4 research outputs found

    Distributed Algorithms for Stochastic Source Seeking With Mobile Robot Networks

    Get PDF
    Autonomous robot networks are an effective tool for monitoring large-scale environmental fields. This paper proposes distributed control strategies for localizing the source of a noisy signal, which could represent a physical quantity of interest such as magnetic force, heat, radio signal, or chemical concentration. We develop algorithms specific to two scenarios: one in which the sensors have a precise model of the signal formation process and one in which a signal model is not available. In the model-free scenario, a team of sensors is used to follow a stochastic gradient of the signal field. Our approach is distributed, robust to deformations in the group geometry, does not necessitate global localization, and is guaranteed to lead the sensors to a neighborhood of a local maximum of the field. In the model-based scenario, the sensors follow a stochastic gradient of the mutual information (MI) between their expected measurements and the expected source location in a distributed manner. The performance is demonstrated in simulation using a robot sensor network to localize the source of a wireless radio signal

    Mobile robotic network deployment for intruder detection and tracking

    Get PDF
    This thesis investigates the problem of intruder detection and tracking using mobile robotic networks. In the first part of the thesis, we consider the problem of seeking an electromagnetic source using a team of robots that measure the local intensity of the emitted signal. We propose a planner for a team of robots based on Particle Swarm Optimization (PSO) which is a population based stochastic optimization technique. An equivalence is established between particles generated in the traditional PSO technique, and the mobile agents in the swarm. Since the positions of the robots are updated using the PSO algorithm, modifications are required to implement the PSO algorithm on real robots to incorporate collision avoidance strategies. The modifications necessary to implement PSO on mobile robots, and strategies to adapt to real environments are presented in this thesis. Our results are also validated on an experimental testbed. In the second part, we present a game theoretic framework for visibility-based target tracking in multi-robot teams. A team of observers (pursuers) and a team of targets (evaders) are present in an environment with obstacles. The objective of the team of observers is to track the team of targets for the maximum possible time. While the objective of the team of targets is to escape (break line-of-sight) in the minimum time. We decompose the problem into two layers. At the upper level, each pursuer is allocated to an evader through a minimum cost allocation strategy based on the risk of each evader, thereby, decomposing the agents into multiple single pursuer-single evader pairs. Two decentralized allocation strategies are proposed and implemented in this thesis. At the lower level, each pursuer computes its strategy based on the results of the single pursuer-single evader target-tracking problem. We initially address this problem in an environment containing a semi-infinite obstacle with one corner. The pursuer\u27s optimal tracking strategy is obtained regardless of the evader\u27s strategy using techniques from optimal control theory and differential games. Next, we extend the result to an environment containing multiple polygonal obstacles. We construct a pursuit field to provide a guiding vector for the pursuer which is a weighted sum of several component vectors. The performance of different combinations of component vectors is investigated. Finally, we extend our work to address the case when the obstacles are not polygonal, and the observers have constraints in motion
    corecore