1,636 research outputs found

    Extremum Seeking-based Iterative Learning Linear MPC

    Full text link
    In this work we study the problem of adaptive MPC for linear time-invariant uncertain models. We assume linear models with parametric uncertainties, and propose an iterative multi-variable extremum seeking (MES)-based learning MPC algorithm to learn on-line the uncertain parameters and update the MPC model. We show the effectiveness of this algorithm on a DC servo motor control example.Comment: To appear at the IEEE MSC 201

    3-D Velocity Regulation for Nonholonomic Source Seeking Without Position Measurement

    Full text link
    We consider a three-dimensional problem of steering a nonholonomic vehicle to seek an unknown source of a spatially distributed signal field without any position measurement. In the literature, there exists an extremum seeking-based strategy under a constant forward velocity and tunable pitch and yaw velocities. Obviously, the vehicle with a constant forward velocity may exhibit certain overshoots in the seeking process and can not slow down even it approaches the source. To resolve this undesired behavior, this paper proposes a regulation strategy for the forward velocity along with the pitch and yaw velocities. Under such a strategy, the vehicle slows down near the source and stays within a small area as if it comes to a full stop, and controllers for angular velocities become succinct. We prove the local exponential convergence via the averaging technique. Finally, the theoretical results are illustrated with simulations.Comment: submitted to IEEE TCST;12 pages, 10 figure

    Extremum-Seeking Guidance and Conic-Sector-Based Control of Aerospace Systems

    Full text link
    This dissertation studies guidance and control of aerospace systems. Guidance algorithms are used to determine desired trajectories of systems, and in particular, this dissertation examines constrained extremum-seeking guidance. This type of guidance is part of a class of algorithms that drives a system to the maximum or minimum of a performance function, where the exact relation between the function's input and output is unknown. This dissertation abstracts the problem of extremum-seeking to constrained matrix manifolds. Working with a constrained matrix manifold necessitates mathematics other than the familiar tools of linear systems. The performance function is optimized on the manifold by estimating a gradient using a Kalman filter, which can be modified to accommodate a wide variety of constraints and can filter measurement noise. A gradient-based optimization technique is then used to determine the extremum of the performance function. The developed algorithms are applied to aircraft and spacecraft. Control algorithms determine which system inputs are required to drive the systems outputs to follow the trajectory given by guidance. Aerospace systems are typically nonlinear, which makes control more challenging. One approach to control nonlinear systems is linear parameter varying (LPV) control, where well-established linear control techniques are extended to nonlinear systems. Although LPV control techniques work quite well, they require an LPV model of a system. This model is often an approximation of the real nonlinear system to be controlled, and any stability and performance guarantees that are derived using the system approximation are usually void on the real system. A solution to this problem can be found using the Passivity Theorem and the Conic Sector Theorem, two input-output stability theories, to synthesize LPV controllers. These controllers guarantee closed-loop stability even in the presence of system approximation. Several control techniques are derived and implemented in simulation and experimentation, where it is shown that these new controllers are robust to plant uncertainty.PHDAerospace EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/143993/1/aexwalsh_1.pd

    Sampled-data extremum-seeking framework for constrained optimization of nonlinear dynamical systems

    Get PDF
    Most extremum-seeking control (ESC) approaches focus solely on the problem of finding the extremum of some unknown, steady-state input–output map, providing parameter settings that lead to optimal steady-state system performance. However, many industrial applications also have to deal with constraints on operating conditions due to, e.g., actuator limitations, limitations on tunable system parameters, or constraints on measurable variables. In particular, constraints on measurable variables are typically unknown in terms of their relationship with the tunable system parameters. In addition, the constraints on system inputs as a result of the constraints on measurable variables may conflict with the otherwise optimal operational condition, and hence should be taken into account in the data-based optimization approach. In this work, we propose a sampled-data extremum-seeking framework for the constrained optimization of a class of nonlinear dynamical systems with measurable constrained variables. In this framework, barrier function methods are employed, exploiting both the objective function and constraint functions which are available through output measurement only. We show, under the assumption that the parametric initialization yield operating conditions that do not violate the constraints, that (1) the resulting closed-loop dynamics is stable, (2) constraint satisfaction of the inputs is guaranteed for all iterations of the optimization process, and (3) constrained optimization is achieved. We illustrate the working principle of the proposed framework by means of an industrial case study of the constrained optimization of extreme ultraviolet light generation in a laser-produced plasma source within a state-of-the-art lithography system.</p

    Optimization Algorithms as Robust Feedback Controllers

    Full text link
    Mathematical optimization is one of the cornerstones of modern engineering research and practice. Yet, throughout all application domains, mathematical optimization is, for the most part, considered to be a numerical discipline. Optimization problems are formulated to be solved numerically with specific algorithms running on microprocessors. An emerging alternative is to view optimization algorithms as dynamical systems. Besides being insightful in itself, this perspective liberates optimization methods from specific numerical and algorithmic aspects and opens up new possibilities to endow complex real-world systems with sophisticated self-optimizing behavior. Towards this goal, it is necessary to understand how numerical optimization algorithms can be converted into feedback controllers to enable robust "closed-loop optimization". In this article, we focus on recent control designs under the name of "feedback-based optimization" which implement optimization algorithms directly in closed loop with physical systems. In addition to a brief overview of selected continuous-time dynamical systems for optimization, our particular emphasis in this survey lies on closed-loop stability as well as the robust enforcement of physical and operational constraints in closed-loop implementations. To bypass accessing partial model information of physical systems, we further elaborate on fully data-driven and model-free operations. We highlight an emerging application in autonomous reserve dispatch in power systems, where the theory has transitioned to practice by now. We also provide short expository reviews of pioneering applications in communication networks and electricity grids, as well as related research streams, including extremum seeking and pertinent methods from model predictive and process control, to facilitate high-level comparisons with the main topic of this survey

    Sampled-data extremum-seeking framework for constrained optimization of nonlinear dynamical systems

    Get PDF
    Most extremum-seeking control (ESC) approaches focus solely on the problem of finding the extremum of some unknown, steady-state input–output map, providing parameter settings that lead to optimal steady-state system performance. However, many industrial applications also have to deal with constraints on operating conditions due to, e.g., actuator limitations, limitations on tunable system parameters, or constraints on measurable variables. In particular, constraints on measurable variables are typically unknown in terms of their relationship with the tunable system parameters. In addition, the constraints on system inputs as a result of the constraints on measurable variables may conflict with the otherwise optimal operational condition, and hence should be taken into account in the data-based optimization approach. In this work, we propose a sampled-data extremum-seeking framework for the constrained optimization of a class of nonlinear dynamical systems with measurable constrained variables. In this framework, barrier function methods are employed, exploiting both the objective function and constraint functions which are available through output measurement only. We show, under the assumption that the parametric initialization yield operating conditions that do not violate the constraints, that (1) the resulting closed-loop dynamics is stable, (2) constraint satisfaction of the inputs is guaranteed for all iterations of the optimization process, and (3) constrained optimization is achieved. We illustrate the working principle of the proposed framework by means of an industrial case study of the constrained optimization of extreme ultraviolet light generation in a laser-produced plasma source within a state-of-the-art lithography system.</p

    Distributed Extremum Seeking Control for a Variable Refrigerant Flow System

    Get PDF
    The variable refrigerant flow (VRF) technology has facilitated the development of multi-split ductless air conditioning systems, in which multiple indoor units (IDU) are used to regulate the refrigerant flow to achieve individualized zoning control. Model based control for VRF system demands for more modeling efforts in part due to diverse configuration, as well as changes in load and ambient conditions. As a model-free control strategy, Extremum Seeking Control (ESC) has been investigated for VRF systems. Dong et al. (2015) applied the standard centralized ESC scheme to a VRF system that consists of one outdoor unit (ODU) and four IDU’s. Simulation results have indicated the effectiveness of such strategy. As the number of IDU’s increases, the complexity of centralized controllers will increase accordingly. Therefore distributed ESC becomes a natural consideration for VRF systems with large number of IDU’s. In this paper, the Shashahani gradient based distributed ESC scheme proposed by Poveda and Quijano (2013, 2015), is applied to the four-zone VRF system simulated by Dong et al. (2015). In particular, this scheme is enhanced by appending a band-pass filter array at the output to achieve a better “isolation†among individual input channels. A single-input ESC is applied to the ODU, while the distributed ESC is applied to the four IDU’s with each acting as an agent. For each agent, the respective power consumption is used as feedback. The objective is to minimize the total power consumption of all agents. For the ODU ESC, the compressor suction pressure (PCS) set-point is employed as the manipulative input. For the IDU DESC, the evaporator superheat (SH) set-point is used as the manipulative input for each IDU agent. The distributed ESC scheme assumes full information communication among all IDU’s. Simulation study is performed to evaluate the proposed strategy with the Modelica based dynamic simulation model developed by Dong et al. (2015). The ESC is designed under the ambient condition of 35oC and 40 %RH, respectively. The initial temperature of all four IDUs zone is 29oC, and the zone temperature set-point is 26oC. The heat loads for IDU1 through IDU4 are 3000W, 2600W, 2400W and 2000W, respectively. It takes the average total power about 10000 seconds to converge to about 3200W in steady state, with PCS around 13bar, and the SH values of IDU1 through IDU4 at 4.5oC, 4.5oC, 6oC, and 5.5oC, respectively. The total power consumption was decreased from 4500 W to 3200 W, i.e. by 29%. In comparison with the centralized ESC Dong et al. (2015), the steady state error of total power is less than 50w. Work is under way to improve transient and steady-state performance, as well as simulation of other operation modes.  Â
    • …
    corecore