3,210 research outputs found
Holographic Algorithm with Matchgates Is Universal for Planar CSP Over Boolean Domain
We prove a complexity classification theorem that classifies all counting
constraint satisfaction problems (CSP) over Boolean variables into exactly
three categories: (1) Polynomial-time tractable; (2) P-hard for general
instances, but solvable in polynomial-time over planar graphs; and (3)
P-hard over planar graphs. The classification applies to all sets of local,
not necessarily symmetric, constraint functions on Boolean variables that take
complex values. It is shown that Valiant's holographic algorithm with
matchgates is a universal strategy for all problems in category (2).Comment: 94 page
Classification of 3-dimensional integrable scalar discrete equations
We classify all integrable 3-dimensional scalar discrete quasilinear
equations Q=0 on an elementary cubic cell of the 3-dimensional lattice. An
equation Q=0 is called integrable if it may be consistently imposed on all
3-dimensional elementary faces of the 4-dimensional lattice.
Under the natural requirement of invariance of the equation under the action
of the complete group of symmetries of the cube we prove that the only
nontrivial (non-linearizable) integrable equation from this class is the
well-known dBKP-system. (Version 2: A small correction in Table 1 (p.7) for n=2
has been made.) (Version 3: A few small corrections: one more reference added,
the main statement stated more explicitly.)Comment: 20 p. LaTeX + 1 EPS figur
Clustering Complex Zeros of Triangular Systems of Polynomials
This paper gives the first algorithm for finding a set of natural
-clusters of complex zeros of a triangular system of polynomials
within a given polybox in , for any given . Our
algorithm is based on a recent near-optimal algorithm of Becker et al (2016)
for clustering the complex roots of a univariate polynomial where the
coefficients are represented by number oracles.
Our algorithm is numeric, certified and based on subdivision. We implemented
it and compared it with two well-known homotopy solvers on various triangular
systems. Our solver always gives correct answers, is often faster than the
homotopy solver that often gives correct answers, and sometimes faster than the
one that gives sometimes correct results.Comment: Research report V6: description of the main algorithm update
- …
