3,210 research outputs found

    Holographic Algorithm with Matchgates Is Universal for Planar #\#CSP Over Boolean Domain

    Full text link
    We prove a complexity classification theorem that classifies all counting constraint satisfaction problems (#\#CSP) over Boolean variables into exactly three categories: (1) Polynomial-time tractable; (2) #\#P-hard for general instances, but solvable in polynomial-time over planar graphs; and (3) #\#P-hard over planar graphs. The classification applies to all sets of local, not necessarily symmetric, constraint functions on Boolean variables that take complex values. It is shown that Valiant's holographic algorithm with matchgates is a universal strategy for all problems in category (2).Comment: 94 page

    Classification of 3-dimensional integrable scalar discrete equations

    Full text link
    We classify all integrable 3-dimensional scalar discrete quasilinear equations Q=0 on an elementary cubic cell of the 3-dimensional lattice. An equation Q=0 is called integrable if it may be consistently imposed on all 3-dimensional elementary faces of the 4-dimensional lattice. Under the natural requirement of invariance of the equation under the action of the complete group of symmetries of the cube we prove that the only nontrivial (non-linearizable) integrable equation from this class is the well-known dBKP-system. (Version 2: A small correction in Table 1 (p.7) for n=2 has been made.) (Version 3: A few small corrections: one more reference added, the main statement stated more explicitly.)Comment: 20 p. LaTeX + 1 EPS figur

    Clustering Complex Zeros of Triangular Systems of Polynomials

    Get PDF
    This paper gives the first algorithm for finding a set of natural ϵ\epsilon-clusters of complex zeros of a triangular system of polynomials within a given polybox in Cn\mathbb{C}^n, for any given ϵ>0\epsilon>0. Our algorithm is based on a recent near-optimal algorithm of Becker et al (2016) for clustering the complex roots of a univariate polynomial where the coefficients are represented by number oracles. Our algorithm is numeric, certified and based on subdivision. We implemented it and compared it with two well-known homotopy solvers on various triangular systems. Our solver always gives correct answers, is often faster than the homotopy solver that often gives correct answers, and sometimes faster than the one that gives sometimes correct results.Comment: Research report V6: description of the main algorithm update
    corecore