transfer 

function P(z) from the input and the output that represents the dynamics of the system.  

 

3 2

3 2

0.02752 0.05163 0.0242( )
0.9644 0.9194 0.8845

z z zP z
z z z

− +
=

− − +
.     (4-17) 

 
 

Fig. 4-7 shows the comparison of the measured input with the third-order 

ARAMA model’s output in response to the chirp signal. These well-matched responses 

demonstrate the accuracy of the model. The controller will be designed in Chapter V 
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based on this derived system model.  From the cross-validation, the percentage of the 

matched BJ models was 74.01%. 
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Fig. 4-7. Comparison of the measured output with the ARMAX model’s output in 
response to the chirp signal. 

 

 
4.2.2 Open-Loop Position Response of IPMC 

In this section, a linearlized dynamic model of the IPMC actuator by system 

identification is presented. Because of their importance, nonlinear characteristics in 

IPMC actuation have been studied recently. Shahinpoor and Kim [31] represented IPMC 

behaviors with small hysteresis.  The particle electrodes on the IPMC surface primarily 

affected its hysteretic behavior [60]. Kothera et al. [61] presented nonlinear distortion 

using the Volterra series.  A systematic methodology is developed in this dissertation to 

deal with dexterously the inherent nonlinear behaviors of IPMC with a linearized model.  
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We also provide a means for system identification to improve the accuracy and reliability 

of IPMC actuators and sensors.  

Linearization-related issues were paid much attention to characterize IPMC. 

However, a systematic methodology for inherent nonlinear behaviors of IPMC in this 

research is developed how to manage dexterously the nonlinear behaviors of IPMC with 

a linearized model and provides a means for system identification to improve the 

accuracy and reliability of IPMC actuators and sensors.  

Incidentally, IPMC does not exhibit a high bandwidth for actuator applications. At 

high frequencies (5–20 Hz) its moduli are larger and displacements are smaller. Whereas 

at low frequencies mobile cations with water have time to effuse out of the surface 

electrodes, they are rather contained inside the base polymer (Nafion 117) at high 

frequencies. Therefore, the inherent behavior of water and the ion transportation within 

the IPMC affect the moduli differently at various frequencies [31]. Thus, using IPMC at 

high frequencies is disadvantageous in achieving high efficiency.  

A chirp signal response offers the control of both the amplitude and the frequency 

range of the input [32]. The dwelling time and the frequency interval are the keys to 

control the degree of dynamic equilibrium [59]. We used a chirp signal input to excite the 

actuator in the interesting frequency range of [0.01 Hz, 5 Hz] for 40 s at a sampling 

frequency of 250 Hz. Fig. 4-8 shows the fast-Fourier-transform (FFT) magnitudes of the 

chirp signal inputs and measured outputs at the interesting frequency range. The several 

different magnitudes of the chirp signal shown in Fig. 4-8 (a) were applied to determine 

how significant the nonlinear behavior of the system would be. The parametric 

identification representing the system model based on the best fit of the input-output data.  
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Fig. 4-8. (a) FFT magnitudes of the chirp signal inputs with three different input voltage 
amplitudes (1, 2, and 3 V). (b) FFT magnitudes of the measured displacements between 
the simulated outputs obtained using a BJ model and the experimental outputs. (c) Errors 
between the simulated outputs obtained using the BJ model and the experimental outputs. 
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(c) 

Fig. 4-8. (continued). 
 

If the reference input has strong enough frequency components, the estimated parameters 

will converge in this range [58].   

Bhat and Kim [62] originally employed the saturation limit of ±2 V to avoid of 

the integrator wind-up effect, and Yun and Kim [63] extended the saturation limit to ±3 V 

with an anti-windup scheme. As the nonlinear behavior in IPMC was defined due to the 

saturation effect [64–65], the amplitude of chirp signal input was limited to 3 V 

intentionally. The output magnitudes shown in Fig. 4-8 (b) decrease with respect to the 

frequency and also in terms of the applying voltages as expected. The frequency-domain 

peak magnitudes of the IPMC responses to the 3, 2, and 1 V chirp signal inputs were 

about 0.021, 0.0175, and 0.014 mm-s, respectively. The frequency-domain peak 
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magnitudes decreased by about 0.0035 mm-s as the voltage magnitudes decreased by 1 V. 

This phenomenon might indicate that the IPMC behavior is not highly nonlinear in this 

frequency range. The average magnitude errors of the chirp signal responses are 

approximately 0.5 μm-s as shown in Fig. 4-8 (c). Various discrete-time IPMC models 

acquired by BJ models are easily described by the rational transfer function G(s) for the 

continuous-time system using numerator and denominator coefficients varying 

independently in prescribed intervals.   

 

3 2
3 2 1 0

4 3 2
3 2 1 0

( ) ,n s n s n s nG s
s d s d s d s d

+ + +
=

+ + + +
      (4-18) 

 

where 

3 2 1 0[1.207, 7.208], [1906, 2299], [2.04 5, 9.816 5], [4.32 5, 1.355 7],n n n e e n e e∈ ∈ ∈ + + ∈ + +

3 2 1[22.66, 500.3], [2.068 5, 6.805 5], [1.932 6, 1.602 7],d d e e d e e∈ ∈ + + ∈ + +  

and 0 [5.109 5, 3.266 7].d e e∈ + +  

Another way to find the transfer function of the IPMC is using the power-spectral 

density (PSD) analysis with the relationship 

 

2( ) ( ) ( )yy xxW jω ω ωΦ = Φ ,      (4-19) 

where ( )xx ωΦ  and ( )yy ωΦ are the power-spectral densities of the input and the output, 

respectively, and W(jω) is the system transfer function [64]. Each Bode plot of the 
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transfer function shown in Fig. 4-9 exhibits a similar trend in the characteristics of the 

system. We consider the system transfer function only below 5 Hz, which is the 

interesting frequency range. 

Fig. 4-10 shows that the Bode plots of the system transfer function (solid lines) 

obtained from the PSD analysis and those from the BJ model (dashed lines) match very 

well within the interesting frequency range. Fig. 4-10 (a), (b), and (c) represent the cases 

of the magnitudes of the chirp signal inputs of 1, 2, and 3V, respectively. From the plots 

shown in Fig. 4-10, we conclude that the IPMC characteristics closely follow the linear 

BJ model in this frequency range. 

Simulation and cross-validation are needed to test whether a model can reproduce 

the observed output when driven by the actual input. Since different structures can yield 

quite distinct models, a number of different structures must be tried out and the properties 

of the models’ compared. The percentage data of the comparison gives a good indication 

whether the identified model captured the dominating dynamics of the true system or not. 

Cross-validation is probably an important indication of the validation tests since it shows 

how well the obtained model can represent the true plant. The parametric models can be 

validated in a variety of ways. Other validation tests can be pole-zero location, Bode plot, 

and residual analysis [55, 57]. After investigating the fit between the model’s simulated 

output and the measured one for the validation data using the method of model structure 

selection in Subsection 4.1.1., we can pick that model with the highest percentage from 

the following reasons. The higher percentage represents the more the system information  
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Fig. 4-9 Bode plots of the transfer function using a PSD analysis. 
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Fig. 4-10. Comparison of the Bode plots of the transfer function obtained from the PSD 
analysis (solid lines) with those from the BJ model (dashed lines). (a), (b), and (c) 

represent the cases of the amplitudes of the chirp signal inputs of 1, 2, and 3 V, 
respectively. 
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can be captured. The candidate estimated model is also required to have a valid FFT 

magnitude analysis test in terms of the linearized model we claimed previously. After 

numerous trial and errors, BJ model was the best candidate for the system identification 

and model structures of IPMCs were selected 3rd and 4th orders to represent the 

characteristic of IPMCs for the position. 

Fig. 4-11 shows the example of the comparison of the measured input with the BJ 

model’s output in response to the chirp signal from 0.01 to 5 Hz using the sample, IPMC 

1. These well-matched responses demonstrate the accuracy of the model at the same as 

the EAP case in Fig. 4-7. The several different magnitudes of the chirp signal shown in 

Fig. 4-11 were applied. The comparison of the measured output with the fourth-order BJ  
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Fig. 4-11. Comparison of the measured output (dotted line) with the BJ model output 
(solid line) in response to the chirp signal. (a), (b), and (c) represent the cases of the 

amplitudes of the chirp signal inputs of 1, 2, and 3 V, respectively. 
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Fig. 4-11. (Continued). 
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model output in response to the chirp signal input was shown in Fig. 4-11. From the 

cross-validation, the percentages of the matched BJ models were 78.02%, 75.6%, and 

73.81%, respectively. 

However, it may be possible to achieve a better correlation between the simulated 

and measured outputs in the cross-validation test by using the residuals in the simulation. 

The reason is that not only the dynamic part of the model but the noise model was taken 

into consideration in the simulation. 

The residuals should not be correlated with the system’s input, and the cross 

correlation function between the residuals and the input does not go significantly beyond 

the confidence region.  

 

1
1

1( ) ( ) ( )
N

t
R t u t

N
τ ε τ

=

= −∑       (4-20) 

2
1

1( ) ( ) ( ),
N

t
R t t

N
τ ε ε τ

=

= −∑       (4-21) 

 

where , 1, ... , 1k k k bn n n nτ = + + − . The residual ε is the difference between the measured 

output and the simulated output, 1( )R τ  is the covariance between the residuals and the 

past input. 2 ( )R τ  is the correlation among the residuals themselves. Fig. 4-12 shows 

model validation of the BJ models using validation data. Dashed lines denote confidence 

intervals. The functions are displayed up to lag M, which was set to be 6 in Matlab 

command, RESID. 
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 For a good model, the residuals should be independent of the input. Otherwise, 

there would be more in the output that originates from the input and that the model has 

not picked up. To test this independence, the cross-correlation function between the input 

and the residuals was computed by checking the model residuals. The confidence interval 

which is shown dashed-lines in Fig. 4-12 was also displayed for this function. For an 

ideal model the correlation function should lie entirely between the confidence lines for 

positive lags. If, for example, there is a peak outside the confidence region for lag M,  
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Fig. 4-12. Conventional residual analysis correlation functions for the position models of 
IPMC 1, 2, and 3. (a) Correlation functions of residuals and (b) cross-correlation 

functions between the input and the residuals from the output of the IPMC model 1. (c) 
and (d) of IPMC 2. (e) and (f) of IPMC 3. 
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there is something in the output y(t) that originates from ( )u t τ−  and that has not been 

properly described by the model. The residual analysis test is carried out using the 

validation data. As shown in Fig. 4-12, the auto-correlation 1R  and the cross-correlation 

2R  are within the confidence intervals which represent the reliable model error. 

Three discrete-time IPMC transfer functions representing open-loop position 

responses acquired by the fourth-order BJ models are as followed. 

 

3 2

1 4 3 2

0.4995 1.496 1.515 0.5171( ) =
1.579 1.344 1.252  0.4918p

z z zG z
z z z z

− + −
− + − +

 

3 2

2 4 3 2

0.2338 0.6801 0.6718 0.2249( ) =
0.3604 1.22 0.07111 0.6537p

z z zG z
z z z z

− + −
− − − +

     (4-22) 

2

3 3 2

0.0755 0.1973 0.1168( ) =
0.495 0.2224  0.2604p

z zG z
z z z
− + −
− − −

 

 

The pole and the zero locations of the system transfer functions are summarized in Table 

4-1.  

Table 4-1. Pole-zero locations of the system models of IPMCs. 

 IPMC 1 IPMC 2 IPMC 3 

Poles 

– 0.0210 + 0.8877i 
– 0.0210 – 0.8877i 
0.9929 
0.6281 

– 0.7577 + 0.4146i 
– 0.7577 – 0.4146i 
0.9943           
0.8814 

0.98736              
– 0.24618 + 0.4507i
– 0.24618 – 0.4507i

Zeros 
1.0277 + 0.2136i 
1.0277 – 0.2136i 
0.9396 

0.9784 + 0.2304i 
0.9784 – 0.2304i 
0.9521 

1.7069 
0.90632 
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 The position model for the IPMC finger 3 has the third-order since this has a 

better cross-validation than the fourth-order BJ model. Although we cut the IPMC 

membrane to make the same size of the IPMC fingers by hands, but there might have an 

inaccuracy for the size of the IPMC fingers. Therefore, they can not exactly represent the 

same behaviors. The subscript in (4-22) implies each IPMC.  

The open-loop Bode plots of the force models given in (4-22) are shown in Fig. 4-

13. The open-loop Bode plots show 40.1°, 180°, and infinity phase margins.  
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Fig. 4-13. Open-loop Bode plots of the position models for (a) IPMC 1, (b) IPMC 2, and 
(c) IPMC 3. 
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Fig. 4-13. (Continued). 
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For comparison, a band-limited white noise (BLWN), the noise power was set to 

0.01 dBW with seed [23341] in Simulink® was used to compare with the PSD analysis 

(solid line) with a chirp input signal in Fig. 4-14 (a). A pseudo-random binary sequence 

(PRBS) [55, 57] was used to re-find the transfer function, and the three Bode plots 

including BLWN plot (dashed line) were shown in Fig. 4-14 (b). The Bode plot (dashdot 

line) from using a PRBS matches well with that from the PSD analysis with a chirp input 

signal and BLWN. From the result of PSD analyses, each Bode plot of the transfer 

functions shown in Figs. 4-14 (a) and (b) exhibit similar trends in the characteristics of 

the system.  
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Fig. 4-14. (a) Comparison of Bode plots from the PSD analysis for the 2-V BJ model 
with the PSD analysis from the WGN.  (b) Comparison of Bode plots of the PSD analysis 

from the BJ model with the PSD analysis from PRBS and WGN.  
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Fig. 4-14. (Continued).  
 

 

4.3 Force-Transduction Models 

 In this section the system identification of EAP and IPMC modeling is presented 

in terms of force. The methodology of the system identification is the same as the 

position case except the measured force output from the actuators. The inherent behavior 

of EAP and IPMC is discussed based on the modeling.  

 

4.3.1 Open-Loop Force Response of EAP 

 After various cross-validation for the model structure, the fourth-order BJ model 

for EAP actuator. The discrete-time EAP acquired by BJ models are as follows.  
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4 3 3 2 3 3

4 3 2
9.4 10  2.902 10  +3.013 10  1.05 10( ) =

1.51 0.09429 0.6785  0.2599f
z z zG z

z z z z

− − − −× − × × − ×
− + + −

    (4-23) 

 

The pole and the zero locations of the system transfer function are summarized in Table 

4-2. 

Table 4-2. Pole-zero locations of the system model of EAP. 

 EAP 
Poles –0.6761,  0.9915,  0.5973 + 0.1760i,  0.5973 – 0.1760i 
Zeros 1.0614 + 0.1777i ,  1.0614 – 0.1777i ,  0.9642 

 
 The comparison of the measured output with the fourth-order BJ model output in 

response to the chirp signal input was shown in Fig. 4-15. From the cross-validation, the 

percentage of the matched BJ model was 79.37%. The auto-correlation 1R  and the cross-

correlation 2R  are also within the confidence intervals as shown in Fig. 4-16. Fig. 4-17 

shows Bode plots of the open-loop force model for EAP. 
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Fig. 4-15. Comparison of the measured output (dotted line) with the BJ model output 
(solid line) in response to the chirp signal. The measured output represents the amplitude 

of the chirp signal input of 3V with EAP. 
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Fig. 4-16. Conventional residual analysis correlation functions for the force model of 
EAP. (a) Correlation function of residuals and (b) cross-correlation function between the 

input and the residuals from the output of the EAP. 
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Fig. 4-17. Open-loop Bode plots of the force model for EAP. 
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Fig. 4-18 shows the fast-Fourier-transform (FFT) magnitudes of the chirp signal 

inputs and the measured force outputs at the interesting frequency range for the EAP 

actuator. The several different magnitudes of the chirp signal shown in Fig. 4-18 (a) were 

applied to determine how significant the nonlinear behavior of the system would be as we 

performed in the position system in Fig. 4-8. The output magnitudes shown in Fig. 4-18 

(b) also decrease with respect to the frequency and also in terms of the applying voltages 

as expected. The frequency-domain peak magnitudes of the IPMC responses to the 3, 2, 

and 1 V chirp signal inputs were about 0.287, 0.182, and 0.148 mN-s, respectively at 0.1 

Hz. The frequency-domain peak magnitudes decreased by about 0.1 mN-s as the voltage 

magnitudes decreased by 1 V.  
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Fig. 4-18 (a) FFT magnitudes of the chirp signal inputs with three different input voltage 
amplitudes (1, 2, and 3 V). (b) FFT magnitudes of the measured forces between the 

simulated outputs obtained using a BJ model and the experimental outputs.  
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4.3.2 Open-Loop Force Response of IPMC 

The procedure of the force system identification is the same as the case of the 

position system identification. Note that the load cell can only measure the blocked force; 

therefore we initially need to contact the tip of the load cell with the IPMC strip before 

applying the chirp signal voltage. To compensate for the offset due to this initial loading, 

we subtracted the initial contact force in this figure. This might have caused the loss of 

the system information since the percentages of the force models turned out to be lower 

than those of the position models. After performing the similar routine except sensing the  
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(a) 

Fig. 4-19. Comparison of the measured output (dotted line) with the BJ model output 
(solid line) in response to the chirp signal. (a), (b), and (c) represent the cases of the 

amplitudes of the chirp signal input of 1V with IPMC Fingers 1, 2, and 3, respectively. 
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Fig. 4-19. (Continued). 
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blocked force measured from the load cell. The comparison of the measured force output 

with the third- and fourth-order BJ model output in response to the 1V chirp signal input 

from 0.01 to 5 Hz in the frequency range of 0.01 to 5Hz. From the cross-validation, the 

percentages of the matched BJ models were 72.28%, 69.12%, and 74.74%, respectively 

as shown in Fig. 4-19.  The model structure of IPMC Finger 2 was selected to the third-

order model since the percentage of the fourth-order model from the cross-validation is 

66.71% which is less than the third-order case. The case of IPMC Finger 3 has the same 

reason since the fourth-order BJ model has a lower percentage, 66.71%.  
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Fig. 4-20. Conventional residual analysis correlation functions for the force models of 

IPMC 1, 2, and 3. (a) Correlation functions of residuals and (b) cross-correlation 
functions between the input and the residuals from the output of the IPMC model 1. (c) 

and (d) of IPMC 2. (e) and (f) of IPMC 3. 



 

 

70

Fig. 4-20 shows the model validation of the BJ force models for the IPMC Fingers 1, 2, 

and 3. Although there are small peaks of the auto-correlation 1R slightly beyond the 

confidence intervals in the lag M=4, the residual errors do not significantly affect the past 

residual errors. Therefore, the model error information from validation data is reliable.  

Fig. 4-21 shows the fast-Fourier-transform (FFT) magnitudes of the chirp signal 

inputs and the measured force outputs at the interesting frequency range for IPMC Finger 

1. 1, 1.5, and 2V magnitudes of the chirp signal shown in Fig. 4-21 (a) were applied since 

the load cell has a limited sensing range which can measure only below 6 mN. If we 

apply more than 2V, the data will be destroyed. This affects the significant reduction on 

the output magnitude in the FFT plot. The frequency-domain peak magnitudes of the 

IPMC responses to the 3, 2, and 1 V chirp signal inputs were about 0.5, 0.28, and 0.148 

mN-s, respectively at 0.1 Hz. The frequency-domain peak magnitudes decreased by about 

0.1 mN-s as the voltage magnitudes decreased by 1 V. After 1 Hz, the magnitudes 

become similarly smaller due to the fact that water and hydrated ions do not have enough 

time to emit out of the surface electrodes. At high frequencies above 5Hz, they are rather 

contained inside the polymer [31]. This phenomenon can also indicate that the IPMC 

behavior is not highly nonlinear in this frequency range.  

Three discrete-time IPMC transfer functions of IPMC Fingers representing open-

loop force responses acquired by the third- and the fourth-order BJ models are as 

followed.  

 

5 3 5 2 5 6

1 4 3 2
1.659 10  3.906 10  + 2.89 10  6.432 10( ) =

3.726 5.212 3.245   0.759f
z z zG z

z z z z

− − − −× − × × − ×
− + − +
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5 2 4 5

2 3 2
6.245 10  1.006 10 3.863 10( ) =

2.55 2.137 0.5873f
z zG z

z z z

− − −× − × + ×
− + −

     (4-24) 

6 2 6 6

3 3 2
9.17 10  4.118 10 4.802 10( ) =

2.594 2.225 0.6308f
z zG z

z z z

− − −× − × − ×
− + −

 

 

 The reason for the third-order force models for the IPMC finger 2 and 3 is the same as the 

position model’s case. The pole and the zero locations of the system transfer functions are 

summarized in Table 4-3. 
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Fig. 4-21 (a) FFT magnitudes of the chirp signal inputs with three different input voltage 
amplitudes (1, 1.5, and 2 V). (b) FFT magnitudes of the measured forces between the 

simulated outputs obtained using a BJ model and the experimental outputs. 
 



 

 

72

Table 4-3. Pole-zero locations of the system models of IPMCs. 

 IPMC 1 IPMC 2 IPMC 3 

Poles 

0.9954             
0.9718        
0.8795 + 0.1053i   
0.8795 – 0.1053i 

0.9892     
0.9031     
0.6574 

0.9919     
0.8780     
0.7243 

Zeros 
0.9912     
0.9522     
0.4108 

0.9782     
0.6323 

0.9822    
–0.5331 

 
 

The open-loop Bode plots of the force models given in (4-21) are shown in Fig. 4-22. The 

open-loop Bode plots show infinity phase margins. 
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Fig. 4-22. Open-loop Bode plots of the force models for (a) IPMC 1, (b) IPMC 2, and (c) 
IPMC 3. 
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Fig. 4-22. (Continued). 
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CHAPTER V 

CLASSICAL AND OPTIMAL CONTROL 

 

In this chapter the control system design based on the modeling in chapter IV is 

presented. Various position and force tests are performed that demonstrate the 

capabilities of the EAP and IPMC actuators. 

 

5.1 Modified Proportional-Integral-Derivative Controller Design for EAP 

The control objectives in this research are (1) to have a 60  phase margin, (2) to 

follow step position commands with no steady-state error, and (3) to minimize the 

settling time. To achieve these control objectives, a discrete proportional-integral-

derivative (PID) controller was designed for the EAP actuator. The discrete PID 

compensator with the bilinear (Tustin) transformation can be written as follows [65]: 

 

2

2

2 4 2

1

D D D
P I S P I S

S S S

K K KK z K T z K K T
T T T

z

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
+ + − + − + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
−

,     (5-1) 

 

where , , ,S P IT K K and DK are the sampling period of the discrete-time system, and the 

proportional, integral, and derivative gains, respectively. The proportional-integral (PI) 

term is necessary to meet the zero steady-state-error requirement. The proportional-

derivative (PD) term is used to reduce the overshoot and to accelerate the system. The PI 

and PD corner frequencies were calculated with a pole-zero cancellation method. The 

parameter values were calculated from the comparison of (5-1) with a second-order 
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transfer function (5-2). 

 

( )( )1 2
2( )

1
d d

c
z p z p

C z k
z

− −
=

−
,              (5-2) 

 

where ck is calculated to set the 60 phase margin with a crossover frequency of 0.171 Hz, 

and 1dp  and 2dp are poles of the plant model in (4-17). If poles are close to the origin, 

the system response will be slower. Therefore, to cancel poles close to the origin will 

enhance the tracking performance. The values of the matching parameters of the 

controller from (5-1) and (5-2) are given in Table 5-1.  

 

Table 5-1. List of parameter values used for experiments. 

0.004ST = s 1 0.9583dp = −  

= 0.64894PK V/mm 2 0.9279dp =  

= 11.68817IK V/mm⋅s 
0aK = mm/V 

(without the anti-windup scheme) 

= 0.00003DK  V·s/mm 
50aK =  mm/V 

(with the anti-windup scheme) 

0.66225ck = V/mm  

 

Fig. 5-1 shows a Simulink Real-Time Workshop schematic diagram for closed-

loop digital position control of the EAP actuator with an integrator anti-windup scheme. 

The controller includes an anti-windup term which reduces the degradation in the system 
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performance due to actuator saturation. The anti-windup gain aK needs to be large enough 

that the anti-windup scheme can keep the control effort by the integrator small [65]. The 

purpose of the saturation block in the Simulink block diagram is to prevent the excessive 

control voltage from being applied to the EAP actuator. The control voltage was limited 

to 7± V to avoid permanently damaging the EAP strip.  The actual hardware EAP 

actuator and sensor is present in the box represented as “Plant”. 

 

EAP
Actuator

P(z)

Control
Voltage

Reference
Command +

-

Ts

z-1
KI

KD
2(z-1)

Ts(z-1)

Ka

Error -
+

Desired
Output

+
-

+
+
+

KP

 

Fig. 5-1. Schematic diagram of the closed-loop position control of the EAP actuator. 

 

5.2 Simulation and Experimental Results of EAP 

5.2.1 Simulated 0.8-mm Step Response 

Fig. 5.2 shows the anti-windup scheme using a modified PID controller and 

simulation results of the EAP actuator’s closed-loop tracking performance were presented 

in Fig. 5-3. The dotted line from Fig. 5-3 (a) indicates the system response without the 

saturation block and Fig. 5-3 (b) shows how much the control voltage was applied to the 

system. A dash-dotted line demonstrates the effect of the saturation in the step response.  
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The simulation result with the full controller including the anti-windup scheme is shown 

in solid line. Therefore, the effectiveness to limit the actuator saturation with this anti-

windup scheme could be anticipated from these simulation results. 
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Fig. 5-3. (a) Simulated closed-loop step response to a 0.8-mm step command using the 
digital PID controller (5-1) without (dotted) and with (dash-dotted) the saturation block, 

and with the anti-windup scheme along with the saturation block (solid). (b) 
Corresponding control voltages applied to the plant. 

 

 The accomplished time-domain transient responses in Fig..5-3 are summarized in 

Table 5-2. The setting time was calculated within 5% of the steady state value and the rise 

time was calculated for the response time from 10% to 90% of the steady state value. The 
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overshoot (Mp) was decreased to 1.58% from 3.24% and the 2% setting time (ts) was also 

decreased to 4.61 s from 13.29 s. As we expected the purpose of using anti-windup 

scheme, the system with anti-windup has substantially less the overshoot and less the 

control effort.  

 

Table 5-2. List of Time Domain Transient Responses 

 Overshoot (Mp) Settling time (ts) Rise time (tr) 

w/o saturation block 10.33% 6.26 s 1.35 s 

w/ saturation block 3.24% 13.29 s 1.69 s 

Anti-windup block 1.58% 4.61 s 1.69 s 

 

 

5.2.2 Experimental 0.8-mm Step Response 

 Fig. 5-4 shows a 0.8-mm closed-loop position response of the EAP actuator 

demonstrating the effectiveness of the anti-windup scheme very well. As shown in Fig. 5-

4, the settling time decreased to 1.61 s from 1.78 s, and the overshoot decreased to 37.1% 

from 79.7%. As we verified the effect of the anti-windup effect in Fig. 5.3, the voltage 

difference is about 1 V as shown in Fig.5-3 (b). Since the EAP position modeling has 

74.01% of the matching rate with the measured output from the laser distance sensor 

from Fig. 4-7, there is a discrepancy the output difference between the simulation (Fig. 5-

3) and the experimental (Fig. 5-4) results, especially the overshoot case.  
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Fig. 5-4. The tracking performances of a 0.8-mm step command using the digital PID 
controller with and without the anti-windup scheme. 

 

 

The control voltage significantly decreased in case of implementing the anti-

windup scheme shown in Fig. 5-5. The control input was limited to 3± V for the 

experimental case to see the effect of the anti-windup scheme. The peak control voltage 

decreased by 25.7% and the overall control voltage decreased by 16.1% in Fig. 5-5 (a). 

Note that the spike in the control voltage is caused by the accumulated error due to 

actuator saturation. Since the laser displacement sensor’s conversion factor is 1mm per 1 

V, the difference in the two initial control voltage profiles in Fig. 5-5 indicates the 

difference in the initial sensor readings of the tip position of EAP strip. Moreover, the 

initialization of the position control was performed under control of voltage about 1.5 V 

for 2 seconds as shown in Fig. 5.5. 
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(b) 

Fig. 5-5. (a) Control voltage profiles with and without the anti-windup scheme before 
saturation. (b) Control voltage profiles with and without the anti-windup scheme after the 

saturation block in Fig. 5-1. 
 



 

 

82

For precision position control, the anti-windup scheme helped to reduce the 

overshoot and the control voltage only when the actuator was saturated. The steady-state 

error was also eliminated. This is very important to manipulate a micro-actuator 

effectively in the ‘pick-and-place’ operations. The accomplished time-domain transient 

responses in Fig. 5-4 are summarized in Table 5-3. The 5% criterion was used for the 

settling time, ts.  

 

Table 5-3. Summary of time-domain transient responses. 

 with the anti-windup scheme without the anti-windup scheme 

Overshoot (Mp) 37.1% 79.7% 

Settling time (ts) 1.61 s 1.79 s 

Peak time (tp) 0.79 s 0.87 s 

 

 

5.2.3 Micro-Position Control 

The EAP actuator has significant potential to be used as a micro- or nano-

manipulation device. Figs. 5-6 (a) and (b) show a 50-μm closed-loop step response and 

the corresponding control voltage. Since the control input is well within the operation 

range of 7± V, no integrator windup took place, and the difference between the minimum 

and the maximum control voltage was only 0.186 V in Fig. 5-6 (b). In Fig. 5-6 (a), 

conspicuous oscillations in the position data are present. The reason for this might be a 

linearity error ( 15±  μm) on the laser distance sensor. The control voltage shown in Fig. 

5-6 (b) also fluctuates to attempt to compensate for these position oscillations.  
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Fig. 5-6. (a) 50-μm closed-loop step response of the EAP actuator and (b) control voltage 
profile of the 50-μm closed-loop step response of the EAP actuator. 
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5.3 Modified Proportional-Integral-Derivative Controller Design for IPMC 

As mentioned earlier we use IPMC strips for the fingers in a three-finger gripper. 

Fig. 5-7 shows the schematic diagram of the closed-loop position control of the three-

finger gripper. We made the three-finger gripper be manipulated simultaneously by 

developing closed-loop controllers.  

 

 

Fig. 5-7. Schematic diagram of the closed-loop position control of the three-finger gripper. 
The saturation block was inserted between the controller and the IPMC actuator to 

protect the IPMC strips from high-voltage damage. 
 

The control objectives are as before (1) to have a 60  phase margin, (2) to follow 

step position commands with no steady-state error, and (3) to minimize the settling time. 

To achieve these control objectives, a discrete-time proportional-integral-derivative (PID) 

controller was designed for the IPMC gripper. First, Simulink Response Optimization 

provides a means to tune parameters, , ,P IK K and DK  within a Simulink model to meet 

the time-domain performance requirements [66]. It automatically converts time-domain 

constraints into a constrained optimization problem and then solves the problem using 

optimization routines taken from the Optimization Toolbox or the Genetic Algorithm and 

Direct Search Toolbox [66]. Section 6.2 will show more detail explanation of Simulink 

Response Optimization. 
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The time-domain performance requirements we strive to meet are following: the 

rise time, tr is less than 2.5 s for the step response to reach 90% from 10% of its final 

value; the settling time, ts is less than 7.5 s for the 5% criterion; and the maximum 

overshoot, Mp is less than 20%. The saturation limit for the control input is set to ±3 V to 

protect the IPMC strips from high-voltage damage. After tuning the parameters of the 

discrete-time PID controller, we could achieve a 60  phase margin by adjusting the gain 

with the Matlab ‘rltool’. The rearranged discrete-time PID controller from (5-1) is as 

follows. 

 

( 1) 2 ( 1)
( ) ,

2( 1) ( 1)(2 ( 1) /( ( 1) 1))
I s D

P
s s

K T z K z
C z K

z T z T z T z
+ −

= + +
− + − + +

            (5-3) 

 

where 0.01 s , 0.004 s, [0.39653, 0.56376]V/mm, [1.5094, 3.5594]s P iT T K K= = ∈ ∈  

V/mm s,⋅ and [ 0.0013895, 0.013129]V s/mm.DK ∈ − ⋅  

Equation (5-3) was considered the modified pure derivative term from the ideal 

PID controller. This pure derivative action is undesirable because of two reasons: (1) it 

can result in the amplification of high frequency sensor noise; and (2) the closed-loop 

system may not be internally stable, e.g., for a plant with a relative degree of one plant, 

the transfer function from the command signal to the control input becomes improper.  

This problem is usually avoided by replacing the pure derivative term dK s  by 

/(1 )dK s Ts+  where T is a small positive constant number typically chosen in the range 
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from 0.01 to 0.1 [67]. For the discretization method, we chose a zero-order hold with the 

sampling period Ts. 

 

5.4 Linear Quadratic Regulation with an Observer 

A linear time-invariant discrete-time system model for motion control can be 

represented in state space as 

 

( 1) ( ) ( )

( ) ( ),

x k Ax k Bu k

y k Cx k

+ = +

=
                    (5-4)  

 

where x(k) is the state vector, u(k) is the control input vector, y(k)is the output vector, and 

A, B, C are constant matrices. For the purpose of eliminating the steady-state error, 

integral states need to be augmented in the controller as shown in Fig. 5-8. 

 

( )x k
∧

( )u k ( )y k

( )y k
∧

( 1)x k
∧

+

( )z k( 1)z k +
( ) ( )e k y k r= −

r

( )x k
∧

( )u k ( )y k

( )y k
∧

( 1)x k
∧

+

( )z k( 1)z k +
( ) ( )e k y k r= −

r

 

Fig. 5-8. Schematic diagram of the integrator-augmented closed-loop position control 
using an LQR with an observer. 
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The augmented system becomes 

           
( 1) 0 ( ) 0

( ) ( )
( 1) 1 ( ) 1

x k A x k B
u k r k

z k CA z k CB

+⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= + +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥+ −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
           (5-5) 

 

where the state-variable description matrices of the system are 

 

0.0585 0.1133 0.7234 1.8350 0

2.0000 0 0 0 0

0 0 0.5000 0 0 0
,

1 0 0 0.0156 0 0

0 0 0 0 1

A
A

CA

−⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎡ ⎤
⎢ ⎥= =⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

0.5

0

0
,

0

0

B

B

CB

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥= =
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 and [ ] [ ]0 0.3715 0.2733 0.1896 0.0001 0 .C C= = − −  

 

A new set of variables is 

 

( ) ( 1) ( ) ( 1)z k z k y k r k= − + − − , 

 

where r(k) is a reference command and ( )z k  is the integral of the plant output ( )y k  [68]. 

Let J denote the performance index for the augmented system defined as 

 

     ( )0
T TJ x Qx u Ru dt∞

= +∫ .        (5-6) 
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The optimal gain matrix K for a linear discrete-time system with this quadratic cost 

function was derived from the solution to the algebraic Riccati equation with 

TQ qC C= =  ( )0.001 diag 1 1 1 1⋅  and 1R = . The control law in Fig. 5-7 can also be 

expressed as 

      ( ) ( ) ( )i xu k K z k K x k= − − ,              (5-7) 

 

where [ ]i xK K K= = [ ]0.031286 0.010873 0.019098 0.014851 0.0048572 .−  To 

calculate the optimal gain matrix K  such that the state-feedback law (5-7) minimizes the 

cost function J . The feedback gain K  consists of constant iK  for the integration and xK  

with the dimension of 1 by 4 for state feedback and ( )x k  indicates the state estimate.  

To estimate unavailable velocity states and keep the closed-loop system stable, the 

eigenvalues of the matrix ( )A LC−  must also be placed inside the unit circle using the 

observer gain matrix L. The observer eigenvalues should also be faster than the closed-

loop system’s eigenvalues of the matrix ( )A BK+ . Faster eigenvalues imply a smaller 

magnitude for these eigenvalues, i.e., closer to the origin of the z-plane. We selected the 

observer poles to be 10 times faster than the controller poles and calculate L to be 

[ ]25.993373 53.205025 25.566189 0.014851 0.419645 .T   

 Fig. 5-9 shows 1-mm closed-loop position responses of the IPMC actuator 

demonstrating the performance comparison of the PID controller and the modified LQR. 

Although there were uncertainties in the approximated linear model, the 1-mm step 

response using the modified LQR matched well in both the simulation and experiment as 

shown in Fig. 5-9. Since the control input voltage was below the saturation limit, ±3 V,  
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(b) 

Fig. 5-9. (a) 1-mm step responses and (b) control voltage inputs with a simulated result 
(solid line), an experimental result (dashed line) with the modified LQR, and an 

experimental result (dash-dotted line) with the PID controller.  



 

 

90

the IPMC actuator can track the desired position without causing instability due to 

actuator saturation.  As shown in Fig. 5-9, the settling time decreased to 2.85 s from 2.98 

s, and the overshoot decreased to 1.96% from 14.06%. The steady-state error was 

eliminated in both cases, which is very important to manipulate the micro-actuator 

effectively in the ‘pick-and-place’ operations. The achieved time-domain transient 

responses shown in Fig. 5-9 are summarized in Table 5-4.  

 

Table 5-4. Achieved time-domain transient responses. 

 PID controller LQR with observer 

Maximum overshoot (Mp) 14.06% 1.96% 

Settling time (ts) 2.98 s 2.85 s 

Rising time (tr) 0.56 s 1.87 s 
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CHAPTER VI 

PRECISION POSITION AND FORCE CONTROL 

WITH THREE-FINGER GRIPPER 

 

In this chapter the control system design based on the modeling in Chapter IV is 

explained. Various position and force tests were performed that demonstrate the 

capabilities of the EAP and the IPMC actuator. 

 

6.1 Position Control of Three-Finger Gripper 

Manipulation tasks require the precise position information of the end-effector in 

the reference frame. With advanced fabrication techniques it might be possible to 

fabricate micro-tips build onto the fingers of the microgripper.  

Although EAP can be a candidate of the gripper, but we used IPMC for the 

gripper due to a limited sample provided by Dr. Rediniotis’s group. The gripper fingers 

are made of IPMCs, which along with the position feedback of the actuator will help in 

developing a force feedback mechanism for a human-machine interface device. In the 

rest of this chapter, we present key simulation and experimental results with the 

developed microgripper. 

 

6.1.1 Macroscale Motion Control 

Fig. 6-1 shows the tracking performance of the three IPMC fingers with respect to 

the given position-command profiles. The IPMC gripper was initialized in the first 10  
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Fig. 6-1. (a) –0.3-mm and 0.6-mm step responses and (b) the control input voltage of 

IPMC Finger 1. (c) and (d) of IPMC Finger 2. (e) and (f) of IPMC Finger 3. 
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Fig. 6-2. (a) –50-μm and 100-μm step responses and (b) the control input voltage of 

IPMC Finger 1. (c) and (d) of IPMC Finger 2. (e) and (f) of IPMC Finger 3. 
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Fig. 6-3  (a), (c), and (e) –0.3-mm and 0.6-mm errors of IPMC Finger 1, 2, and 3, 

respectively and (b), (d), and (f) –50-μm and 100-μm errors of  IPMC Finger 1, 2, and 3, 
respectively. 
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seconds. After that the control voltage generated bending motion to reach the first 

commanded position profile that simulated picking up a small object until the gripper 

moved to the target place. When the object reached the target place, the gripper started to 

release the object. Fig. 6-1 (a) and (b) indicate the closed-loop position response and the 

control input voltage of IPMC Finger 1, respectively.  Fig. 6-1 (c) and (d) are of IPMC 

Finger 2, and Fig. 6-1 (e) and (f) are of IPMC Finger 3 in the same order．  

 

6.1.2 Microscale Motion Control 

The developed three-finger gripper has significant potential to be used as a micro- 

and nano-manipulation device. Fig. 6-2 shows –50-μm and 100-μm closed-loop step 

responses and the corresponding control voltage inputs. Since the control inputs were 

well within the safe operation range of ±3 V, no integrator anti-windup was necessary 

[62]. The difference between the minimum and maximum control voltages was only 

about 0.7 V in Fig. 6-2 (b), (d), and (f). For the errors corresponding to the given 

position-command profiles, Fig. 6-3  (a), (c), and (e) show –0.3-mm and 0.6-mm errors of 

IPMC Finger 1, 2, and 3 respectively and Fig. 6-3  (b), (d), and (f) show –50-μm and 

100-μm errors of  IPMC Finger 1, 2, and 3 respectively. Each peak occurs due to sudden 

changes from different step inputs. 

 

6.1.3 Additional Motion Responses 

The gripper’s time-domain performance in response to another standard test 

signal, a ramp input, was provided in Fig. 6-4. The tracking error approaches to zero even 

if the output follows a non-decaying command. As shown in Fig. 6-4, the IPMC gripper  



 

 

96

0 10 20 30 40 50

0

50

100

150

time (s)

di
sp

la
ce

m
en

t (
μ m

)

0 10 20 30 40 50
1.15

1.2

1.25

1.3

1.35

time (s)

vo
lta

ge
 (V

)

 
(a)             (b) 

0 10 20 30 40 50

0

50

100

150

time (s)

di
sp

la
ce

m
en

t (
μ m

)

0 10 20 30 40 501

1.1

1.2

1.3

1.4

time (s)

vo
lta

ge
 (V

)

 
(c)          (d) 

0 10 20 30 40 50

0

50

100

150

time (s)

di
sp

la
ce

m
en

t (
μ m

)

0 10 20 30 40 501.15

1.2

1.25

1.3

1.35

1.4

time (s)

vo
lta

ge
 (V

)

 
(e)                                                         (f) 

Fig. 6-4. (a) 3.33-μm/s ramp response and (b) the control of IPMC Finger 1. (c) and (d) 
of IPMC Finger 2. (e) and (f) of IPMC Finger 3. 
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Fig. 6-5. (a),  (b), and (c) 3.33-μm/s errors of IPMC Finger 1, 2, and 3, respectively. 
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was regulated for initialization in the first 8 seconds. After the ramp signal was applied, 

appropriate control voltages were generated to follow the command trajectory. The ramp 

command trajectory went from 0 μm to 100 μm in 30 seconds. Fig. 6-4 (a) and (b) 

represent the closed-loop response to the ramp command profile with the slope of 3.33 

μm/s and the tracking error of IPMC Finger 1, respectively. Fig. 6-4 (c) and (d) are of 

IPMC Finger 2, and Fig. 6-4 (e) and (f) are of IPMC Finger 3 in the same order. The 

mean values of the errors are –0.1281, 2.7979, and –4.7891 μm with the standard 

deviations of 5.2788, 8.3575, and 8.4697 μm in the order of IPMC Finger 1, 2, and 3. Fig. 

6-5 shows the errors of the ramp inputs. As we expected, the order of the errors in Fig. 6-

5 are similar to those in Figs. 6-3 (b), (d), and (f). 

 

6.2 Force Control of Three-Finger Gripper 

For the application of micro-manipulation devices such as a microgripper, delicate 

force control becomes of primary importance. To develop force control, the parameters of 

a modified PID gains may be tuned manually. After initial tuning is accomplished, the 

parameters in the optimal process taken from the Optimization Toolbox, Genetic 

Algorithm and Direct Search Toolbox can be used to refine the gains further. Simulink® 

Response Optimization provides a graphical user interface (GUI) to assist in tuning and 

optimization of control systems and physical systems. Without the initial tuning 

procedure, the optimal algorithm may not find the values of the modified PID gains 

which the system output requires to meet the desired reference input. Therefore, we need 

to adjust the tuned parameters to better meet the objectives. Fig. 6-6 shows the GUI that 

helps to find the gains of the modified PID controller. 
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 ‘Pz’ indicates the system model obtained from the system identification and ‘PID 

controller’ block contains 3 parameters shown in Fig. 6-6 (b) for tuning under two 

constraints. The actuator constraint is similar to the saturation block. It was limited within 

±3 V for the IPMCs and ±7 V for the EAP. The output constraint in Fig. 6-6 (a) contains 

the specifications for the response of the force control with the maximum overshoot of 

20%, the rise time of 2.5 s, and the settling time to within the 5% of the final value of 7.5 

s.  The lower and upper constraint bounds define a channel within which the signal 

response should lie. After adjusting the constraint bounds in the constraint block and 

specifying the tuned parameters using the tuned Parameters dialog, we are ready to begin  
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Fig. 6-6. (a) Schematic diagrams of the Simulink® Response Optimization and (b) the 
modified PID controller. 
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the optimization. The number of iterations necessary for the optimization to converge or 

terminate will depend on the initial guess for the tuned parameters, the specific 

positioning of the constraints, and the optimization settings [66].  

As shown in Fig. 6-6 (b), the discrete modified PID controller consists of the 

following equation.  

 

( ) ,
( 1)

s
in

T
D z

z
=

−
 

( 1)
( ) ,

( exp( )/band
s

z
D z

T z T T
−

=
− −

 

( )( ) ( ) ( ) ,Pc I in D bandC z K K z zK D K D= + +         (6-1) 

 

where 

0.01s , 0.004s ,sT T= = { }1.6667, 3.3217, 2.1314 ,cK = { }2261, 3925.4, 312.6 V/N,pK =  

{ }3002.5, 6768.4, 5810.9 V/N s,iK = ⋅ { }and 43.5732, 42.3919, 41.7766 V s/N.dK = − − − ⋅  

( )inD z  and ( )bandD z are the discrete-time form of the integrator 1/ s  and the modified 

derivative term /( 1)s Ts+ , respectively with the zero-order hold with the sampling period 

Ts. Kc was used to satisfy the phase margin requirement. Kc parameter can be calculated 

by the Matlab ‘margin’ command or read from a table. Kc is obtained from the margin 

command, ‘kc=margin(mag,phase-60,w)’ which intentionally shifts the phase margin by 

60  and finds the gain margin at this frequency. ‘mag’, ‘phase’, and ‘w’ were obtained 

from using the Matlab script ‘[mag,phase,w]=bode(Lz)’ where Lz is the loop transfer 

function. In addition, we can also make a table including the magnitude, the phase, and 
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the frequency of the loop transfer function, Lz. From this table, we can see the phase shift 

of about 120−  required by the specification of PM 60= is achieved at a certain 

magnitude. Consequently, gain by the inverse of this magnitude defines the proper gain 

Kc. This Matlab code was added in Appendix B. Therefore, the final z-domain controllers 

are given below. 

 

2

1 2
2632 6195 3566( )

1.67 0.6703f
z zC z

z z
− + −

=
− +

 

2

2 2
331 2056 1715( )

1.67 0.6703f
z zC z

z z
− + −

=
− +

         (6-2) 

2

3 2
1408 4234 2815( )

1.67 0.6703f
z zC z

z z
− + −

=
− +

 

 

From (4-21) and (6-2), the pole and the zero location of the closed-loop transfer function 

were summarized in Table 6-1. 

 

Table 6-1. Pole-zero locations of closed-loop transfer functions. 

 IPMC 1 IPMC 2 IPMC 3 

Poles of the closed-
loop transfer 

function 

0.9440 + 0.1937i 
0.9440 – 0.1937i 
0.9944 + 0.0009i 
0.9944 – 0.0009i 
0.9602           
0.6029 

0.8154 + 0.2794i 
0.8154 – 0.2794i 
0.9814           
0.9938           
0.6347 

0.9106 + 0.2190i 
0.9106 – 0.2190i 
0.9871           
0.9932           
0.4760 

Zeros of the closed-
loop transfer 

function 

1.3665 
0.9948 
0.9912 
0.9522 
0.4108 

5.2172     
0.9933     
0.9782     
0.6323 

2.0138    
–0.5331     
0.9928     
0.9822 
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Fig. 6-7 shows Bode plots of the loop transfer functions with three force models. 

The phase margins were 58.3° at a crossover frequency of 5.4 Hz in Fig. 6-7 (a), 59.8° at 

a crossover frequency of 9.29.4 Hz in Fig. 6-7 (b), 60.3° at a crossover frequency of 6.16 

Hz in Fig. 6-7 (c). 

-40

-20

0

20

40

M
ag

ni
tu

de
 (d

B
)

10-2 10-1 100 101 102
0

90

180

270

360

P
ha

se
 (d

eg
)

Gm = 4.69 dB (at 9.24 Hz) ,  Pm = 58.3 deg (at 5.4 Hz)

Frequency  (Hz)  
(a) 

-40

-20

0

20

40

60

M
ag

ni
tu

de
 (d

B
)

10-1 100 101 102
0

90

180

270

360

P
ha

se
 (d

eg
)

Gm = 10.5 dB (at 22.7 Hz) ,  Pm = 59.8 deg (at 9.29 Hz)

Frequency  (Hz)  
(b) 

 
Fig. 6-7. Bode magnitude and phase plots for the loop systems with the modified PID 

controllers for (a) IPMC Finger 1, (b) IPMC Finger 2, and (c) IPMC Finger 3. 
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Fig. 6-7. (Continued). 
 
 

6.2.1 Macroscale Force Control 

 Fig. 6-8 (a) shows the tracking performance of the IPMC finger 1 with respect to 

a 1-mN step input. The force input was applied at t = 18 s. The overshoot is 0.59%, and 

the rise time is 0.69 s, and the 2% settling time is 2.6764 s. The rise time is assumed to be 

the time for the response to initially travel from 10% to 90% of the final value. Fig. 6.8 

(b) shows the control input profile which is less than the saturation limit. Therefore this 

tracking performance does not require the integrator anti-windup scheme. Fig. 6-8 (c) 

presents the frequency response of this tracking case. Fig. 6-8 (c) shows a 1-mN step 

response of the IPMC finger 2. The overshoot is 1.55%, the rise time is 0.1045 s, and the 

2% settling time is 1.8447 s. Fig. 6-8 (e) shows a 1-mN step response of the IPMC finger 

3. The overshoot is 0.83%, the rise time is 0.3552 s, and the 2% settling time is 4.6087 s. 
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Fig. 6-8. (a) Closed-loop response to a 1-mN step input and (b) controller output for the 
1-mN closed-loop step response for IPMC Finger 1. (c) Closed-loop response to a 1-mN 

step input and (d) controller output for the 1-mN closed-loop step response for IPMC 
Finger 2. (a) Closed-loop response to a 1-mN step input and (b) controller output for the 

1-mN closed-loop step response for IPMC Finger 3. 
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The experimental results show that all time performance specifications such as the 

rise time, the settling time, and the overshoot are within the specification of controller 

design. For the actuator constraint as shown in Fig. 6-6 (a), the IPMC Fingers 1, 2, and 3 

can track very well for the 1-mN step input within ±3 V control input. Each voltage 

spikes shown in Figs. 6-8 (b), (d), and (f) are natural phenomena occurring at sudden 

changes like a step input, but these last only momentarily. 

 

6.2.2 Microscale Force Control 

Fig. 6-9 (a) shows a 100-μN step response of the IPMC Finger 1. The overshoot 

was 22.15%, the rise time is 0.69 s, and the 2% settling time is 11.9868 s. The control 

voltage profile shown in Fig. 6-9 (b) was less then 1 V since the tracking force is small. 

Fig. 6-9 (c) shows a 100-μN step response of the IPMC Finger 2. The overshoot is 

46.0962%, the rise time is 0.0248 s, and the 2% settling time is 11.9776 s. Fig. 6-9 (e) 

shows a 100-μN step response of the IPMC Finger 3. The overshoot is 12.57%, the rise 

time is 4.6534 s, and the 2% settling time is 11.99 s.  Only the settling time for all IPMC 

fingers is better than the design of control specification, 7.5 s since the noise effect 

dominates in the tracking response. This might be coming from the sensor noise or the 

uncertainty of the model, etc.  

 

6.2.3 Micro-Macroscale Force Control 

Fig. 6-10 shows the tracking performance of 100-μN, 1-mN, and 500-μN closed-

loop step responses and the corresponding control voltage inputs in the IPMC Finger 

1.The gripper was initialized in the first 18 seconds, which was required to regulate the  
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(e)      (f) 

Fig.6 -9. (a) Closed-loop response to a 100-μN step input and (b) controller output for the 
100-μN closed-loop step response for IPMC Finger 1. (c) Closed-loop response to a 100-
μN step input and (d) controller output for the 100-μN closed-loop step response for 

IPMC Finger 2. (e) Closed-loop response to a 100-μN step input and (f) controller output 
for the 100-μN closed-loop step response for IPMC Finger 3. 
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Fig. 6-10. (a) 100-μN, 1-mN, and 500-μN step responses and (b) the control input voltage 
for IPMC Finger 1. (c) 100-μN, 1-mN, and 500-μN step responses and (d) the control 

input voltage for IPMC Finger 2.  (e) 100-μN, 1-mN, and 500-μN step responses and (f) 
the control input voltage for IPMC Finger 3. 
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residual force to be zero. After that the control voltage generated the force to follow the 

first commanded step at t = 18 s that simulated the smooth approach stage right before 

grabbing the object. When the object was touched tenderly at t = 18 s, the control voltage 

generated more voltages to grab the object without any drop as long as the generated 

force does not give any damage on the object. This grabbing stage was continued for 10 s 

from t = 28 s to 38 s. The last step at t = 38 s was demonstrated for releasing the object.  

The three-finger gripper is available in 3 motions independently. This gripper can control 

of the gripping force between 100 μN and 1 mN. The spikes shown in Fig. 6-10 (b) again 

were the transient phenomena when the reference force commands changed rapidly. Figs. 

6-10 (c) and (e) show the same tracking responses with the IPMC Finger 2 and the IPMC 

Finger 3, respectively. All control input profiles were less than the saturation voltage 

limit.  

 

6.2.3 Additional Force Control for EAP 

 For the force control of EAP actuator, the modified PID controller gain was 

calculated with the same design specification as the IPMC Fingers and followed as: 

1.2634,cK = 33.4151 10 V/N,pK = × 41.4084 10 V/N s,iK = × ⋅ and 28.6826V s/N.dK = − ⋅  

 

2

2( )
690.9 z  + 111.9 z  779.3

z   1.67 z + 0.6703
C z =

−
−

.        (6-3) 

        

 Fig. 6-11 shows a 100-μN step response of the EAP actuator. The overshoot was 

9.15%, the rise time is 0.0212 s, and the 2% settling time is 10.5383 s. The phenomenon 
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of a microscale force step input of the EAP actuator turned out to be the same behavior as 

the IPMC Fingers had in Fig. 6-9.  
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Fig. 6-11. (a) Closed-loop response to a 100-μN step input. (b) Controller output for the 
100-μN closed-loop step response of EAP.  

 

 

Fig. 6-12 (a) shows the tracking performance of the EAP actuator with respect to 

a 1-mN step input. The force input was applied at t = 28 s. The overshoot is 2.89%, and 

the rise time is 0.72 s, and the 2% settling time is 1.4264 s. The control voltage was even 

within ±3 V in order to follow the reference force command. To compare with IPMC 

Fingers in Fig. 6-10, the similar tracking response was performed in Fig. 6-13 except the 

overshoot. It shows about 10% overshoot in EAP actuator. Based on the results shown in 

Figs. 6-11, 6-12, and 6-13, the EAP actuator can be used as a substitute for the three-

finger gripper design. 
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Fig. 6-12.  (a) Closed-loop response to a 1-mN step input. (b) Controller output for the 1-
mN closed-loop step response of EAP. 
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Fig. 6-13. (a) 100-μN, 1-mN, and 500-μN step responses and (b) the control input voltage 
of EAP. 

 

 

6.3 Demonstration of Three-Finger Gripper 

The demonstration of grabbing an object with the three-finger gripper was 

performed. The IPMC finger tips were modified by attaching small plastic spoons made 
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from a commercial folder-label case. Since the mass of the IPMC Fingers were changed 

due to adding the plastic spoons, the system identifications for the modified IPMC 

Fingers were necessary to be produced again. Three discrete-time IPMC transfer 

functions representing open-loop position responses acquired by the fourth-order BJ 

models are as followed. 

 

  
3 2

1 4 3 2
385 1205 1258 437.6( )

2.076 +1.702 0.5304 0.04236p
z z zG z

z z z z
− + −

=
− − +

 

  
3 2

2 4 3 2
90.53 +270.1 268.7 89.17( )
2.202 +1.994 0.9434 0.1611p

z z zG z
z z z z
− − +

=
− − +

        (6-4) 

  
3 2

3 4 3 2
451.1 1340 +1327 437.8( )

1.045 0.2556 0.8711 0.5366p
z z zG z

z z z z
− +

=
− − + −

 

 

The chirp signal from 0.01 to 1 Hz with 1 V amplitude was applied as an input voltage 

signal. The matching percentages of the measured position outputs with the BJ models 

are 88.49%, 87.39%, and 74.11%. Based on these models, the position controllers in (6-5) were 

calculated by the same procedures as shown in Section 6.2.  

 

1
0.00057 + 0.001049( )

1p
zC z
z

=
−

 

2
0.001114 + 0.00205( )

1p
zC z

z
=

−
              (6-5) 

   3
0.0009667 + 0.001779( )

1p
zC z

z
=

−
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A 0.2-g lead mass was used as the object to be held by the three-finger gripper. 

This lead mass was supported by the flexible clamp initially as shown in Fig. 6-14. Fig. 

6-14 shows the gripper was initialized in the first 20 s, which was required to regulate the 

position to be zero. After that, control voltages generated the movement of the gripper to 

follow the first commanded step at t = 20 s for a smooth approach before grabbing the 

object shown in Fig 6-15. The third step as shown in Fig. 6-16 depicts the grabbing stage 

which was continued from 20 s to 40 s. The last step motion at 40 s was generated to 

release the object.   

 

 

Fig. 6-14. First step of the pick-hold-drop operation. 

 

 Three-finger gripper gives more flexibility to the design compared with two-

finger gripper. Since three-finger gripper moves independently, the grasping 

configuration may be any triangle with vertices on the approach trajectory segments. This 
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flexibility allows to grasp irregular objects, even if not positioned in a central 

configuration with respect to the workspace of the gripper itself. 

 

 

Fig. 6-15. Second step of the pick-hold-drop operation. 

 

 

Fig. 6-16. Third step of the pick-hold-drop operation. 
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CHAPTER VII 

CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK 

 

This chapter describes the achievements made in this research and suggests future 

work for the improvement of IPMC actuators.  

7.1 Conclusions 

Precision in macro- and micro-manipulation has become the key to the 

development of the next-generation technology. The demand of new type of actuators and 

sensors continuously increase for precision manipulation applications.  

EAP and IPMC, in a cantilever configuration, can be modeled reasonably 

accurately using linear system identification approaches. Position and force feedback 

using laser distance sensors and precision load cell was used to identify the system model, 

and blocked force with a voltage input was used to manipulate three fingers of the gripper. 

In the process of experimentally identifying the model parameters and validating the 

model, it was observed that the EAP and the IPMC actuators behaved consistently below 

approximately 5 Hz.  

An EAP actuator’s dynamic behavior was discussed, and its system identification 

and precision control were performed by simulation and experimental implementation. 

The digital PID controller based on the identified model improved the system 

performance. The phase margin was 60 with a crossover frequency of 0.171 Hz. The 

proposed anti-windup scheme along with the controller proved that an excellent tracking 

performance could be achieved. The 0.8-mm and 50-μm step responses demonstrated 

significant improvements in transient dynamic behaviors. The settling time was reduced 
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by 0.18 s, the control voltage was reduced by 16.3%, and the percent overshoot decreased 

to 37.1%. Performance degradation due to actuator saturation could also be reduced 

significantly with an integrator anti-windup scheme. 

A three-finger IPMC gripper’s dynamic behavior was discussed. A linear model 

for the IPMC using a chirp signal with 1, 2, and 3 V amplitudes in the interesting 

frequency range of [0.01 Hz, 5 Hz] was identified. The Bode plots of the system transfer 

functions obtained from a PSD analysis and a BJ model matched well within the 

interesting frequency range.  It was observed that the FFT magnitudes of the peak 

measured displacements obtained from the experimental outputs were linearly decreased 

by about 0.0035 mm-s with respect to decreasing the voltage amplitude by 1 V from 3 V.  

A classical PID controller and a modified LQR controller to enhance the system 

dynamics and their transient-response performance were designed, implemented, and 

verified by simulation and experiment. In an experimental case of a 1-mm step response 

in the closed-loop system, the maximum overshoot was reduced from 14.06% to 1.96% 

without increasing the settling time using a modified LQR controller compared with the 

performance using a PID controller. The accomplished zero steady-state error was crucial 

to manipulate the IPMC actuator effectively in ‘pick-and-place’ operations. 

 

7.2 Suggestions for Future Work 

The research reported in this document represents significant advancements in the 

areas of modeling and characterization of IPMC material. Currently many researchers 

involved in EAP or IPMC applications, and several issues deserve further investigation. 

Some suggestions for future work are listed below.  
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• Modeling Part — Analytical modeling of IPMC, still requires a unified governing 

equation like that for piezoelectric material [69–71]. The non-linear behavior of IPMC 

should be addressed with a nonlinear modeling method, i.e., NARMAX (Nonlinear 

AutoRegressive Moving Average model with eXogeneous inputs) method.  

 

• Enhanced Fabrication — IPMC is fully dependent upon the water, therefore new type 

of IPMC, i.e., encapsulated IPMC should be investigated for reducing any limitations 

occurring  from the environmental condition. Design of the end-effector or micro-tips 

will be helpful to manipulate the gripper. This is critical for ‘pick-and-place’ operation. 

The gripper can be made a modular, which can be easily interfaced with other 

manipulation systems. 

 

• Control Part — Feedback control systems based on nonlinear or adaptive control 

strategies might help to manipulate the gripper. Small gain theorem would also help to 

find out the robustness of the system for the input since the modeling has uncertainties. 

Gain scheduling would handle the non-linear behavior of IPMC or EAP better. 

 

• Microscale Force Analysis — An analysis of adhesion forces (Val der Waals force, 

electrostatic force, and surface tension force) is also required to manipulate microscale 

objects properly.  

 

 



 

 

117

• Unified System — After identifying a reliable process technique including the 

modeling and the controller is fully developed, no uses of the position and the force 

sensors are desirable as a module with a portable battery or a fuel cell.  
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Fig. A-2. A detailed diagram of PID controller. 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. A-3. Schematic I/O connections for the three-finger plant. 
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APPENDIX B 

MATLAB® CODES 

 

%STEPSPECS System Step Response Specifications. 

function [os,ts,tr]=stepspecs(t,y,yss,sp) 

% [OS,Ts,Tr]=STEPSPECS(T,Y,Yss,Sp) returns the percent overshoot OS, 

% settling time Ts, and rise time Tr from the step response data contained 

% in T and Y. 

% Y is a vector containing the system response at the associated time 

% points in the vector T. Yss is the steady state or final value of the 

% response. 

% If Yss is not given, Yss=Y(end) is assumed. Sp is the settling time 

% percentage. 

% If Sp is not given, Sp = 2% is assumed. The settling time is the time it 

% takes the response to converge within +-Sp percent of Yss. 

% The rise time is assumed to be the time for the response to initially 

% travel from 10% to 90% of the final value Yss. 

%-------------------------------------------------------------------------- 

if nargin<2 

   error('At Least Two Input Arguments are Required.') 

end 

if numel(t)~=length(t) || numel(y)~=length(y) 

   error('T and Y Must be Vectors.') 
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end 

if nargin==2 

   yss=y(end);   sp=2; 

elseif nargin==3 

   sp=2; 

end 

if isempty(yss) 

   yss=y(end); 

end 

if yss==0,   error('Yss Must be Nonzero.') 

end 

if yss<0 % handle case where step response may be negative 

   y=-y;   yss=-yss; 

end 

t=t(:); y=y(:); 

% find rise time using linear interpolation 

idx1=find(y>=yss/10,1); 

idx2=find(y>=9*yss/10,1); 

if isempty(idx1) || idx1==1 || isempty(idx2) 

   error('Not Enough Data to Find Rise Time.') 

end 

alpha=(yss/10-y(idx1-1))/(y(idx1)-y(idx1-1)); 

t1=t(idx1-1)+alpha*(t(idx1)-t(idx1-1)); 
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alpha=(9*yss/10-y(idx2-1))/(y(idx2)-y(idx2-1)); 

t2=t(idx2-1)+alpha*(t(idx2)-t(idx2-1)); 

tr=t2-t1; 

 

% find settling time using linear interpolation 

idx1=find(abs(y-yss)>abs(yss*sp/100),1,'last'); 

if isempty(idx1) || idx1(1)==length(y) 

   error('Not Enough Data to Find Settling Time.') 

end 

if y(idx1)>yss 

   alpha=(y(idx1)-(1+sp/100)*yss)/(y(idx1)-y(idx1+1)); 

   ts=t(idx1)+alpha*(t(idx1+1)-t(idx1)); 

else 

   alpha=((1-sp/100)*yss-y(idx1))/(y(idx1+1)-y(idx1)); 

   ts=t(idx1)+alpha*(t(idx1+1)-t(idx1)); 

end 

% find percent overshoot based on peak data value 

os=max(0,(max(y)-yss)/yss)*100; 
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% LQR with Observer 

clear all;close all;clc;  

format short g; 

% plant model  (Gtf5_0c    1 Hz ) 

n1=[0       97.931        93870  8.6441e+006  1.6758e+008];  

d1=[1       887.96  3.5973e+005  2.4088e+008   4.677e+008]; 

sys1=tf(n1,d1);z1=zero(sys1);p1=pole(sys1);dcgain(sys1); 

Ts=0.004;sysd=c2d(sys1,Ts); 

[Ad,Bd,Cd,Dd]=ssdata(sysd); 

% plant model with integral state 

Ai=[Ad(1,:) 0;Ad(2,:) 0;Ad(3,:) 0;Ad(4,:) 0;Cd*Ad 1]; 

Bi=[Bd(1);Bd(2);Bd(3);Bd(4);Cd*Bd]; 

Ci=[Cd 0]; 

cu=ctrb(Ai,Bi);rankcu=rank(cu) 

 

q=linspace(1e-3,1e+3,5);color='bgrcm'; 

for i=1:5, 

    R=1; 

    Q=q(i)*eye(5);   % define weights 

    [K,P,E]=dlqr(Ai,Bi,Q,R);   % compute LQR gain, r is fixed. 

    cle(:,i)=E;  % cle=E_cl 

    k(i,:)=K;        % row order 

    Kx=K(1:length(K)-1);Ki=K(5); 



 

 

135

    Ai_CL=Ai-Bi*K; 

    sysCL=ss(Ai_CL,[0;0;0;0;-1],Ci,0,'Ts',Ts); 

    t=[0:Ts:40-Ts]; 

    [y,t,x]=step(sysCL,t);yq(:,i)=y; 

     

    % select observer poles to be 10 times faster than controller 

    desiredpoles=E(1:length(Kx))'; 

    %desiredpoles=eig(Ad-Bd*Kxq)'; 

    dp_q(i,:)=desiredpoles;   % column order 

    observerpoles=0.1*desiredpoles;  obvp_q(i,:)=observerpoles;  % column order 

    % compute observer gain L 

    L=acker(Ad',Cd',observerpoles);    Lq(i,:)=L; 

     

%     [OSq,Tsq,Trq]=stepspecs(t,yq(:,i)); 

%     Mpq(i)=OSq; trq(i)=Trq; tsq(i)=Tsq; 

%     specs_q=[Mpq' trq' tsq']; 

    figure(1), 

    subplot(211),plot(t,yq(:,i),color(i));set(gca,'fontsize',12); 

    title('The closed-loop step response');ylabel('displacement (mm)'); 

    legend('q=100','q=200','q=300','q=400','q=500','Location','SouthEast');hold on; 

    control_inputq=-(Kx*x(:,1:4)'+Ki*x(:,5)')'; 

    ci_q(:,i)=control_inputq; 

    subplot(212),plot(t,ci_q(:,i),color(i));set(gca,'fontsize',12); 
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    title('The control input');xlabel('time (t)');ylabel('voltage (V)'); 

    legend('q=100','q=200','q=300','q=400','q=500');hold on; 

end 

 

K1=k(1,:);   

Kx=K1(1:4) 

Ki=K1(5) 

%-------------------------------------------------------------------------- 

format long g 

load ipmc5_0_0501 

% Take the data 

time =  ipmc5_0_0501.X.Data;                  % Change 

tnew=time(790:53.16/Ts)-time(790); 

% output 

y3=double(ipmc5_0_0501.Y(3).Data);            % experiment 

yout=y3(790:53.16/Ts);                        % rearrange 

%ymean=mean(yout(1250:10/Ts)); 

yout=yout-5; 

t0=0:Ts:10-Ts;t0=t0'; 

t1=t+10; 

t2=[t0; t1]; 

yq0=zeros(10/Ts,1); 

yq=[yq0;yq(:,1)]; 
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figure(2), 

%subplot(211),plot(t,yq(:,1),tnew,yout);set(gca,'fontsize',12); 

subplot(211),plot(tnew,yout,'b',t2,yq,'r');set(gca,'fontsize',12); 

title('The closed-loop step response');ylabel('displacement (mm)'); 

%legend('q=100, simulation','Location','SouthEast');hold on; 

% control input 

y1 =double(ipmc5_0_0501.Y(1).Data);             % experiment 

cinew=y1(790:53.16/Ts);                         % rearrange 

control_in=zeros(10/Ts,1);                      % simulation 

control_inputq=-(Kx*x(:,1:4)'+Ki*x(:,5)')'; 

ci_q=[control_in; control_inputq]; 

subplot(212),plot(tnew,cinew,'b',t2,ci_q,'r');set(gca,'fontsize',12); 

title('The control input');xlabel('time (t)');ylabel('voltage (V)'); 

%legend('q=100, simulation');hold on; 

% output 

figure(3),plot(tnew-8,yout,'b',t2-8,yq,'r');set(gca,'fontsize',12); 

xlabel('time (t)');xlim([0,10]);ylabel('displacement (mm)'); 

% control input 

figure(4),plot(tnew-8,cinew,'b',t2-8,ci_q,'r');set(gca,'fontsize',12); 

xlabel('time (t)');xlim([0,10]);ylabel('voltage (V)');ylim([-0.2,1.5]); 
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% system identification 

load ipmc01_1vchirp5hz0830;    % 1V 

font=14; 

% change the voltage amplitude 

Vmag1=1;    % 1 volt 

%-------------------------------------------------------------------------- 

input1=double(eap07_chirp5hzdelay0112.Y(1).Data)'; 

output1=double(eap07_chirp5hzdelay0112.Y(2).Data)'; 

time1=eap07_chirp5hzdelay0112.X.Data';  % Change 

chirp_input1=double(eap07_chirp5hzdelay0112.Y(3).Data)'; 

%-------------------------------------------------------------------------- 

Fs=1/eap07_chirp5hzdelay0112.X.Data(2)'; 

Fn=Fs/2;                         % Nyquist frequency 

Ts=1/Fs;                         % sampling period 

%-------------------------------------------------------------------------- 

i1=1:length(input1); i1=i1'; 

cu1=chirp_input1(i1); 

u1=input1(i1);                      % input1 

out1=output1(i1);                   % measured output1 

y1=-(out1-mean(out1(1:3/Ts))); 

t1=time1(i1);                       % sampled time1 step 

%-------------------------------------------------------------------------- 

% find out the exactly starting point of linear chirp signal 

f_start=0.001;                   % initial freq. 

f_finish=5;                       % target freq. 
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T=40;                       % target time1 

%-------------------------------------------------------------------------- 

t_final1=time1(length(t1)); 

tt1=0:Ts:t_final1; 

beta=(f_finish-f_start)/T;             % the rate of freq. increase 

%-------------------------------------------------------------------------- 

% % change the voltage amplitude 

% Vmag1=1;    % 1 volt 

%-------------------------------------------------------------------------- 

uu1=Vmag1*sin(2*pi*(f_start*tt1+beta/2*tt1.^2)); 

%-------------------------------------------------------------------------- 

% Find the actually applied time1 to DS1102 

% delayed by step function 

for m1=1:length(t1), 

    limit=10e-5; 

    if abs(u1(m1)-u1(m1+1))>limit, 

  % if u1(1)-limit < uu1(m1) & uu1(m1) < u1(1)+limit, 

disp('Magnitude of LCS at the right before applied step function'); 

        u_mag1=u1(m1)                    % magnitude of LCS 

        count1=m1                     %  

disp('The time1 at the right before applied step function'); 

        tx1=(count1-1)*Ts                 % actual time1 of LCS 

disp('The starting frequency'); 

        fx1=f_finish-beta*(T-tx1)        % initial freq. 

        ty1=T;                   % defined target time1       

disp('Target frequency at target time1');         
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        fy1=beta*(ty1-tx1)+fx1       % defined target freq. 

        break 

    end 

end 

% dSpace inherited delay in Simulink 

for n1=1:4*Fs, 

    limit=10e-5; 

    if cu1(1)-limit < uu1(n1) & uu1(n1) < cu1(1)+limit, 

disp('The intial magnitude of LCS from DS1102');         

        ui_mag1=uu1(n1)                     % magnitude of LCS 

        counti1=n1                         %  

disp('Inherited time1 in DS1102 comparing to an ideal LCS');     

        ttx1=counti1*Ts                    % inherited time1 from DS1102 

        ffx1=f_finish-beta*(T-ttx1)              % inherited starting freq.of LCS 

        tty1=T;                           % defined target time1       

        ffy1=beta*(tty1-ttx1)+ffx1           % defined target freq. 

        break 

    end 

end 

tnew1=t1(tx1/Ts:length(t1))-(tx1+Ts); 

unew1=u1(tx1/Ts:length(u1)); 

%-------------------------------------------------------------------------- 

% finding the starting point 

for j1=1:length(u1); 

    limit=10e-5; 

    if  abs(u1(j1)-u1(j1+1))>limit; 
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        u_start1=u1(j1); 

        k1=j1 

        u_k1=u1(k1); 

disp('The initial magnitude of applied LCS');  

        u_k11=u1(k1+1) 

        break 

    end 

end 

%-------------------------------------------------------------------------- 

t_t1=tx1+ttx1;                     % totally compensated starting time1 

% (dSpace inherited delay in Simulink + delayed by step function) 

disp('The same as u_k1') 

uu1(t_t1*Fs)                   

disp('The actual starting freq.');  

f_x1=f_finish-beta*(T-t_t1)             % actual initial freq. 

tty1=T;                          % defined target time1       

f_y1=f_x1+beta*(tty1-t_t1)          % defined target freq. 

%-------------------------------------------------------------------------- 

% input1 & output1 

in_data1=input1(k1+1:40*Fs-counti1); out_data1=y1(k1+1:40*Fs-counti1); 

t_data1=t1(k1+1:40*Fs-counti1)-t1(k1+1); 

%-------------------------------------------------------------------------- 

figure(1), 

plot(tnew1,unew1);set(gca,'fontsize',20);xlim([0 20]); 

title('Chirp signal input with 1V amplitude','fontsize',font); 

ylabel('voltage (V)');ylim([-1.1 1.1]); 
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set(gca,'Ytick',[-1 0 1]);set(gca,'Xtick',[0 10 20]); 

%-------------------------------------------------------------------------- 

% DFT of the signals 

X1 = in_data1; 

NFFT1=2.^(ceil(log(length(X1))/log(2)));    % Next highest power of 2 greater than length(X1) 

or equal to length(X1). 

FFTX1=fft(X1,NFFT1);                % Take FFT, padding with zeros. length(FFTX1)==NFFT1 

NumUniquePts1 = ceil((NFFT1+1)/2); % number of unique points 

FFTX1=FFTX1(1:NumUniquePts1);       % FFT is symmetric, throw away second half 

MX1=abs(FFTX1);                    % Take magnitude of X1 

MX1=MX1*2;                         % Multiply by 2 to take into account the fact that we threw out 

second half of FFTX1 above 

MX1(1)=MX1(1)/2;                   % Account for endpoint uniqueness 

MX1(length(MX1))=MX1(length(MX1))/2; % We know NFFT1 is even 

MX1=MX1/length(X1);                 % Scale the FFT so that it is not a function of the length of X1. 

f1=(0:NumUniquePts1-1)*2/NFFT1;     % This is an evenly spaced frequency vector with 

NumUniquePts1 points. 

f1=f1*Fn;                          % Multiply this by the Nyquist frequency (Fn==1/s sample freq.) 

%-------------------------------------------------------------------------- 

figure(2), 

plot(f1,MX1);set(gca,'fontsize',20); 

title('FFT of linear chirp signals','fontsize',font);xlim([0.626 5]); 

xlabel('frequency (Hz)');ylabel('magnitude (V-s)'); 

%-------------------------------------------------------------------------- 

% Y1 = y1; 

Y1=out_data1; 
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FFTY1=fft(Y1,NFFT1);                % Take FFT, padding with zeros. length(FFTY1)==NFFT1 

FFTY1=FFTY1(1:NumUniquePts1);       % FFT is symmetric, throw away second half 

MY1=abs(FFTY1);                    % Take magnitude of Y 

MY1=MY1*2;      % Multiply by 2 to take into account the fact that we threw out second half of 

FFTX1 above 

MY1(1)=MY1(1)/2;                   % Account for endpoint uniqueness 

MY1(length(MY1))=MY1(length(MY1))/2; % We know NFFT1 is even 

MY1=MY1/length(Y1);                % Scale the FFT so that it is not a function of the length of x. 

%-------------------------------------------------------------------------- 

figure(3),plot(f1,MY1);set(gca,'fontsize',font);xlim([0.626 5]); 

title('FFT magnitudes of the measured outputs','fontsize',font); 

xlabel('frequency (Hz)');ylabel('magnitude (mm-s)'); 

%-------------------------------------------------------------------------- 

% Power Spectrum Density1 analysis 

N1 = NFFT1; % N = length(t1); 

% The power spectrum, a measurement of the power at various frequencies, 

Pxx1=MX1.*conj(MX1)/N1; 

Pyy1=MY1.*conj(MY1)/N1; 

Wxy1=sqrt(abs(Pyy1./Pxx1)); 

%-------------------------------------------------------------------------- 

% compare the power spectrum tf with the tf estimate 

% Transfer Function Estimate 

u1=X1;y1=Y1; 

[txy1,fxy1]=tfe(u1,y1,2*length(X1),Fs,2*length(X1)); 

%-------------------------------------------------------------------------- 

% construct data sets 
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ksy1=iddata(out_data1,in_data1,Ts); 

zm1=dtrend(ksy1);                 % remove linear drift 

%-------------------------------------------------------------------------- 

m34_1=bj(zm1,[4 4 4 4 1]); 

B34_1=m34_1.b; C34_1=m34_1.c; D34_1=m34_1.d; F34_1=m34_1.f; 

tfm34_1=tf(m34_1); 

%-------------------------------------------------------------------------- 

figure(4), 

subplot(313),plot(time1, input1);set(gca,'fontsize',font);xlim([0 10]);ylim([-1.1 1.1]); 

title('The real applied chirp signal input (1 V)','fontsize',font); 

xlabel('time (s)');ylabel('voltage (V)'); 

subplot(312),plot(time1, cu1);set(gca,'fontsize',font);xlim([0 10]);ylim([-1.1 1.1]); 

title('The applied chirp signal input without adding the step input','fontsize',font); 

ylabel('voltage (V)'); 

subplot(311),plot(tt1, uu1);set(gca,'fontsize',font);xlim([0 10]);ylim([-1.1 1.1]); 

title('The theoretical chirp signal input','fontsize',font); 

ylabel('voltage (V)'); 

%-------------------------------------------------------------------------- 

% k1*Ts is delayed by Step function 

% counti1*Ts is delayed inherently by chirp signal Simulink compared w/ the original chirp 

signal 

% (counti1+k1+1)*Ts*beta is the real starting frequency 

%-------------------------------------------------------------------------- 

figure(7),compare(zm1,m34_1);set(gca,'fontsize',font); 

XT1=(40*Fs-counti1)*Ts-(k1+1)*Ts;  % time1 for the chirp signal range 

title('BJ (1V)','fontsize',font);xlabel('time (s)');ylabel('output displacement (mm)');xlim([0 XT1]); 
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legend('measured output','BJ Fit: 34.32%'); 

%-------------------------------------------------------------------------- 

% discrete system 

Gd34_1s=minreal(tfm34_1(1)); 

[zd34_1s,pd34_1s,kd34_1s]=zpkdata(Gd34_1s,'v'); 

 

[numd34_1s,dend34_1s]=tfdata(Gd34_1s); 

numd34_1s=numd34_1s{1};     % numerator  

dend34_1s=dend34_1s{1};     % denominator 

 

% continuous system tf and noise tf 

Gc34_1s=d2c(Gd34_1s,'tustin');zc34_1s=zero(Gc34_1s);pc34_1s=pole(Gc34_1s);     % 

continuous system tf 

% Gc34_1n=d2c(Gd34_1n,'tustin');zc34_1n=zero(Gc34_1n);pc34_1n=pole(Gc34_1n);     % 

continuous noise tf 

%-------------------------------------------------------------------------- 

figure(10), 

[mag34_1,phase34_1,w34_1]=dbode(numd34_1s,dend34_1s,Ts); % 

T=[mag34_1,phase34_1,w34_1]; 

semilogx(f1,20*log10(Wxy1(1:N1/2+1)),'b:',w34_1/(2*pi),20*log10(mag34_1),'k'); 

set(gca,'fontsize',font);xlim([0.626 5]); 

title('Comparison of Bode plots of BJ method with PSD analysis','fontsize',font); 

xlabel('frequency (Hz)'); 

ylabel('magnitude (dB)');legend('PSD TF (1V)','Bode (BJ)'); 

%-------------------------------------------------------------------------- 

figure(11), 
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plot(f1,20*log10(Wxy1(1:N1/2+1))); 

set(gca,'fontsize',font);xlim([0.626 5]);title('PSD TF','fontsize',font); 

xlabel('frequency (Hz)');ylabel('magnitude (dB)'); 

%-------------------------------------------------------------------------- 

% DFT of the signals 

% simulation output 

[ysim1,tsim1]=lsim(Gd34_1s,in_data1,t_data1); 

FFTYsim1=fft(ysim1,NFFT1);                % Take FFT, padding with zeros. 

length(FFTYsim)==NFFT 

FFTYsim1=FFTYsim1(1:NumUniquePts1);       % FFT is symmetric, throw away second half 

MYsim1=abs(FFTYsim1);                    % Take magnitude of Ysim 

MYsim1=MYsim1*2;      % Multiply by 2 to take into account the fact that we threw out second 

half of FFTX above 

MYsim1(1)=MYsim1(1)/2;                   % Account for endpoint uniqueness 

MYsim1(length(MYsim1))=MYsim1(length(MYsim1))/2; % We know NFFT is even 

MYsim1=MYsim1/length(ysim1);                % Scale the FFT so that it is not a function of the 

length of x. 

%-------------------------------------------------------------------------- 

figure(14), 

plot(f1,MYsim1,'b:',f1,MY1,'r-.');set(gca,'fontsize',font); 

title('The comparison of the experimental results to the simulated results in the frequecy 

domain','fontsize',font);  

xlabel('frequency (Hz)');ylabel('magnitude (mm-s)');xlim([0.626 5]); 

%set(gca,'fontsize',12); 

legend('1V simulated output (BJ)','1V experimental output'); 

% set(gca,'fontsize',20); 



 

 

147

% set(gca,'Xtick',[0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1]); 

 

figure(15), 

error1=abs(MY1-MYsim1); 

plot(f1,error1);set(gca,'fontsize',font); 

title('Errors','fontsize',font);xlabel('frequency (Hz)');ylabel('magnitude (mm-s)'); 

xlim([0.626 5]);%ylim([-0.01 0.2]); 

 

 

% Design the position controller 

clear all;close all;clc; 

% format long e; 

Ts=0.004; 

z=tf('z',Ts); 

Cz=pid 

Lz=Cz*Pz 

Lz=minreal(Lz,0.001) 

w={0.01,10} 

[mag,phase,w]=bode(Lz); 

% 1st method with the margin command 

kc=margin(mag,phase-60,w) 

[numz,denz]=tfdata(Lz,'v') 

[mag,phase,w]=dbode(numz,denz,Ts,w) 

% 2nd method with a table 

T=[mag,phase,w/(2*pi)] 

%  



 

 

148

kc 

% Removing the disturbance effect 

Cz=kc*pid;      % bode1_ipmc01% 

% Cz=(25/15)*kc*pid     % bode2_ipmc01 

Cz=minreal(Cz) 

Lz=Cz*Pz 

Lz=minreal(Lz) 

 

% figure(1),margin(Lz) 

% figure(2),bode(Lz_cl) 

% [numz_cl,denz_cl]=tfdata(Lz_cl,'v') 

% [mag_cl,phase_cl,w_cl]=dbode(numz_cl,denz_cl,Ts,w); 

% T_cl=[mag_cl,phase_cl,w_cl] 

 

Lz_cl=feedback(Lz,1,-1); 

pole_Lz_cl=pole(Lz_cl);zero_Lz_cl=zero(Lz_cl); 

Pc=minreal(d2c(Pz,'zoh')); 

pole_Pc=pole(Pc);zero_Pc=zero(Pc); 

Cc=minreal(d2c(Cz,'zoh')); 

pole_Cc=pole(Cc);zero_Cc=zero(Cc); 

Lc=minreal(d2c(Lz,'zoh')); 

pole_Lc=pole(Lc);zero_Lc=zero(Lc); 

 

w_Lc=linspace(0.01,10,100) 

[mag_Lc,phase_Lc]=bode(Lc,w_Lc); 

newphase=squeeze(phase_Lc)-360; 
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% figure(3), 

% subplot(211),semilogx(squeeze(w_Lc),20*log10(squeeze(mag_Lc))); 

% xlim([0.1 10]);ylim([-40 20]); 

% subplot(212),semilogx(squeeze(w_Lc),newphase+720); 

% xlim([0.1 10]);ylim([170 280]); 

figure(2),margin(Lc) 

 

Lc_cl=feedback(Lc,1,-1);        % closed-loop tranfer function 

pole_Lc_cl=pole(Lc_cl);zero_Lc_cl=zero(Lc_cl); 

w_range=logspace(-1,1); 

figure(3),bodemag(Lc_cl,w_range) 

 

[mag_cl,phase_cl,w_cl]=bode(Lc_cl); 

format short g; 

% T_cl=[squeeze(mag_cl),squeeze(phase_cl),squeeze(w_cl)] 

T_cl=[squeeze(mag_cl),squeeze(w_cl)] 

% 0.70174       1.3524                    % 0.7095       1.2187 

% Wbw=1.3524                                      %rad/sec 

% fbw=Wbw/(2*pi) %= 0.21524                                 %=0.19396 

 

figure(4),step(Lz_cl) 

[yout,tout]=step(Lz_cl); 

figure(3),plot(tout,yout) 
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