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a b s t r a c t

Most extremum-seeking control (ESC) approaches focus solely on the problem of finding the extremum
of some unknown, steady-state input–output map, providing parameter settings that lead to optimal
steady-state system performance. However, many industrial applications also have to deal with
constraints on operating conditions due to, e.g., actuator limitations, limitations on tunable system
parameters, or constraints on measurable variables. In particular, constraints on measurable variables
are typically unknown in terms of their relationship with the tunable system parameters. In addition,
the constraints on system inputs as a result of the constraints on measurable variables may conflict
with the otherwise optimal operational condition, and hence should be taken into account in the
data-based optimization approach. In this work, we propose a sampled-data extremum-seeking
framework for the constrained optimization of a class of nonlinear dynamical systems with measurable
constrained variables. In this framework, barrier function methods are employed, exploiting both the
objective function and constraint functions which are available through output measurement only.
We show, under the assumption that the parametric initialization yield operating conditions that
do not violate the constraints, that (1) the resulting closed-loop dynamics is stable, (2) constraint
satisfaction of the inputs is guaranteed for all iterations of the optimization process, and (3) constrained
optimization is achieved. We illustrate the working principle of the proposed framework by means of
an industrial case study of the constrained optimization of extreme ultraviolet light generation in a
laser-produced plasma source within a state-of-the-art lithography system.

© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Performance optimization of complex nonlinear dynamical
ystems is a challenging task. Namely, most (numerical) op-
imization techniques such as, e.g., gradient-descent methods,
ewton and quasi-Newton methods, interior-point methods, and
equential Quadratic Programming (SQP), usually rely on an accu-
ate model of the process to be optimized (Boyd & Vandenberghe,
009), while such a model can be hard or impossible to obtain
or complex nonlinear systems. Nevertheless, the steady-state
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in revised form by Associate Editor Debasish Chatterjee under the direction of
Editor Daniel Liberzon.
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input–output behavior of many of such systems possesses opti-
mal performance under particular operating conditions and we
often desire to find such optimal operating conditions. Based
solely on output measurements and without using any model
knowledge, extremum-seeking control (ESC) is able to optimize the
performance of such complex systems in real-time by adjusting
these operating conditions and driving the system into a neigh-
borhood of its optimal steady-state input–output behavior (Krstić
& Wang, 2000; Teel & Popović, 2001).

Along with the pioneering work done in Krstić and Wang
(2000) on convergence proofs for continuous-time extremum-
seeking schemes based on sinusoidal perturbations, a notable
contribution to the field of extremum-seeking control was made
in Teel and Popović (2001). In Teel and Popović (2001), it was
shown that under assumptions on the asymptotic stability of
both the system and on a discrete-time nonlinear programming
method used for optimization, extremum seeking can be achieved
within a periodic sampled-data framework. This framework al-
lows the use of a wide class of smooth and nonsmooth optimiza-
tion algorithms for achieving optimization of general nonlinear
icle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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ystems. In Kvaternik and Pavel (2011), closed-loop stability of
he sampled-data ESC scheme has been studied from an intercon-
ected systems’ theory point-of-view, in which stability results
re obtained by imposing stronger conditions on the nonlinear
rogramming methods than done in Teel and Popović (2001).
Extensions of the framework in Teel and Popović (2001) are

rovided in Khong, Nešić, Tan, and Manzie (2013a, 2013b). The
ork in Khong et al. (2013a) utilizes a trajectory-based approach
o prove semi-global practical asymptotic stability of the pro-
osed sampled-data extremum-seeking schemes as opposed to
he Lyapunov-type arguments used in Teel and Popović (2001).
he former exploits the notion of multi-step consistency (see,
.g., Nešić, Teel, & Kokotović, 1999) while the latter exploits
loseness of solutions of a differential inclusion over a single
ime step. As such, the framework in Khong et al. (2013a) allows
o use a broader class of optimization algorithms, including al-
orithms which do not admit a state-update realization and/or
yapunov function. Subsequently in Khong et al. (2013b), the
ramework in Khong et al. (2013a) was extended to a more
eneric framework, which in addition to gradient-based opti-
ization algorithms, also encompasses sampling-based (global)
ptimization methods capable of non-convex optimization, en-
bling extremum seeking for an even wider class of problems.
or example, in Khong, Nešić, Manzie and Tan (2013) and Nešić,
guyen, Tan, and Manzie (2013), two sampling-based algorithms
re presented that are able to achieve (a weaker type of) conver-
ence to a global optimum.
Most extremum-seeking approaches, whether it is of the

ontinuous-time type as in Krstić and Wang (2000) or the
ampled-data type as in Khong et al. (2013a) and Teel and Popović
2001), focus solely on the problem of finding the extremum
f some unknown steady-state input–output map, providing pa-
ameter settings that lead to optimal steady-state system perfor-
ance. However, many industrial applications also have to deal
ith constraints on operating conditions due to, e.g., actuator

imitations, limitations on design or tunable system parameters,
r constraints on measurable signals. The constraints on system
nputs as a result of measurable constrained variables may con-
lict with the otherwise optimal operational condition, and hence
hould be taken into account in the data-based optimization
pproach.
In terms of dealing with constraints in extremum-seeking

chemes, existing approaches can be divided into two main cat-
gories: (i) approaches that assume a-priori knowledge on con-
trained operating conditions in the form of explicit constraint
unctions, and (ii) approaches that deal with unknown but mea-
urable constraint functions. Extremum-seeking approaches that
xplicitly deal with known constraint functions are considered in,
.g., DeHaan and Guay (2005), Mills and Krstić (2014) and Tan,
i, and Mareels (2013). In DeHaan and Guay (2005) and Tan
t al. (2013), penalty/barrier functions are employed to adapt
he search space so as not to violate the constraints. Another
pproach proposed in Tan et al. (2013) employs an anti-windup
cheme to prevent the optimizer from leaving the known ad-
issible search space. In Mills and Krstić (2014), constraint sat-

sfaction is achieved by employing a projection operator in the
xtremum-seeking scheme. Although not aimed at constrained
ptimization, the sampling-based algorithms in Khong, Nešić,
anzie et al. (2013) and Nešić et al. (2013) operate in an a-
riori defined compact (input) set, i.e., these allow incorporation
f known (input) constraints to adjust the search space.
Extremum-seeking approaches for (strictly) convex optimiza-

ion problems with unknown but measurable constraint functions
re considered in, e.g., Atta, Guay, and Lucchese (2019), Dürr,
eng, and Ebenbauer (2013), Guay, Moshksar, and Dochain

2014), Labar, Garone, Kinnaert, and Ebenbauer (2019), Liao,

2

Manzie, Chapman, and Alpcan (2019), Ramos, Manzie, and
Shekhar (2017), Srinivasan, Biegler, and Bonvin (2008) and van
der Weijst, van Keulen, and Willems (2019), albeit in the
continuous-time extremum-seeking setting. In Guay et al. (2014),
Labar et al. (2019) and Srinivasan et al. (2008), a combined
barrier/penalty function approach is employed to transform the
constrained optimization problem into an unconstrained problem
using an augmented cost. The methods allow small violations of
the constraints (during transients) to avoid difficulties in practical
applications, e.g., due to the presence of uncertainty and distur-
bances, or to relax the choice of initial, possibly inadmissible,
inputs. Optimization is accomplished by estimation of the gra-
dient of the augmented cost and a gradient-based optimization
algorithm. In Dürr et al. (2013), a combination of the classi-
cal extremum-seeking approach as in Krstić and Wang (2000)
and so-called saddle point algorithms as in Dürr and Ebenbauer
(2011) are used to find the constrained minimizer. In Atta et al.
(2019), Liao et al. (2019), Ramos et al. (2017), and van der Weijst
et al. (2019), gradient-based extremum-seeking approaches are
employed that combines the gradients of the objective function
and the constraint functions to deal with measurable constraints.
In Liao et al. (2019), Ramos et al. (2017), and van der Weijst et al.
(2019) a so-called transition function is designed that enables a
gradient-based optimizer to switch smoothly between the gra-
dient of the to-be-optimized objective function, typically when
constraints are not violated, and the gradient of the constraint
functions when the constraints are violated. In Atta et al. (2019),
a projection operator is employed that finds a feasible direction
without constraint violation.

In this work, we focus on sampled-data extremum-seeking
schemes as in Teel and Popović (2001), as opposed to continuous-
time extremum-seeking schemes as in Krstić and Wang (2000).
Namely, sampled-data schemes are compelling given the po-
tential of including diverse types of optimization algorithms,
see, e.g., Khong et al. (2013b), Teel (2000a, 2000b) and Teel
and Popović (2001). Here, we extend the class of optimization
algorithms in Teel and Popović (2001) to a class of constrained
optimization algorithms to achieve extremum-seeking in the
presence of unknown but measurable constraints by employing
barrier function methods. Moreover, we solve the problem of
finding optimal system inputs for which (steady-state) constraint
satisfaction can only be assessed on the basis of measurable
constraint functions.

The main contributions of this work can be summarized as
follows. First, we extend the class of optimization problems as
studied in Teel and Popović (2001) to a class of constrained opti-
mization problems, for which we consider a class of dynamical
systems where both a to-be-optimized objective function and
constraint functions are available through measurement only.
Second, we extend the class of smooth and nonsmooth optimiza-
tion algorithms to facilitate extremum-seeking in the presence
of unknown but measurable constraints by employing barrier
function methods. Third, under the assumption that the para-
metric initialization yield operating conditions that do not violate
the constraints on measurable constraint functions in steady-
state, we (1) prove closed-loop stability of the interconnection
between the class of dynamical systems and the proposed class
of constrained optimization algorithms, (2) show strict constraint
satisfaction of the inputs for all iterations of the optimization
process, and (3) constrained optimization is achieved. Fourth, we
illustrate the working principle of the proposed framework by
means of a representative industrial case study of the constrained
optimization of extreme ultraviolet (EUV) light generation in
a laser produced plasma (LPP) source within a state-of-the-art
lithography system.

Preliminary results of this work were published in Hazeleger,

Nešić, and van de Wouw (2019), which extends the sampled-data
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xtremum-seeking framework as studied in Kvaternik and Pavel
2011). The work in Hazeleger et al. (2019) facilitates extremum-
eeking for constrained optimization of dynamical systems using
arrier function methods, albeit for a limited class of systems,
nd under more stringent conditions on the class of algorithms.
oreover, only an academic numerical example is provided. In

he current work, a more general class of dynamical systems
nd class of algorithms are considered than the ones considered
n Hazeleger et al. (2019), and the conditions on the class of algo-
ithms are milder. In addition, this work contains an illustrative
ndustrial case study.

The paper is organized as follows. Section 2 presents the class
f dynamical systems and the constrained optimization problem
ormulation. Section 3 presents the class of extremum seeking
lgorithms to facilitate constrained optimization. In Section 4, a
losed-loop stability analysis is provided. Section 5 presents the
ndustrial case study. Section 6 closes with conclusions.

We use the following notations:

• A function γ : R≥0 → R≥0 is of class K (denoted as γ ∈ K)
if it is continuous, strictly increasing, and γ (0) = 0. If γ is
also unbounded, then γ ∈ K∞.

• A continuous function β : R≥0 × R≥0 → R≥0 is of class
KL, if, for each fixed t , β(·, t) ∈ K and, for each s, β(s, ·) is
decreasing to zero.

• Let X be a Banach space whose norm is denoted by ∥ · ∥.
Given any subset Y of X , i.e. Y ⊂ X , and a point x ∈ X , the
distance of x from Y is defined as ∥x∥Y := infa∈Y ∥x − a∥.

• A + ϵB̄ is an ϵ-neighborhood of A, and B̄ can be identified
with the closed unit ball.

• We use the following simplified notation for discrete sys-
tems, e.g., uk+1 ∈ F (uk) → u+

∈ F (u).
• Let ⌊·⌋ denote the floor operator.
• The function id(·) denotes the identity function.

. Class of dynamical systems and constrained optimization
roblem formulation

In this section, we introduce the class of nonlinear, possibly
nfinite-dimensional, systems having multiple measurable out-
uts. In particular, we consider system outputs that are related to
1) a measurable (to-be-optimized) cost and (2) measurable con-
trained variables. Depending on the output constraints at hand,
arameter settings that optimize the measurable cost may not
atisfy the output constraints. Therefore, this section introduces
he constrained optimization problem for that class of systems.

.1. Class of dynamical systems

The following definition of the class of systems is based on the
nes from Khong et al. (2013b) and Teel and Popović (2001).

efinition 1. The dynamical system Σp is time-invariant, with
tate x ∈ X , where X is a Banach space with norm ∥ · ∥. The
nput to the system is denoted by u ∈ Rnu . We consider the
ystem to have nz + 1 measurable outputs, separated into two
hannels, denoted by y ∈ R, and z ∈ Rnz , and referred to as the
ost output and the constraint outputs, respectively. Given any
onstant input u ∈ Rnu and initial state x0 ∈ X , let x(·, x0, u) be
he state trajectory of the dynamical systemΣp starting at x0 with
nput u. Let S(x0, u) be the set of all possible trajectories starting
t x0 and with constant input u.

In the context of ESC,Σp in Definition 1 represents the dynam-
cal system to-be optimized, where the input u can be regarded
s a vector of tunable system parameters, and the outputs y and
can be regarded as a measurable performance variable and
3

vector of measurable constrained variables, respectively. The
ollowing assumption states properties that the class of systems
escribed in Definition 1 must possess, and is largely aligned with
he assumptions in Khong et al. (2013b, Assumption 2) and Teel
nd Popović (2001, Assumption 1).

ssumption 2. Given a dynamical system Σp described by
efinition 1, we assume that the following properties hold:

• For each constant input u the system’s trajectory converges
to a uniquely defined attractor, i.e., for each constant input
u ∈ T ⊆ Rnu , with T a nonempty (and possibly unknown)
set, there exists only one, closed and nonempty set A(u) ⊂

X , such that

lim
t→∞

∥x(t, x0, u)∥A(u) = 0. (1)

This defines a set-valued mapping A(·) from T to subsets of
X .

• There exist (unknown) continuous functions h : X → R and
g : X → Rnz that map the state evolution x(·, x0, u) of the
system, starting at x0 ∈ X with constant input u ∈ T , to
the evolution of output channels y and z of the system, as
follows:
y(t) := h(x(t, x0, u)) ∀ t ≥ 0,
z(t) := g(x(t, x0, u)) ∀ t ≥ 0,

(2)

which are defined for any input u ∈ T and x0 ∈ X .
Moreover, for any x1, x2 ∈ A(u), it is assumed that h(x1) =

h(x2) and g(x1) = g(x2). Since the set-valued mapping A(u)
is a uniquely defined attractor for any x ∈ S(x0, u), and both
h and g are continuous, for any constant u ∈ T and x0 ∈ X ,
we have that
Q (u) := lim

t→∞
h(x(t, x0, u)),

G(u) := lim
t→∞

g(x(t, x0, u)),
(3)

which are well-defined (unknown) steady-state
input–output maps on T .

• We assume the (unknown) steady-state input–output map-
pings Q and G to be locally Lipschitz on T .

• For any ϵ1, ϵ2,∆X0 ∈ R>0, there exists a so-called waiting
time T > 0 such that

∥x(t, x0, u)∥A(u) ≤ ϵ1∥x0∥A(u) + ϵ2, (4)

for all t ≥ T , all constant u ∈ T , and all ∥x0∥A(u) ≤ ∆X0 .

.2. Constrained optimization problem formulation

The steady-state input–output mappings Q and G as defined in
ssumption 2 represent the (unknown) steady-state cost function
nd the steady-state constraint functions of the plant Σp, respec-
ively. Based on these steady-state input–output mappings, we
an formulate the steady-state constrained optimization problem
s follows:
in

u∈T
Q (u) s.t. G(u) ≤ 0. (5)

or the existence of a solution to the constrained optimization
roblem in (5) and the ability to find this solution, we adopt the
ollowing assumption.

ssumption 3. The nonempty (and possibly unknown) set T in
ssumption 2 is defined as T := {u ∈ Rnu | G(u) ≤ 0}. We call the
et T the admissible set. The steady-state input–output mapping
takes its (global) constrained minimum value in a nonempty,

ompact set CT ⊂ T , i.e., there exist system inputs u∗
∈ CT ⊂ T

uch that for all u ∈ T , Q (u) ≥ Q (u∗). In addition, there exists
n admissible initialization set V , which is a nonempty, known
ompact subset of T .
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emark 4. First, Assumption 3 states that there exist some
system input that solves the constrained optimization problem
in (5). This assumption requires that the optimization prob-
lem is well-defined. Second, Assumption 3 states that we have
some limited knowledge about the admissible set T , namely, the
nown admissible initialization set V , such that we can initialize
ell within this admissible set. This is a reasonable assumption

n practice since we usually have some knowledge about where
e can initialize our system without violating the constraints

mmediately. For example, this assumption is satisfied in our
ndustrial case study in Section 5.

In this work, we will solve the steady-state constrained opti-
ization problem in (5) by finding a near-optimal system input

∗ for the class of dynamical systems as in Definition 1, which
atisfies Assumptions 2 and 3, i.e., we will solve the problem by
inding a near-optimal system input for which constraint satisfac-
ion (G(u) ≤ 0) is achieved in steady-state, and which can only be
ssessed on the basis of measurable constraint functions. Thereto,
n the next section we will present a class of algorithms that
xploits barrier function methods and that provides an arbitrarily
lose solution to the constrained optimization problem in (5),
ased on output measurements y and z, and generated by the
ystem in Definition 1.

emark 5. Examples of often studied dynamical systems in the
xtremum-seeking literature are, for example, dynamical systems
ith steady-state equilibria, see, e.g., Krstić and Wang (2000),
an, Nešić, and Mareels (2006), and dynamical systems with
eriodically time-varying steady-state responses, see, e.g., Haring,
an de Wouw, and Nešić (2013). The presented class of systems
overs these examples in the presence of multiple measurable
utputs, in which one output is related to a to-be-optimized
easurable cost and all other outputs are related to measurable
onstraint functions.

. Class of optimization algorithms for constrained optimiza-
ion problems using barrier function methods

In this section, firstly, we discuss classical barrier function
ethods to address constrained optimization problems of the

orm in (5), see, e.g., Fiacco and McCormick (1990). Secondly,
n the spirit of the class of algorithms for unconstrained opti-
ization problems presented in Teel (2000a), we introduce a
athematical description of a class of algorithms that enables
onstrained optimization by means of barrier function methods.

.1. Constrained optimization using barrier function methods

The barrier function method is a well-known approach to
ddress constrained optimization problems. Namely, it allows
o approximate constrained optimization problems of the form
n (5) by an unconstrained modified optimization problem. The
approximation of the actual constrained optimization problem
can be attributed to the nature of the barrier function method. In
particular, barrier functions establish a barrier on the boundary
of the admissible set T , thereby preventing any optimization
algorithm that starts well within the admissible set to reach the
boundary of the admissible set. We adopt the following definition.

Definition 6. Let T be the admissible set as defined in
Assumption 3. Let T o and ∂T denote the interior and the bound-
ary of the admissible set T , respectively. For each µ ∈ R>0, called
the barrier parameter, a barrier function B : T o

× R>0 → R, is
defined on T o such that

• B(u, µ) is continuous for u ∈ T o and µ ∈ R ,
>0

4

• B(u, µ) → 0 for u ∈ T o and µ → 0,
• B(u, µ) → ∞ for ∥u∥∂T → 0 and µ ∈ R>0.

Barrier functions that satisfy Definition 6 are, for example, the
o-called logarithmic and inverse barrier functions, see, e.g., Fi-
cco and McCormick (1990).
By exploiting barrier functions as defined in Definition 6, we

an approximate the constrained optimization problem in (5) by
he following unconstrained modified optimization problem:

min
u∈T o

Q̃ (u, µ), (6)

ith Q̃ (u, µ) := Q (u) + B(u, µ) the so-called modified objective
unction. We call the solution to (6) an approximate minimizer,
here C̃T denotes the set of approximate minimizers, i.e., for any
∈ R>0 there exist system inputs u∗

∈ C̃T ⊂ T o such that for
ll u ∈ T o, Q̃ (u, µ) ≥ Q̃ (u∗, µ). The fact that, for constrained
ptimization problems, a barrier function method only provides
pproximate solutions is particularly evident in cases where so-
utions to the actual constrained optimization problem in (5) are
ocated on the boundary of the admissible set ∂T , i.e., when the
ntersection of the boundary of the admissible set and the set of
xact minimizers is nonempty, i.e., ∂T ∩CT is nonempty. Namely,
n cases where optimization algorithms employ barrier functions,
e have that the boundary of the admissible set and the set of
pproximate minimizers do not intersect, i.e., ∂T ∩ C̃T = ∅.
evertheless, we would like to stress that, in practice, the set
f approximate minimizers C̃T can be made arbitrarily close to
he actual set of minimizers CT by having a sufficiently small
arrier parameter µ. Namely, for a sufficiently small µ ∈ R>0
nd u ∈ T o, from Definition 6 it follows that B(u, µ) ≈ 0, and thus
˜ (u, µ) ≈ Q (u). Next, we will mathematically describe the class
f algorithms that enables constrained optimization by means of
arrier function methods.

.2. Characterization of constrained optimization algorithms

In this section, we introduce a class of algorithms, inspired by
arrier function methods, and designed to induce convergence to
he set of approximate minimizers C̃T . The class of algorithms
hat is described here is based on exact evaluation of the steady-
tate input–output mappings Q and G in (3), that is, the outputs
and z are not affected by system dynamics, leading to ex-

ct evaluation of the steady-state system performance Q and
teady-state constraint functions G, respectively. Moreover, we
onsider the evaluation of Q and G for a particular input u to
e readily available. Later in Section 4, we will show how to ex-
loit the introduced class of algorithms in an extremum-seeking
ontrol context, in which (1) the evaluation of the steady-state
nput–output mappings Q and G is obtained sequentially, and
2) the output measurements are affected by (transient) dynami-
al behavior of the system. Therein, we consider the steady-state
ystem performance Q and steady-state constraint functions G
o be available approximately only through measurable outputs
and z.
Let us consider optimization algorithms described by the fol-

owing difference inclusion (see also, e.g., Teel and Popović (2001))

: u+
∈ F (u, Y (u), Z(u)), (7)

here F : Rnu ×Rnv×Rnv×nz → Rnu is a set-valued map for which
he update u+ can be any element of the set, the function Y ∈ Rnv

ontains all information regarding (the gradient of) the cost near
, and the function Z ∈ Rnv×nz carries all information about (the
radient of) the constraint functions near u. In particular, Y and
are respectively defined as follows:

(u) :=

⎡⎢⎣ Q (u + v1(u))
...

⎤⎥⎦ , (8)

Q (u + vnv (u))
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(u) :=

⎡⎢⎣ G1(u + v1(u)) . . . Gnz (u + v1(u))
...

. . .
...

G1(u + vnv (u)) . . . Gnz (u + vnv (u))

⎤⎥⎦ , (9)

where vj(·) ∈ Rnu , with j = 1, . . . , nv , are user-defined dither
functions that may depend on u, Q (·) and G(·) are the steady-
state input–output maps as defined Assumption 2, and Gi denotes
the ith element of G, that is, the ith steady-state constrained
output. The user-defined dither signal may depend on the chosen
optimization algorithm used for the particular optimization prob-
lem at hand, and its numerical implementation. We will adopt the
following assumption on optimization algorithms as in (7)–(9),
which can be seen as a generalization of the assumptions on the
class of algorithms used in Teel and Popović (2001).

Assumption 7. Let T be the admissible set as defined in
Assumption 3, with T o and ∂T the interior and the boundary
of the admissible set T , respectively. Let C̃T be the set of ap-
proximate constrained minimizers. Let us adopt the following
assumption:

• For each input u ∈ T o, the set F (u, Y (u), Z(u)) in (7) is
nonempty and compact. Moreover, the set F is an upper
semi-continuous function of u.

• We assume that there exist a locally Lipschitz function VΣ :

Rnu → R≥0, which is radially unbounded on the admissible
set T , a nonnegative constant δ ∈ R≥0, and K∞-functions
α(·) and ρ(·), such that

VΣ (u) = 0 ∀ u ∈ C̃T ,
α(∥u∥C̃T ) ≤ VΣ (u) ∀ u ∈ T o,

VΣ (u) → ∞ for ∥u∥∂T → 0,
max

w∈F (u,Y (u),Z(u))
VΣ (w) −VΣ (u) ≤

−ρ(VΣ (u)) + δ ∀ u ∈ T o.

(10)

• We assume that the constant δ ∈ R≥0 can be made arbi-
trarily small by tuning the parameters of the optimization
algorithm F in (7).

Remark 8. The existence of a function VΣ satisfying the associ-
ated conditions stated in Assumption 7 are motivated by converse
Lyapunov theorems for stability of discrete-time systems on arbi-
trary sets, see, e.g., Kellett (2015), Kellett and Teel (2004) and Teel
and Praly (2000). Moreover, radial unboundedness of VΣ on the
admissible set T is motivated by the use of barrier functions in
the constrained optimization problem. Also note that the first
and third condition in (10) imply that the set of approximate
minimizers C̃T and the boundary of the admissible set ∂T do not
intersect.

Remark 9. In Assumption 7, the size of the nonnegative constant
δ in (10) can typically be influenced by tunable parameters of
the optimization algorithm F described by the class of algorithms
in (7)–(9). To motivate this further, consider, for example, the
minimization of a convex and differentiable function Q̃ (u) on T o,
with Q̃ (u) → ∞ for ∥u∥∂T → 0. Moreover, for any u ∈ T̄ ,
ith T̄ a strict subset of T o, suppose there exists an M > 0
uch that ∥∇

2Q̃ (u)∥ ≤ M for all u ∈ T̄ . Let us employ, a
radient descent optimization algorithm F for which the gradient
s estimated based on a central difference scheme with dither
unction v(u) := cv ∈ R>0 and exact evaluation of the function Q̃
as follows:

F (u, Y (u), Z(u)) := u − λ

(
Q̃ (u + cv) − Q̃ (u − cv)

2c

)
, (11)
v

5

Fig. 1. Sampled-data extremum-seeking control framework with multiple
output channels.

with λ ∈ R>0. Let us take function VΣ (u) := Q̃ (u) − Q̃ (u∗),
with u∗ the extremum for which it holds that ∇Q̃ (u∗) = 0. This
Σ (u) satisfies the conditions in (10). With this VΣ (u), we obtain
hat VΣ (u+) − VΣ (u) ≤ −λ(∇VΣ (u))2 + δ, with δ := M3λ2c2v ,

∈ (0, 1
M ). The constant δ can be made arbitrarily small by

electing sufficiently small λ and cv .

In the next section, we will analyze the dynamic behav-
ior of the interconnection of a dynamical system described in
Definition 1, and an optimization algorithm of the form in (7)–(9)
in an online extremum-seeking control implementation.

4. Stability of the interconnected class of dynamical systems
and a class of extremum seeking algorithms

In this section, we aim to investigate the dynamic behavior
of a discrete-time system that describes the closed-loop feed-
back interconnection of the class of dynamical systems from
Section 2, denoted by Σp, and the class of algorithms discussed
in Section 3, denoted by Σ , in an extremum-seeking context.
In particular, we consider the interconnection of a dynamical
systemΣp and an optimization algorithmΣ through a T -periodic
sampler, and a zero-order-hold (ZOH) element, see Fig. 1. We
analyze the dynamic behavior of the closed-loop feedback inter-
connection in the case where the elements of the functions Y and
Z in (8) and (9), respectively, (1) can only be obtained sequen-
tially by performing nv experiments and evaluating the steady-
state input–output mappings Q and G after each experiment, and
(2) can only be based on (periodically) sampling the outputs y
and z, providing mere approximations of the steady-state input–
output mappings Q and G, respectively.

Next, we describe the extremum-seeking algorithm perform-
ing nv experiments to realize one update of the system input u,
based on a so-called waiting time T that prescribes the duration
of each experiment, and on approximations of the steady-state
input–output mappings Q and G obtained via the collection of
the corresponding output measurements each T seconds.

Algorithm 1. Consider the interconnection of the dynamical
systemΣp and an optimization algorithmΣ through a T -periodic
sampler, and a zero-order-hold (ZOH) element as in Fig. 1. Sup-
pose that the waiting time T , the number of experiments nv to
realize one iteration of the optimization algorithm, and the initial
algorithm state u0 are specified. Let us define the ideal periodic
sampling operation xi := x(iT ):

yi := y(iT ) ∀ i = 0, 1, . . . ,
zi := z(iT ) ∀ i = 0, 1, . . . ,

(12)

where yi and zi are the collected measurements as used by the
optimization algorithm, where i ∈ N denotes the T -periodic
sampling index. Define the ZOH operation as follows:

u(t) := ū ∀ t ∈ [iT , (i + 1)T ), (13)
i
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ith sampling index i = 0, 1, . . ., waiting time T > 0, and step
nput parameter ūi. For sampling index i, the step input parameter
¯ i is determined by the state of the optimization algorithm uk as
ollows:

¯ i := uk + vj(i)(uk) ∀ i = 0, 1, . . . , (14)

ith k ∈ N the optimization algorithm index, u0 the initial
lgorithm state, and dither functions vj(i) with dither index j ∈

1, . . . , nv}. The dither index j is related to the T -periodic sam-
ling index i and the number of experiments nv required to
ealize one iteration of the optimization algorithm through j(i) :=

i mod nv) + 1. The optimization algorithm index k is related to
he T -periodic sampling index i and the number of experiments
v through k =

⌊
i
nv

⌋
. The optimization algorithm is characterized

y the mapping F given in (7), which exploits the collected
measurements yi and zi:

uk+1 ∈ F (uk, Ỹ (uk), Z̃(uk)) ∀ k = 0, 1, . . . , (15)

with functions Ỹ (uk) and Z̃(uk) defined as follows:

Ỹ (uk) :=

⎡⎢⎣ yknv+1
...

y(k+1)nv

⎤⎥⎦ , Z̃(uk) :=

⎡⎢⎣ z⊤

knv+1
...

z⊤

(k+1)nv

⎤⎥⎦ , (16)

which, following from the definitions of the output channels y(t)
and z(t) in (2), are approximations of the functions Y (uk) and
Z(uk) in (8) and (9), respectively, for sufficiently long waiting time
T .

Example 10. To illustrate the sequence of inputs generated
by Algorithm 1 and the corresponding measured outputs of the
system Σp, consider the table below which provides an example
of the sequence of inputs and outputs at different sampling
indexes i, with the initial algorithm state u0, and the number of
experiments nv = 3 to perform one update of the state of the
optimization algorithm and generated by Algorithm 1.

i yi, zi input ūi uk, k :=

⌊
i
nv

⌋
0 – ū0 = u0 + v1(u0) u0 is user-defined
1 y1, z1 ū1 = u0 + v2(u0) –
2 y2, z2 ū2 = u0 + v3(u0) –
3 y3, z3 ū3 = u1 + v1(u1) u1 ∈ F (u0, Ỹ , Z̃)

The first column represents the sampling index i. The second
olumn represents the sampled output measurements yi and zi at
= iT . The third column represents the step input parameter ūi,
pplied to the system Σp through the ZOH element u(t) = ūi for
∈ [iT , (i+1)T ). The step input parameter ūi is determined by the
lgorithm state uk, with k =

⌊
i
nv

⌋
and the dither function vj(i)(uk),

ith j(i) := (i mod nv) + 1. The algorithm state uk in the fourth
olumn is generated by the optimization algorithm described by
15) on the basis of the functions Ỹ (uk) and Z̃(uk) defined in (16).

For example, at sampling index i = 1, we have collected the
utput measurements y1 and z1 at t = T , which are generated
y applying the step input u(t) = ū0 during t ∈ [0, T ) to the
ystem. A new step input u(t) = ū1 is determined and applied
uring t ∈ [T , 2T ). At sampling index i = 2, we sample the
utputs y2 and z2. A new step input u(t) = ū2 is determined and
pplied during t ∈ [2T , 3T ). At sampling index i = 3, we sample
he outputs y3 and z3. After performing nv = 3 experiments and
ampling the output measurements after each experiment, the
lgorithm state u0 is updated to u1 ∈ F (u0, Ỹ , Z̃).

To account for the discrepancy between the steady-state
nput–output mappings Q (u) and G(u) and the actual measure-
ents y and z, we need the following additional assumption,
artially adopted from Teel and Popović (2001).
 v

6

ssumption 11. For the plant Σp described in Definition 1, it
olds that

• for each ∆U ,∆X ∈ R>0, there exist LH , LG ∈ R>0 such
that, for any input u ∈ T with ∥u∥C̃T ≤ ∆U , and any
∥x∥A(u) ≤ ∆X , we have the following inequalities:

∥h(x) − Q (u)∥ ≤ LH∥x∥A(u),

∥g(x) − G(u)∥ ≤ LG∥x∥A(u).
(17)

• the set-valued map A(·) is locally Lipschitz; in particular, for
each ∆U > 0, there exists an LA > 0 such that

max{∥u1∥C̃T , ∥u2∥C̃T } ≤ ∆U ⇒

A(u1) ⊆ A(u2) + LA∥u1 − u2∥B̄, (18)

with u1, u2 ∈ T .

or the optimization algorithm F as described in (7) which satis-
ies the properties stated in Assumption 7, the following assump-
ions hold:

• Take any uF̃ generated by F (u, Ỹ (u), Z̃(u)), and let uF be
its closest point in the set F (u, Y (u), Z(u)). Then, for each
∆U ,∆ ∈ R>0, there exist LY , LZ ∈ R>0 such that for any
input u ∈ T o with ∥u∥C̃T ≤ ∆U , and ∥Ỹ∥, ∥Z̃∥ ≤ ∆, we
have

∥uF̃ − uF∥ ≤ LY∥Ỹ (u) − Y (u)∥ + LZ∥Z̃(u) − Z(u)∥. (19)

• For the perturbation functions vj(·) we assume that, for each
∆U ∈ R>0 and for any u ∈ T̄ , with T̄ an arbitrary (large)
strict subset of T o and ∥u∥C̃T ≤ ∆U , there exist (sufficiently
small) constants Mv, cv ∈ R≥0 such that, for each j =

1, . . . , nv , we have that

∥vj(u)∥ ≤ Mv∥u∥C̃T + cv. (20)

The next lemma states the outcome of the interconnected
iscrete-time system after one update of the optimization algo-
ithm, i.e., one sequence of inputs generated by Algorithm 1. In
articular, define a state x̄k := xknv denoting the state of Σp at the
eginning of the (k + 1)th sequence of inputs, where k denotes
he optimization algorithm index. The outcome of one sequence
f inputs as considered in Lemma 12 is an important stepping
tone in the proof of Theorem 13 to show (1) convergence of the
lgorithm state uk to a neighborhood of the set of approximate
inimizers C̃T and (2) steady-state constraint satisfaction for all
ystem inputs, over multiple input sequences.

emma 12. Suppose that the system Σp and the algorithm Σ

atisfy Assumptions 2, 3, 7 and 11. Let the system Σp and algorithm
be connected as described in Algorithm 1. Then, for any ϵ1 ∈

0, 1], any ϵ2,∆X ,∆U ∈ R>0, and an arbitrary (large) strict subset
¯ ⊂ T o, there exists a waiting time T ∗

≥ T , with T as in
ssumption 2, such that, for any x̄ ∈ X with ∥x̄∥A(u+vnv (u)) ≤ ∆X ,
nd any u ∈ T̄ with ∥u∥C̃T ≤ ∆U , respectively being the states
f the plant and the algorithm at the beginning of the current input
equence, the states of the system and algorithm at the beginning of
he next input sequence are given as follows:
+

∈ F (u, Ỹ (u), Z̃(u)), ψ+
= u,

x̄+
∈ A(u + vnv (u)) +

(
ϵ1

(
∥x̄∥A(u+vnv (u))

+ LA
nv∑
j=1

∥vj(u) − vj−1(u)∥
)

+ nvϵ2

)
B,

(21)

where ψ is a memory state, Ỹ (u) and Z̃(u) are given in (16), and
(u) := v (u).
0 nv
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roof. The proof of Lemma 12 can be found in Appendix A. □

For the purpose of the stability analysis let us now define the
following function

W (ψ, x̄, u) := VΣp (ψ, x̄) + 2VΣ (u), (22)

here VΣp (ψ, x̄) := σ∥ψ∥C̃T +∥x̄∥A(ψ+vnv (ψ)) with some constant
σ ∈ R>0. Let us define the following increments:

∆W (ψ, x̄, u) := W (ψ+, x̄+, u+) − W (ψ, x̄, u),
∆VΣp (ψ, x̄) := VΣp (ψ

+, x̄+) − VΣp (ψ, x̄),
∆VΣ (u) := VΣ (u+) − VΣ (u).

(23)

The next result states conditions on the initial conditions and
parameters of the ESC algorithm (such as the waiting time),
such that the system input u converges to an arbitrarily small
neighborhood of the set of approximate minimizers C̃T , while
steady-state constraint satisfaction is guaranteed all along the
evolution of the optimization iterations.

Theorem 13. Suppose that the system Σp and the algorithm Σ
satisfy Assumptions 2, 3, 7 and 11. Let the system Σp and algorithm
Σ be interconnected as described in Algorithm 1. For any u0, ψ0 ∈

V ⊂ T̄ with T̄ an arbitrary (large) strict subset of T o and x̄0 ∈ X ,
with ∥u0∥C̃T ≤ ∆U , ∥ψ0∥C̃T ≤ ∆U , and ∥x̄0∥A(ψ+vnv (ψ0)) ≤ ∆X
with some ∆U ,∆X ∈ R>0, there exists a sufficiently large waiting
time T ∗

≥ T , with T as in Assumption 2, and K∞-function γ̃ (·) such
hat we obtain the following increment:

W (ψ, x̄, u) ≤ −γ̃ (W (ψ, x̄, u)) + 2δ + γ + δV , (24)

or arbitrarily small δ, γ ∈ R>0, and any small δV ∈ R>0. Moreover,
here exist ∆W ∈ R≥0, K∞-function ρ̂(·), and KL-function β̂(·, ·),
uch that
(ψk, x̄k, uk) ≤ max{β̂(W (ψ0, x̄0, u0), k),

γ̃−1
◦ ρ̂−1(2δ + γ + δV )},

(25)

olds for all k ∈ N, with W (ψ0, x̄0, u0) ≤ ∆W .
As a consequence:

• VΣ (uk) is bounded for all k ∈ N, which implies that uk ∈ T o for
all k ∈ N, i.e., steady-state constraint satisfaction is guaranteed
and

• the solutions of the closed-loop system converge to a set Yu :=

{u ∈ T o
| ∥u∥C̃T ≤

1
2α

−1
( 1
2 γ̃

−1
◦ ρ̂−1(2δ + γ + δV )

)
}, with

α ∈ K∞ defined in Assumption 7, where this set can be made
arbitrarily small.

roof. The proof of Theorem 13 can be found in Appendix B. □

emark 14. We would like to emphasize that a local result,
.e., within a subset of the admissible set T , can easily be derived
y using a similar approach, but is omitted for space reasons.

emark 15. The set Yu to which the solutions of the closed-
oop system converge can be made arbitrarily small. Namely,
1) δV ∈ R>0 can be any arbitrarily small constant, (2) we can
make γ arbitrarily small by choosing a sufficiently large waiting
time T ∈ R>0, and (3) δ, which is defined in Assumption 7, can
typically be tuned sufficiently small by tuning the parameters
of the optimization algorithm F (see also Assumption 7 and
Remark 9). However, we would like to emphasize that making
γ and δ small can lead to a slower convergence in practice.
Namely, a longer waiting time T (i.e., a smaller γ ) implies that
each evaluation of the system's objective function requires more
time while the optimization algorithm requires multiple evalua-
tions. Moreover, having a smaller δ by appropriately tuning the
parameters of the optimization algorithm typically leads to an
increased number of input updates that are needed to reach the
set Y and therefore can also lead to a slower convergence.
u

7

Fig. 2. Schematic representation of an LPP source system, with the laser-
to-droplet (L2D) relative coordinate frame.

Remark 16. Inequality (25) also expresses a decaying bound
on the transient solutions of the closed-loop system. Since W
expresses both the distance of the plant response to the steady
state and the distance of the input u to the minimizer in a
combined fashion we do not provide a transient bound on these
effects individually.

Remark 17. The result presented in Theorem 13 is focused on
achieving the optimal input that satisfies the output constraints
in steady-state. We emphasize that, under the conditions of
Theorem 13, constraint satisfaction is also guaranteed during the
transients of the extremum seeker if the plant output would be
on its steady-state response. Constraint satisfaction on the output
responses during the transient of the plant itself is, however, not
guaranteed. To accomplish this, additional assumptions on the
class of plants would be required. In particular, system properties
would need to be defined on compact subsets, and additional
assumptions on initial data and on the transient behavior of
the plant are required. This extended problem setting is not
considered in this work.

5. Industrial case study: constrained optimization of EUV light
generation in a Laser Produced Plasma (LPP) source

The semiconductor industry continues to develop lithographic
technologies which are able to realize ever-smaller integrated
circuit dimensions. Extreme ultraviolet lithography, a next-
generation lithography technology, is able to produce sub-
nanometer features by exposing substrates, such as silicon wafers,
to extreme ultraviolet (EUV) light. The necessary EUV light is
typically produced by a so-called Laser Produced Plasma (LPP)
source, which is the most promising approach for providing
power output that is scalable to meet the needs of high volume
production exposure tools. However, achieving and maintaining
optimal EUV light generation is a challenging task. In this section,
we provide a description of a typical LPP source and discuss the
constrained optimization problem associated to its performance.
Moreover, we present a representative LPP source model, and em-
ploy the constrained sampled-data extremum-seeking approach
proposed in this paper to achieve optimal EUV light generation.

5.1. System description

LPP sources produce EUV light by converting a material that
has emission lines in the EUV spectrum, e.g., lithium or tin, into a
plasma state that ultimately emits the desired EUV photons. Fig. 2
schematically depicts a typical LPP source system and its most
crucial components: (1) a CO2 laser generator, (2) a laser beam

delivery system, (3) a vacuum chamber, (4) a droplet generator,



L. Hazeleger, D. Nešić and N. van de Wouw Automatica 142 (2022) 110415

(
m
p
h
s
T
p
i
c
r
t
a
w

l
f
E
T
p
t
b
a
t
b
a
p
s
b
p
t
i

(
R
e
w
g
l
i
b
t
s
t
E

5

m
M

o
c
t
s
s

5

l
s
c
t
b
u
t
i
s
d
b
t
a
c

5

m
b
n
s
i
f
m
t

5

r

5) a spherical mirror, the so-called collector, and (6) an inter-
ediate focus (IF). Inside the vacuum chamber, the EUV-emitting
lasma is generated by irradiating droplets of material with a
igh-energy pulsating CO2 laser beam. The droplet generator fires
mall droplets at a rate of 50 kHz into the vacuum chamber.
he beam delivery system orients and focusses the high-energy
ulsating CO2 laser beam in such a way that it hits the travel-
ng droplets inside the vacuum chamber. If the droplets are hit
orrectly, EUV photons are generated by the irradiated material,
eflected by the collector, and transmitted towards the IF. Here,
he transmitted EUV photons enter the EUV lithography scanner
nd enable the patterning of sub-nanometer features on a silicon
afer.
To cope with the various losses of EUV intensity within the

ithography scanner, and still enable patterning of sub-nanometer
eatures on a silicon wafer using the lithography scanner, the
UV light generated by the light source needs to be maximized.
he intensity of the generated EUV light highly depends on the
osition of the laser beam with respect to the droplet. Due to
he complex (plasma) physics involved, the complex interactions
etween the droplets, laser and plasma, and the difficulty of
ccurately measuring the position of the laser beam relative to
he droplet (amongst other challenges), models of the LPP system
ased on first-principles tend to be inaccurate in describing the
ctual system behavior. As such, employing the optimal laser
osition obtained from such a first principle model on the actual
ystem is likely to yield sub-optimal EUV intensity. Instead, data-
ased methods such as ESC can be employed to adjust the laser
osition in y- and z-direction (see Fig. 2) in real-time to optimize
he EUV intensity, based on real-time measurements of the EUV
ntensity.

Optimizing average EUV light generation using classical
continuous-time, unconstrained) ESC was proposed in Frihauf,
iggs, Graham, Chang, and Dunstan (2013). That approach, how-
ver, does not take into account any (unknown) disturbances,
hich can lead to undesirably high peak-to-peak variations in the
enerated EUV intensity for certain laser orientations. In addition,
aser light that is being reflected back to the CO2 laser generator
tself, referred to as the back-reflection and which is continuously
eing monitored, can damage the LPP source if it exceeds some
hreshold value. Therefore, we employ the developed constrained
ampled-data extremum-seeking control strategy to maximize
he average EUV intensity while avoiding (1) large variations of
UV intensity, and (2) excessive back-reflection.

.2. LPP source model

The LPP system under study is modeled1 by an asymptotically
stable linear-time-invariant (LTI) dynamical system subject to
external period disturbances, representing a closed-loop mirror
control system (modeling the beam delivery system in Fig. 2),
followed by an experimentally obtained static nonlinear model
for the effect of the laser positioning on the EUV intensity and
the laser back reflection (capturing the complex plasma physics of
the source). Note that the LPP system model under study satisfies
Assumptions 2 and 11 since the system is LTI and asymptoti-
cally stable. We emphasize that especially the static nonlinear
model, describing the effect of the laser positioning on the EUV
intensity and the laser back reflection, is typically hard (and time-
consuming) to obtain in practice, which motivates the use of a
data-based approach such as ESC for performance optimization.
Here, we employ such experimentally obtained model in support

1 To protect the company’s interests, a more detailed description of the LPP
odel than the one presented here, and units of certain variables, are omitted.
oreover, values of variables are normalized or scaled.
8

Fig. 3. Model of the LPP source.

Fig. 4. The EUV intensity (top) and the back-reflection signal (bottom) as a
function of time for two L2D-setpoints; (1) L2Dy = −0.225 [normalized] and
L2Dz = 0.4 [normalized] during t ∈ [0, 2] s, and (2) L2Dy = −0.275 [normalized]
and L2Dz = 0.4 [normalized] during t ∈ (2, 4] s.

f the simulation study. Finally, and user-defined filters are in-
luded to obtain as measured outputs the average EUV intensity,
he peak-to-peak EUV intensity, and the laser back reflection
ignal to be used as input for the extremum-seeking controller
ee Fig. 3 for a schematic overview of the model.

.2.1. Closed-loop mirror control system
The closed-loop mirror control system basically comprises the

aser orientation part of the beam delivery system of the LPP
ource. The laser orientation part of the beam delivery system
onsists of (a set of) adjustable mirrors, able to adjust the laser-
o-droplet (L2D) positioning in the y- and z-direction on the
asis of a stable feedback control design. The feedback controller
ses the L2D-positions, measured indirectly using data obtained
hrough various sensors, and user-defined L2D-setpoints to min-
mize the L2D-setpoint errors. The closed-loop mirror control
ystem model takes into account disturbances such as laser–
roplet interactions, various (high- and low-frequency) distur-
ances ranging from 1·10−3

−300 Hz, and white noise, that affect
he L2D-position measurements. The disturbances are modeled
s Tw-periodic external disturbances w which are supplied to the
losed-loop mirror control system, with Tw = 2 s.

.2.2. Static nonlinearities
The static nonlinearities in the LPP source model provide

appings from the L2D-position to (1) the EUV intensity, denoted
y yp, and (2) the back-reflection, denoted by zp. These output
onlinearities are experimentally obtained from an industrial LPP
ource system for the purpose of modeling. Fig. 4 depicts the EUV
ntensity yp and the back-reflection signal zp as a function of time
or two particular L2D-setpoints, obtained using the simulation
odel. Due to the Tw-periodic nature of the external disturbances,

he measured outputs are Tw-periodic as well.

.2.3. User-defined filtering
On the basis of the measurable EUV intensity yp and back-

eflection z , and the T -periodic nature of these outputs, the
p w
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ollowing filters are defined that determine the average EUV
ntensity y, the maximum back-reflection signal z̃1, and the peak-
o-peak EUV variation z̃2 as follows:

y(t) :=
1
Tw

∫ t

t−Tw
yp(τ )dτ , z̃1(t) := max

τ∈[t−Tw ,t)
zp(τ ),

z̃2(t) := max
τ∈[t−Tw ,t)

yp(τ ) − min
τ∈[t−Tw ,t)

yp(τ ),
(26)

for all t ≥ Tw .

5.3. Constrained optimization problem

From simulation, steady-state input–output relations between
the L2D-setpoints u:

u :=
[
L2Dy-setpoint L2Dz-setpoint

]⊤
, (27)

(1) the average EUV intensity y, (2) the maximum back-reflection
z̃1, and (3) the peak-to-peak variations in EUV intensity z̃2, de-
noted by Q (u), G̃1(u), and G̃2(u), can be obtained, and are shown
in Figs. 5(a), 5(b), 5(c), respectively. Knowledge of these mappings
is not exploited in the remainder of this section, and is presented
merely for verification purposes.

From Fig. 5(a) it can be seen that a maximum average EUV in-
tensity is achievable when the L2D-setpoints in y- and z-direction
are around zero. In the case when the L2D-setpoints are zero, the
maximum back-reflection signal exceeds 0.8, causing excessive
damage to the LPP source. This excessive damage can be pre-
vented by keeping the back-reflection signal below a value of
γback = 0.8. In addition, the peak-to-peak EUV intensity varia-
tion is required to remain below γpp = 0.28 which guarantees
stable EUV light generation for usage in the lithography scanner.
To achieve this goal, we formulate the following constrained
optimization problem for the LPP source system:

max
u∈T

Q (u) s.t. G(u) :=

[
G̃1(u) − γback

G̃2(u) − γpp

]
≤ 0, (28)

with T := {u ∈ Ω : G(u) ≤ 0}, and Ω denoting the physical
range of the laser-to-droplet position. We assume no knowledge
of Q (u) and G(u), and we obtain information on performance
and constraint satisfaction only through periodically sampling the
outputs y(t) and z(t), where the output z(t) is defined as follows:

z(t) :=
[
z̃1(t) − γback z̃2(t) − γpp

]⊤
. (29)

5.4. Gradient-based sampled-data extremum-seeking algorithm
with barrier functions

To solve the constrained optimization problem in (28), we
transform the problem to an unconstrained optimization prob-
lem by using logarithmic barrier functions B(u, µ). The resulting
unconstrained optimization problem reads

max
u∈T o

Q̃ (u, µ) := Q (u) − B(u, µ), (30)

with Q̃ the modified objective function, and T o denoting the
interior of the admissible set T = {u ∈ Ω | G(u) ≤ 0}. We
employ an extremum-seeking algorithm such as described in
Algorithm 1, in which we utilize a gradient-based optimization
algorithm. The algorithm exploits an estimate of the gradient
of the to-be-optimized modified objective function, determined
through a central difference computation, and for which we need
to perform nv = 4 experiments for each update of the optimiza-
tion algorithm. A waiting time T = 2 s is chosen, and Tw = 2 s is
chosen in (26).

The gradient-based optimization algorithm F in (15) is given
as follows:

˜ ˜ ˜
F (u, Y (u), Z(u)) := u + λ∇Q (u, µ), (31)

9

Fig. 5. Steady-state input–output mappings.

with so-called optimizer gain λ, and where ∇Q̃ (u, µ) denotes the
radient of the modified objective function Q̃ (u, µ). The actual
radient is unknown since the modified objective function is
ot analytically known. The gradient is estimated based on the
unctions Ỹ (u) and Z̃(u), containing the collected output measure-
ents, and through a central difference computation as follows:

Q̃ (u, µ) :=
1
[
1 −1 0 0

]
ˆ̃Q (u, µ), (32)
2cv 0 0 1 −1
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Fig. 6. The modified objective function Q̃ , and the evolution of the laser setpoint
osition in y- and z-direction in the cases µ = 0.0 (red) and µ = 0.03

(blue), respectively without consideration of the constraints on z and with
consideration of the constraints on z. The white areas indicate regions where Q̃
s undefined (i.e., outside the set of constraint satisfaction). (For interpretation
f the references to color in this figure legend, the reader is referred to the web
ersion of this article.)

ith so-called step size cv , and the measured modified objective
unction ˆ̃Q (u, µ) := Ỹ (u) − B(u, µ), with Ỹ (u) as in (16), and the
arrier function B(u, µ) defined as follows:

(u, µ) := −µ

[ 2∑
j=1

log(−Z̃1j(u)) · · ·

2∑
j=1

log(−Z̃4j(u))

]⊤

, (33)

with µ ∈ R>0 the so-called barrier parameter, and where Z̃ij
denotes the ith element from the jth column of the function
Z̃(u) in (16). To facilitate the estimation of the gradient through
measurements, the dither functions are chosen as follows: v⊤

1 :=

[cv 0], v⊤

2 := [−cv 0], v⊤

3 := [0 cv], and v⊤

4 = [0 − cv].
For illustration purposes only, the modified objective function

Q̃ (u, µ) using barrier functions is visualized in Fig. 6, with µ =

0.03.

Remark 18. In this ESC context, gradient estimation locally
around u on the basis of a central difference computation requires
the sequential evaluation of the system outputs for inputs u− cv
and u + cv , in which ±cv are user-defined and small-valued
directional perturbations. However, other optimization methods
and dither functions can be used as well. For example, stochastic
approximation methods, such as the simultaneous perturbation
stochastic approximation algorithm (see Spall, 1997) or the per-
sistently exciting finite differences algorithm (see Teel, 2000b)
can be employed as well. Within these algorithms, an estimate
of the gradient of the (modified) cost function near the input u is
typically obtained on the basis of an excitation with zero-mean
random variables.

5.5. Simulation results

To obtain the results presented here, we have used the fol-
lowing numerical values for the algorithm: step-size cv = 0.005

[normalized], optimizer gain λ =

[
2 · 10−12 0

0 2 · 10−10

]
, and

initial L2D-setpoint u0 = [−0.25 0.5]⊤ [normalized]. Fig. 7
shows the evolution of the laser-to-droplet setpoint position in
y- and z-direction as a function of the sampling index, and the

corresponding outputs that reflect (1) the average EUV intensity,

10
Fig. 7. Evolution of the laser setpoint position in y- and z-direction as a function
of the sampling index, and the corresponding average EUV intensity, maximum
back-reflection, and peak-to-peak EUV intensity. In the case when µ = 0.0,
constraint violation occurs. In the case when µ = 0.03, the average EUV
intensity is similarly optimized, however the imposed constraints are satisfied.
(For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

(2) the maximum back-reflection, and (3) the peak-to-peak EUV
intensity. In particular, Fig. 7 shows iteration-domain results in
the unconstrained optimization case (µ = 0.0), and the con-
strained optimization case (µ = 0.03), and Fig. 6 shows the
corresponding trajectories in the input space.

In the case when µ = 0.0, constraint violation occurs. In
particular, the optimal operating conditions obtained with the
extremum-seeking algorithm and µ = 0.0, leading to an average
EUV intensity of approximately 1, violate the constraint on the
maximum back-reflection signal γback. This can be seen by the red
plots in Fig. 6 and the fourth sub-figure in Fig. 7. In the case when
µ = 0.03, the average EUV intensity achieved is approximately
1 as well, and the constraint on the maximum back-reflection
signal is satisfied. This can be seen by the blue plots in Figs. 6 and
7. In both cases, the constraint on the peak-to-peak EUV intensity
is satisfied.

Remark 19. Note that, given the non-convexity of the modified
cost function Q̃ (u, µ), see Fig. 6, and given the fact that we
employ a gradient-based extremum-seeking algorithm, conver-
gence to the global optimum is not guaranteed. In particular,
Assumptions 3 and 7 are, strictly speaking, not satisfied. Namely,
the set of actual constrained minimizers CT and approximate con-
strained minimizers C̃T for our modified constrained optimiza-
tion problem are not compact and the modified cost Q̃ (u, µ) to-be
optimized contains both local and global minima, see, e.g., Fig. 6.
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evertheless, locally (i.e., within a subset of the admissible set T ,
.g., a small neighborhood around the approximate constrained
lobal minimizer as visible in Fig. 6) the modified cost Q̃ (u, µ) is
near) convex. Within that subset the use of a gradient-based op-
imization algorithm renders Assumption 7 satisfied. Moreover, in
ractice the gradient-based extremum-seeking algorithm can be
sed successfully when starting close to the global minimizer or
n combination with a multi-start routine as part of a calibration
rocedure.

. Conclusion

We have proposed a sampled-data extremum-seeking frame-
ork for constrained optimization of dynamical systems using
arrier function methods, where both the to-be-optimized objec-
ive function and the constraint functions are available through
utput measurements only. We have shown that for the intercon-
ection of a class of dynamical systems and a class of optimization
lgorithms, given a sufficiently long waiting time and parame-
er initialization well within the admissible set, (1) steady-state
onstraint satisfaction is achieved, and (2) the closed loop is
ractically asymptotically stable. Finally, we have demonstrated
he proposed approach by means of a representative industrial
imulation study of the constrained optimization of EUV light
eneration in an LPP source.
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ppendix A. Proof of Lemma 12

The proof of Lemma 12 exploits the line of reasoning of the
roof of Theorem 1 in Teel and Popović (2001). From
ssumption 2 we have that, for any ϵ1, ϵ2,∆X0 ∈ R>0, there exist
waiting time T > 0 such that

x(t, x0, u)∥A(u) ≤ ϵ1∥x0∥A(u) + ϵ2, (A.1)

or all t ≥ T , all u ∈ T , and all ∥x0∥A(u) ≤ ∆X0 . Consider
n arbitrary system state xi with sampling index i during some

sequence of inputs k, with algorithm state uk. Without loss of
generality, take k = 0. For any i = 1, . . . , nv , with nv the number
of experiments for one algorithm index update, and waiting time
T ∗ > T , we have

∥xi∥A(u0+vi(u0)) ≤ ϵ1∥xi−1∥A(u0+vi(u0)) + ϵ2, (A.2)

for ∥xi−1∥A(u0+vi(u0)) ≤ ∆X0 , with the state xi := x(T ∗, xi−1, u0 +

vi(u0)). From item 2 of Assumption 11 it follows that for any
∆U > 0 there exists a constant LA ∈ R>0 such that we have
the following inequality:

A(u0 + vi(u0)) ⊆ A(u0 + vi−1(u0))
+ LA∥vi(u0) − vi−1(u0)∥B,

(A.3)

ith max{∥u0 + vi(u0)∥C̃T , ∥u0 + vi−1(u0)∥C̃T } ≤ ∆U for i =

, . . . , nv , and with v0(·) := vnv (·) (as defined in Lemma 12). From
emma 1 in Teel and Popović (2001) and (A.3), we obtain the
ollowing inequality:

xi−1∥A(u0+vi(u0)) ≤ ∥xi−1∥A(u0+vi−1(u0))

+ LA∥vi(u0) − vi−1(u0)∥.
(A.4)

ombining (A.4) and (A.2), and by using item 4 of Assumption 11,
or any input u ∈ T̄ with T̄ an arbitrary (large) strict subset of T o
∥

11
and ∥u∥C̃T ≤ ∆U , and any i = 1, . . . , nv , we obtain the following
nequality:

xi∥A(u0+vi(u0)) ≤ ϵ1
(
∥xi−1∥A(u0+vi−1(u0))

+ LA∥vi(u0) − vi−1(u0)∥
)
+ ϵ2,

(A.5)

or ∥xi−1∥A(u0+vi−1(u0)) ≤ ∆X0 − 2LA(Mv∆U + cv), such that
xi−1∥A(u+vi(u)) ≤ ∆X0 , and with v0(·) := vnv (·). Now, let us
etermine the distance of the system state xnv to the attractor
(u0 + vnv (u0)) at the end of the current sequence of inputs, as
function of the distance of the state x0 to A(u0 + vnv (u0)) at

he beginning of the current sequence of inputs (i.e., end of the
revious sequence of inputs), with ∥x0∥A(u0+vnv (u0)) ≤ ∆X :

xi∥A(u0+vi(u0)) ≤ ϵ1

(
ϵ i−1
1 ∥x0∥A(u0+vnv (u0))

+ LA
i∑

j=1

(ϵ i−j
1 ∥vj(u0) − vj−1(u0)∥)

)
+ ϵ2

i∑
j=1

ϵ
i−j
1 ,

(A.6)

or all i = 1, . . . , nv and with v0(·) := vnv (·). By considering ϵ1 ∈

0, 1], which can be accomplished by having a sufficiently long
aiting time T , see, e.g., Assumption 2, we obtain the following

nequality:

xi∥A(u0+vi(u0)) ≤ ϵ1

(
∥x0∥A(u0+vnv (u0))

+ LA
i∑

j=1

(∥vj(u0) − vj−1(u0)∥)
)

+ nvϵ2,
(A.7)

or all i = 1, . . . , nv , and with v0(·) := vnv (·). Define x̄ := x0
he state of the plant at the beginning of the current sequence
f inputs, and x̄+

:= xnv the new state of the plant at the end
f the current sequence of inputs. Moreover, let u := u0 be the
urrent state of the algorithm. From (A.7) and for i = nv , for any
X ,∆U , ϵ2 ∈ R>0 and ϵ1 ∈ (0, 1], there exists a sufficiently long
aiting time T ∗

≥ T such that for any x̄ ∈ X with ∥x̄∥A(u+vnv (u)) ≤

X , and any u ∈ T̄ with T̄ an arbitrary (large) strict subset of T o

nd with ∥u∥C̃T ≤ ∆U , we can write the following inequality:

¯
+

∈ A(u + vnv (u)) +

(
ϵ1

(
∥x̄∥A(u+vnv (u))

+ LA
nv∑
j=1

∥vj(u) − vj−1(u)∥
)

+ nvϵ2

)
B,

(A.8)

with v0(·) := vnv (·). This concludes the proof of Lemma 12. □

Appendix B. Proof of Theorem 13

The structure of the proof is as follows. First, a bound on
∆VΣ (u) is derived. Second, a bound on ∆VΣp (ψ, x̄) is derived.
hird, a bound on ∆W (ψ, x̄, u) is derived. Fourth, we show
1) constraint satisfaction and (2) the convergence of u to a region
round the set of approximate minimizers C̃T .

tep 1: Let us derive a bound on∆VΣ (u) := VΣ (u+)−VΣ (u), where
+ is generated by (21) in Lemma 12, i.e., u+

∈ F (u, Ỹ (u), Z̃(u)).
et ũ ∈ F (u, Y (u), Z(u)) be the closest point to u+

∈ F (u, Ỹ (u),
˜ (u)). From Assumption 7, it follows that for any u ∈ T̄ with T̄ an
rbitrary (large) strict subset of T o, there exist constants LV ∈ R>0
nd δ ∈ R≥0, and a K∞-function ρ(·), such that we can write

VΣ (u) = VΣ (u+) − VΣ (u)
≤ LV∥u+

− ũ∥ − ρ(VΣ (u)) + δ.
(B.1)

rom Assumption 11, it follows that
+ ˜ ˜ (B.2)
u − ũ∥ ≤ LY∥Y (u) − Y (u)∥ + LZ∥Z(u) − Z(u)∥,
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hich, together with (B.1), leads to the following inequality:

VΣ (u) ≤ LV LY∥Ỹ (u) − Y (u)∥

+ LV LZ∥Z̃(u) − Z(u)∥ − ρ(VΣ (u)) + δ.
(B.3)

From Assumption 11 and after one sequence of inputs it also
follows that

∥Ỹ (u) − Y (u)∥ ≤ nvLH∥x̄+
∥A(u+vnv (u)),

∥Z̃(u) − Z(u)∥ ≤ nvLG∥x̄+
∥A(u+vnv (u)).

(B.4)

Let us define L̃ := nvLV (LY LH + LZLG). As such, from (B.3)–(B.4) we
btain the following inequality:

VΣ (u) ≤ L̃∥x̄+
∥A(u+vnv (u)) − ρ(VΣ (u)) + δ. (B.5)

Step 2: Let us derive a bound on ∆VΣp (ψ, x̄) := VΣp (ψ
+, x̄+) −

Σp (ψ, x̄). Since VΣp (ψ, x̄) := σ∥ψ∥C̃T + ∥x̄∥A(ψ+vnv (ψ)) with
∈ R>0, we obtain the following equation:

VΣp (ψ, x̄) = ∥x̄+
∥A(u+vnv (u)) − ∥x̄∥A(ψ+vnv (ψ))

+ σ∥u∥C̃T − σ∥ψ∥C̃T ,
(B.6)

here we used that ψ+
= u.

tep 3: From (B.5) and (B.6) and W (ψ, x̄, u) in (22), it follows that

∆W (ψ, x̄, u) = ∆VΣp (ψ, x̄) + 2∆VΣ (u)

≤ L̄∥x̄+
∥A(u+vnv (u)) − ∥x̄∥A(ψ+vnv (ψ))

+ σ∥u∥C̃T − σ∥ψ∥C̃T − 2ρ(VΣ (u)) + 2δ,
(B.7)

with L̄ := 1+ 2L̃. By using Lemma 12 and (20) in Assumption 11,
we obtain the following inequality:

∆W (ψ, x̄, u) ≤ L̄ϵ1
(
∥x̄∥A(u+vnv (u)) − ∥x̄∥A(ψ+vnv (ψ))

)
+ (σ + 2L̄ϵ1LAnvMv)∥u∥C̃T + 2L̄ϵ1LAnvcv
+ L̄nvϵ2 − (1 − L̄ϵ1)∥x̄∥A(ψ+vnv (ψ))

− σ∥ψ∥C̃T − 2ρ(VΣ (u)) + 2δ,

(B.8)

rom Lemmas 1 and 2 in Teel and Popović (2001), there exists a
∈ R≥0 such that we obtain the following inequality:

x̄∥A(u+vnv (u)) − ∥x̄∥A(ψ+vnv (ψ))

≤ LA

(
(1 + Mv)∥u∥C̃T + (1 + Mv)∥ψ∥C̃T + 2cv + κ

)
.

(B.9)

rom substitution of (B.9) into (B.8), and using Assumption 7, we
btain the following inequality:

W (ψ, x̄, u) ≤ −(σ − L̄ϵ1LA(1 + Mv))∥ψ∥C̃T

+ 2L̄ϵ1LAcv + L̄ϵ1LAκ + 2L̄ϵ1LAnvcv + L̄nvϵ2
+ (σ + L̄ϵ1LA(2nvMv + 1 + Mv))∥u∥C̃T

− (1 − L̄ϵ1)∥x̄∥A(ψ+vnv (ψ)) − 2ρ(VΣ (u)) + 2δ.

(B.10)

or any (arbitrarily small) γ ∈ R>0, we ensure that 2L̄ϵ1LAcv +

¯ϵ1LAκ ≤
1
2γ and 2L̄ϵ1LAnvcv + L̄nvϵ2 ≤

1
2γ by designing ϵ1 ∈

0, 1] and ϵ2 ∈ R>0 sufficiently small, which can be achieved by
electing a sufficiently long waiting time T , see the last item of
ssumption 2. As such, we obtain the following inequality:

W (ψ, x̄, u) ≤ −(σ − L̄ϵ1LA(1 + Mv))∥ψ∥C̃T

+ (σ + L̄ϵ1LA(2nvMv + 1 + Mv))∥u∥C̃T

− (1 − L̄ϵ1)∥x̄∥A(ψ+vnv (ψ)) − 2ρ(VΣ (u)) + 2δ + γ .

(B.11)

oreover, for any σ ∈ R>0, we ensure that L̄ϵ1 ≤
1
2 , L̄ϵ1LA(1 +

v) ≤
1
2σ , and 2L̄ϵ1LAnvMv ≤

1
2σ by designing ϵ1 ∈ (0, 1]

sufficiently small. This can be achieved by selecting a sufficiently
12
long waiting time T , see the last item of Assumption 2. This leads
to the following inequality:

∆W (ψ, x̄, u) ≤ −
1
2
∥x̄∥A(ψ+vnv (ψ)) −

1
2
σ∥ψ∥C̃T

+ 2σ∥u∥C̃T − 2ρ(VΣ (u)) + 2δ + γ .

(B.12)

et us define a K∞-function γ̄ (·) := min{ρ(·), id(·)}. This implies
hat γ̄ (·) ≤ ρ(·), and γ̄ (·) ≤ id(·). As such, −

1
2VΣp (ψ, x̄) ≤

−γ̄ ( 12VΣp (ψ, x̄)), and −ρ(VΣ (u)) ≤ −γ̄ (VΣ (u)). Moreover,
iven the fact that γ̄ (·) ∈ K∞, it follows that γ̄
1
2 (

1
2VΣp (ψ, x̄) + VΣ (u))

)
≤ γ̄

( 1
2VΣp (ψ, x̄)

)
+ γ̄ (VΣ (u)) (see,

e.g., Kellett (2014)). With VΣp (ψ, x̄) := σ∥ψ∥C̃T + ∥x̄∥A(ψ+vnv (ψ)),
B.12) results in the following inequality:

W (ψ, x̄, u) ≤ −γ̄

(
1
4
(VΣp (ψ, x̄) + 2VΣ (u))

)
+ 2σ∥u∥C̃T − ρ(VΣ (u)) + 2δ + γ ,

(B.13)

et us define a function γ̃ (·) ∈ K∞ such that

˜
(
VΣp (ψ, x̄) + 2VΣ (u)

)
:= γ̄

(
1
4

(
VΣp (ψ, x̄) + 2VΣ (u)

))
. (B.14)

rom item 2 in Assumption 7, we have that there exists a function
∈ K∞ such that α(∥u∥C̃T ) ≤ VΣ (u). From this fact and ρ ∈ K∞,
e obtain that −ρ(VΣ (u)) ≤ −ρ(α(∥u∥C̃T )). For any α, ρ ∈

∞, we have that ρ̃(·) := ρ(α(·)) ∈ K∞, which implies that
ρ(VΣ (u)) ≤ −ρ̃(∥u∥C̃T ). For any ∆U ∈ R>0 and any small δV ∈

>0, there exists a c ∈ R>0 such that −ρ̃(∥u∥C̃T ) ≤ −c∥u∥C̃T +δV
or u ∈ T̄ and with ∥u∥C̃T ≤ ∆U . From (B.14), (22), and σ :=

c
2 ,

e obtain the following inequality:

W (ψ, x̄, u) ≤ −γ̃ (W (ψ, x̄, u)) + 2δ + γ + δV , (B.15)

ith any small δV ∈ R>0.

tep 4: Next, we will use the inequality in (B.15) to (1) show
onstraint satisfaction and (2) the convergence of u to a neigh-
orhood of the set of approximate minimizers C̃T . Let ρ̂ ∈ K∞

uch that (id− ρ̂) ∈ K∞. For any ρ̂ ◦ γ̃ (W (ψ, x̄, u)) ≥ 2δ+γ + δV
e obtain that

W (ψ, x̄, u) ≤ −(id − ρ̂) ◦ γ̃ (W (ψ, x̄, u)). (B.16)

rom (B.16) and the comparison lemma, see, e.g., Lemma 4.3
n Jiang and Wang (2002), we have that there exists some KL-
unction β̂ such that

(ψk, x̄k, uk) ≤ max{β̂(W (ψ0, x̄0, u0), k),

γ̃−1
◦ ρ̂−1(2δ + γ + δV )},

(B.17)

or all k ∈ N. This shows the validity of inequality (25) in the
heorem. Based on this inequality we can now validate the two
tatements in the theorem on constraint satisfaction and the
onvergence to a neighborhood of the approximate constrained
inimizer set:

• For any u0, ψ0 ∈ V ⊂ T̄ and x̄0 ∈ X with ∥u0∥C̃T ≤ ∆U ,
∥ψ0∥C̃T ≤ ∆U , and ∥x̄0∥A(ψ0+vnv (ψ0)) ≤ ∆X with some
∆U ,∆X ∈ R≥0, we have that W (ψ0, x̄0, u0) is bounded,
i.e., W (ψ0, x̄0, u0) ≤ ∆W for some ∆W ∈ R≥0. From (B.17)
we obtain that W (ψk, x̄k, uk) is bounded for all k ∈ N. Next,
boundedness of W (ψk, x̄k, uk) for all k ∈ N implies that
VΣ (uk) is bounded for all k ∈ N. As such, from Assumption 7
and boundedness of VΣ (uk) it follows that uk ∈ T o for all
k ≥ 0, i.e., steady-state constraints satisfaction is guaranteed
for all k ∈ N.

• From the inequality in (B.17), we have the following ulti-
mate bound for W :

lim W (ψk, x̄k, uk) = γ̃−1
◦ ρ̂−1(2δ + γ + δV ). (B.18)
k→∞
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Given the fact that 2VΣ (u) ≤ W (ψ, x̄, u), and α(∥u∥C̃T ) ≤

VΣ (u) which follows from item 2 in Assumption 7, we have
that the solutions converge to a set Yu := {u ∈ T o

| ∥u∥C̃T ≤

α−1
( 1
2 γ̃

−1
◦ ρ̂−1(2δ + γ + δV )

)
}.

he set Yu can be made arbitrarily small. Namely, (1) δV ∈

R>0 can be any arbitrarily small constant, (2) we can make γ
arbitrarily small by choosing a sufficiently large waiting time
T ∈ R>0, and (3) δ, which is defined in Assumption 7, can be
made sufficiently small by tuning the parameters of the particu-
lar optimization algorithm F , as discussed in Assumption 7 and
Remark 9. This completes the proof of Theorem 13. □

References

Atta, K. T., Guay, M., & Lucchese, R. (2019). A geometric phasor extremum
seeking control approach with measured constraints. In Proceedings of the
58th IEEE conference on decision and control, Nice, France (pp. 1494–1500).

Boyd, S., & Vandenberghe, L. (2009). Convex optimization (7th ed.). Cambridge
University Press.

DeHaan, D., & Guay, M. (2005). Extremum-seeking control of state-constrained
nonlinear systems. Automatica, 41(9), 1567–1574.

Dürr, H.-B., & Ebenbauer, C. (2011). A smooth vector field for saddle point
problems. In Proceedings of the 50th IEEE conference on decision and control,
Orlando, USA (pp. 4654–4660).

Dürr, H.-B., Zeng, C., & Ebenbauer, C. (2013). Saddle point seeking for convex
optimization problems. In 9th IFAC symposium on nonlinear control systems,
Vol. 46 (pp. 540–545). (23).

Fiacco, A. V., & McCormick, G. P. (1990). Nonlinear programming: sequential
unconstrained minimization techniques.

Frihauf, P., Riggs, D. J., Graham, M. R., Chang, S., & Dunstan, W. J. (2013). System
and method to optimize extreme ultraviolet light generation. United States
Patent, Patent No: US 8598552 B1.

Guay, M., Moshksar, E., & Dochain, D. (2014). A constrained extremum-seeking
control approach. International Journal of Robust and Nonlinear Control, 25(16),
3132–3153.

Haring, M., van de Wouw, N., & Nešić, D. (2013). Extremum-seeking control
for nonlinear systems with periodic steady-state outputs. Automatica, 49(6),
1883–1891.

azeleger, L., Nešić, D., & van de Wouw, N. (2019). Sampled-data extremum-
seeking control for optimization of constrained dynamical systems using
barrier function methods. In Proceedings of the 58th conference on decision
and control, Nice, France (pp. 213–219).

Jiang, Z.-P., & Wang, Y. (2002). A converse Lyapunov theorem for discrete-time
systems with disturbances. Systems & Control Letters, 45, 49–58.

Kellett, C. M. (2014). A compendium of comparison function results. Mathematics
of Control, Signals, and Systems, 26(3), 339–374.

ellett, C. M. (2015). Classical converse theorems in Lyapunov’s second method.
Discrete and Continuous Dynamical Systems. Series B, 20(8), 2333–2360.

Kellett, C. M., & Teel, A. R. (2004). Weak converse Lyapunov theorems and
control-Lyapunov functions. SIAM Journal on Control and Optimization, 42(6),
1934–1959.

hong, S. Z., Nešić, D., Manzie, C., & Tan, Y. (2013). Multidimensional global
extremum seeking via the DIRECT method. Automatica, 49(7), 1970.

hong, S. Z., Nešić, D., Tan, Y., & Manzie, C. (2013a). Trajectory-based proofs
for sampled-data extremum seeking control. In Proceedings of the American
control conference, Washington, DC (pp. 2751–2756).

hong, S. Z., Nešić, D., Tan, Y., & Manzie, C. (2013b). Unified frameworks for
sampled-data extremum-seeking control: global optimization and multi-unit
systems. Automatica, 49, 2720–2733.

rstić, M., & Wang, H.-H. (2000). Stability of extremum-seeking feedback for
general nonlinear dynamic systems. Automatica, 36(4), 595–601.

vaternik, K., & Pavel, L. (2011). Interconnection conditions for the stability of
nonlinear sampled-data extremum seeking schemes. In Proceedings of the
50th IEEE conference on decision and control, Orlando, USA (pp. 4448–4454).

abar, C., Garone, E., Kinnaert, M., & Ebenbauer, C. (2019). Constrained extremum
seeking: a modified-barrier function approach. IFAC-PapersOnline, 52(16),
694–699, 11th IFAC Symposium on Nonlinear Control Systems NOLCOS 2019.

Liao, C.-K., Manzie, C., Chapman, A., & Alpcan, T. (2019). Constrained extremum
seeking of a MIMO dynamic system. Automatica, 108, Article 108496.

Mills, G., & Krstić, M. (2014). Constrained extremum seeking in 1 dimension. In
Proceedings of the 53th conference on decision and control, Los Angeles, USA
(pp. 2654–2659).

Nešić, D., Nguyen, T., Tan, Y., & Manzie, C. (2013). A non-gradient approach
to global extremum seeking: An adaptation of the shubert algorithm.
Automatica, 49(3), 709–815.
13
Nešić, D., Teel, A. R., & Kokotović, P. V. (1999). Sufficient conditions for stabi-
lization of sampled-data nonlinear systems via discrete-time approximations.
Systems & Control Letters, 38, 259–270.

Ramos, M., Manzie, C., & Shekhar, R. (2017). Online optimisation of fuel con-
sumption subject to NOx constraints. IFAC-PapersOnLine, 50(1), 8901–8906,
20th IFAC World Congress.

Spall, J. C. (1997). A one-measurement form of simultaneous perturbation
stochastic approximation. Automatica, 33(1), 109–112.

Srinivasan, B., Biegler, L. T., & Bonvin, D. (2008). Tracking the necessary
conditions of optimality with changing set of active constraints using a
barrier-penalty function. Computers and Chemical Engineering, 32, 572–579.

Tan, Y., Li, Y., & Mareels, I. M. Y. (2013). Extremum seeking for constrained
inputs. IEEE Transactions on Automatic Control, 58(9), 2405–2410.

Tan, Y., Nešić, D., & Mareels, I. (2006). On non-local stability properties of
extremum seeking control. Automatica, 42(6), 889–903.

Teel, A. R. (2000). Lyapunov methods in nonsmooth optimization, part I: Quasi-
Newton algorithms for Lipschitz, regular functions. In Proceedings of the 39th
conference on decision and control, Sydney, Australia (pp. 112–117).

Teel, A. R. (2000). Lyapunov methods in nonsmooth optimization, part II:
persistently exciting finite differences. In Proceedings of the 39th conference
on decision and control, Sydney, Australia (pp. 118–123).

Teel, A. R., & Popović, D. (2001). Solving smooth and nonsmooth multivariable
extremum seeking problems by the methods of nonlinear programming. In
Proceedings of the American control conference, Arlington, VA (pp. 25–27).

Teel, A. R., & Praly, L. (2000). A smooth Lyapunov function from a class-
KL estimate involving two positive semidefinite functions. ESAIM: Control,
Optimisation and Calculus of Variations, 5, 313–368.

van der Weijst, R., van Keulen, T., & Willems, F. (2019). Constrained multivariable
extremum-seeking for online fuel-efficiency optimization of diesel engines.
Control Engineering Practice, 87, 133–144.

Leroy Hazeleger received his M.Sc.-degree in Systems
and Control within the Department of Mechanical En-
gineering at the Eindhoven University of Technology,
The Netherlands, in 2015. He received his Ph.D.-
degree within the Dynamics and Control Group at the
Eindhoven University of Technology, The Netherlands,
in 2020. Currently, Leroy Hazeleger is working as
a Mechatronics Engineer at Thermo Fisher Scientific,
Eindhoven, The Netherlands.

Dragan Nešić is a Professor at the Department of
Electrical and Electronic Engineering at The University
of Melbourne. He received his Bachelor of Mechanical
Engineering Degree at the University of Belgrade (1990)
and his Ph.D. at the Australian National University
(1997). His research interests are in the broad area of
control engineering including its mathematical founda-
tions (e.g. Lyapunov stability theory, hybrid systems,
singular perturbations, averaging) and its applications
to various areas of engineering (e.g. automotive control,
optical telecommunications) and science (e.g. neuro-

science). More specifically, he has made significant contributions to the areas of
nonlinear sampled-data systems, nonlinear networked control systems, event-
triggered control, optimization-based control and extremum seeking control
and he presented several keynote lectures on these topics at international
conferences. He is a Fellow of IEEE and a Fellow of IFAC and he served
as a Distinguished Lecturer of the Control Systems Society of the IEEE. He
was a co-recipient (with M. Nagahara and D. Quevedo) of the George S.
Axelby Outstanding Paper Award (2017). He is a recipient of numerous awards
and prizes, including Doctorate Honoris Causa by the University of Lorraine
(2019), Humboldt Research Award (2020), Humboldt Research Fellowship (2003–
2004), as well as Future Fellowship (2010–2014) and an Australian Professorial
Fellowship (2004–2009) funded by the Australian Research Council. He is an
Associate Editor for the journal IEEE Transactions on Network Control Systems
(CONES) and Foundations and Trends in Systems and Control. He has also served
as Associate Editor for the IEEE Transactions on Automatic Control, Automatica,
European Journal of Control and Systems and Control Letters. He was a General
Co-Chair of 2017 IEEE Conference on Decision and Control and a General
Chair of the 2011 Australian Control Conference. He served on International
Program Committees of many international conferences, such as the American
Control Conference, IEEE Conference on Decision and Control, NOLCOS, Asian
Control Conference, and European Control Conference. He also served on various
committees including the Board of Governors, IEEE Control Systems Society.

http://refhub.elsevier.com/S0005-1098(22)00268-0/sb2
http://refhub.elsevier.com/S0005-1098(22)00268-0/sb2
http://refhub.elsevier.com/S0005-1098(22)00268-0/sb2
http://refhub.elsevier.com/S0005-1098(22)00268-0/sb3
http://refhub.elsevier.com/S0005-1098(22)00268-0/sb3
http://refhub.elsevier.com/S0005-1098(22)00268-0/sb3
http://refhub.elsevier.com/S0005-1098(22)00268-0/sb5
http://refhub.elsevier.com/S0005-1098(22)00268-0/sb5
http://refhub.elsevier.com/S0005-1098(22)00268-0/sb5
http://refhub.elsevier.com/S0005-1098(22)00268-0/sb5
http://refhub.elsevier.com/S0005-1098(22)00268-0/sb5
http://refhub.elsevier.com/S0005-1098(22)00268-0/sb6
http://refhub.elsevier.com/S0005-1098(22)00268-0/sb6
http://refhub.elsevier.com/S0005-1098(22)00268-0/sb6
http://refhub.elsevier.com/S0005-1098(22)00268-0/sb7
http://refhub.elsevier.com/S0005-1098(22)00268-0/sb7
http://refhub.elsevier.com/S0005-1098(22)00268-0/sb7
http://refhub.elsevier.com/S0005-1098(22)00268-0/sb7
http://refhub.elsevier.com/S0005-1098(22)00268-0/sb7
http://refhub.elsevier.com/S0005-1098(22)00268-0/sb8
http://refhub.elsevier.com/S0005-1098(22)00268-0/sb8
http://refhub.elsevier.com/S0005-1098(22)00268-0/sb8
http://refhub.elsevier.com/S0005-1098(22)00268-0/sb8
http://refhub.elsevier.com/S0005-1098(22)00268-0/sb8
http://refhub.elsevier.com/S0005-1098(22)00268-0/sb9
http://refhub.elsevier.com/S0005-1098(22)00268-0/sb9
http://refhub.elsevier.com/S0005-1098(22)00268-0/sb9
http://refhub.elsevier.com/S0005-1098(22)00268-0/sb9
http://refhub.elsevier.com/S0005-1098(22)00268-0/sb9
http://refhub.elsevier.com/S0005-1098(22)00268-0/sb11
http://refhub.elsevier.com/S0005-1098(22)00268-0/sb11
http://refhub.elsevier.com/S0005-1098(22)00268-0/sb11
http://refhub.elsevier.com/S0005-1098(22)00268-0/sb12
http://refhub.elsevier.com/S0005-1098(22)00268-0/sb12
http://refhub.elsevier.com/S0005-1098(22)00268-0/sb12
http://refhub.elsevier.com/S0005-1098(22)00268-0/sb13
http://refhub.elsevier.com/S0005-1098(22)00268-0/sb13
http://refhub.elsevier.com/S0005-1098(22)00268-0/sb13
http://refhub.elsevier.com/S0005-1098(22)00268-0/sb14
http://refhub.elsevier.com/S0005-1098(22)00268-0/sb14
http://refhub.elsevier.com/S0005-1098(22)00268-0/sb14
http://refhub.elsevier.com/S0005-1098(22)00268-0/sb14
http://refhub.elsevier.com/S0005-1098(22)00268-0/sb14
http://refhub.elsevier.com/S0005-1098(22)00268-0/sb15
http://refhub.elsevier.com/S0005-1098(22)00268-0/sb15
http://refhub.elsevier.com/S0005-1098(22)00268-0/sb15
http://refhub.elsevier.com/S0005-1098(22)00268-0/sb17
http://refhub.elsevier.com/S0005-1098(22)00268-0/sb17
http://refhub.elsevier.com/S0005-1098(22)00268-0/sb17
http://refhub.elsevier.com/S0005-1098(22)00268-0/sb17
http://refhub.elsevier.com/S0005-1098(22)00268-0/sb17
http://refhub.elsevier.com/S0005-1098(22)00268-0/sb18
http://refhub.elsevier.com/S0005-1098(22)00268-0/sb18
http://refhub.elsevier.com/S0005-1098(22)00268-0/sb18
http://refhub.elsevier.com/S0005-1098(22)00268-0/sb20
http://refhub.elsevier.com/S0005-1098(22)00268-0/sb20
http://refhub.elsevier.com/S0005-1098(22)00268-0/sb20
http://refhub.elsevier.com/S0005-1098(22)00268-0/sb20
http://refhub.elsevier.com/S0005-1098(22)00268-0/sb20
http://refhub.elsevier.com/S0005-1098(22)00268-0/sb21
http://refhub.elsevier.com/S0005-1098(22)00268-0/sb21
http://refhub.elsevier.com/S0005-1098(22)00268-0/sb21
http://refhub.elsevier.com/S0005-1098(22)00268-0/sb23
http://refhub.elsevier.com/S0005-1098(22)00268-0/sb23
http://refhub.elsevier.com/S0005-1098(22)00268-0/sb23
http://refhub.elsevier.com/S0005-1098(22)00268-0/sb23
http://refhub.elsevier.com/S0005-1098(22)00268-0/sb23
http://refhub.elsevier.com/S0005-1098(22)00268-0/sb24
http://refhub.elsevier.com/S0005-1098(22)00268-0/sb24
http://refhub.elsevier.com/S0005-1098(22)00268-0/sb24
http://refhub.elsevier.com/S0005-1098(22)00268-0/sb24
http://refhub.elsevier.com/S0005-1098(22)00268-0/sb24
http://refhub.elsevier.com/S0005-1098(22)00268-0/sb25
http://refhub.elsevier.com/S0005-1098(22)00268-0/sb25
http://refhub.elsevier.com/S0005-1098(22)00268-0/sb25
http://refhub.elsevier.com/S0005-1098(22)00268-0/sb25
http://refhub.elsevier.com/S0005-1098(22)00268-0/sb25
http://refhub.elsevier.com/S0005-1098(22)00268-0/sb26
http://refhub.elsevier.com/S0005-1098(22)00268-0/sb26
http://refhub.elsevier.com/S0005-1098(22)00268-0/sb26
http://refhub.elsevier.com/S0005-1098(22)00268-0/sb27
http://refhub.elsevier.com/S0005-1098(22)00268-0/sb27
http://refhub.elsevier.com/S0005-1098(22)00268-0/sb27
http://refhub.elsevier.com/S0005-1098(22)00268-0/sb27
http://refhub.elsevier.com/S0005-1098(22)00268-0/sb27
http://refhub.elsevier.com/S0005-1098(22)00268-0/sb28
http://refhub.elsevier.com/S0005-1098(22)00268-0/sb28
http://refhub.elsevier.com/S0005-1098(22)00268-0/sb28
http://refhub.elsevier.com/S0005-1098(22)00268-0/sb29
http://refhub.elsevier.com/S0005-1098(22)00268-0/sb29
http://refhub.elsevier.com/S0005-1098(22)00268-0/sb29
http://refhub.elsevier.com/S0005-1098(22)00268-0/sb33
http://refhub.elsevier.com/S0005-1098(22)00268-0/sb33
http://refhub.elsevier.com/S0005-1098(22)00268-0/sb33
http://refhub.elsevier.com/S0005-1098(22)00268-0/sb33
http://refhub.elsevier.com/S0005-1098(22)00268-0/sb33
http://refhub.elsevier.com/S0005-1098(22)00268-0/sb34
http://refhub.elsevier.com/S0005-1098(22)00268-0/sb34
http://refhub.elsevier.com/S0005-1098(22)00268-0/sb34
http://refhub.elsevier.com/S0005-1098(22)00268-0/sb34
http://refhub.elsevier.com/S0005-1098(22)00268-0/sb34


L. Hazeleger, D. Nešić and N. van de Wouw Automatica 142 (2022) 110415

l
A
a

Nathan van de Wouw, (born, 1970) obtained his M.Sc.-
degree (with honors) and Ph.D.-degree in Mechanical
Engineering from the Eindhoven University of Tech-
nology, Eindhoven, the Netherlands, in 1994 and 1999,
respectively. He currently holds a full professor posi-
tion at the Mechanical Engineering Department of the
Eindhoven University of Technology, The Netherlands.
Nathan van de Wouw also holds an adjunct full pro-
fessor position at the University of Minnesota, U.S.A.
In 2000, Nathan van de Wouw has been working at
Philips Applied Technologies, Eindhoven, The Nether-

ands, and, in 2001, he has been working at the Netherlands Organisation for
pplied Scientific Research (TNO), Delft, The Netherlands. He has held positions
s a visiting professor at the University of California Santa Barbara, U.S.A., in
14
2006/2007, at the University of Melbourne, Australia, in 2009/2010 and at the
University of Minnesota, U.S.A., in 2012 and 2013. He has held a (part-time)
full professor position the Delft University of Technology, the Netherlands, from
2015–2019. He has published the books ’Uniform Output Regulation of Nonlinear
Systems: A convergent Dynamics Approach’ with A.V. Pavlov and H. Nijmeijer
(Birkhauser, 2005) and ‘Stability and Convergence of Mechanical Systems with
Unilateral Constraints’ with R.I. Leine (Springer-Verlag, 2008). He currently is an
Associate Editor for the journals ‘‘Automatica’’ and ‘‘IEEE Transactions on Control
Systems Technology’’. In 2015, he received the IEEE Control Systems Technology
Award ‘‘For the development and application of variable-gain control techniques
for high-performance motion systems’’. His current research interests are the
modeling, model reduction, analysis and control of nonlinear/hybrid and delay
systems, with applications to vehicular platooning, high-tech systems, resource
exploration, smart energy systems and networked control systems.


	Sampled-data extremum-seeking framework for constrained optimization of nonlinear dynamical systems
	Introduction
	Class of dynamical systems and constrained optimization problem formulation
	Class of dynamical systems
	Constrained optimization problem formulation

	Class of optimization algorithms for constrained optimization problems using barrier function methods
	Constrained optimization using barrier function methods
	Characterization of constrained optimization algorithms

	Stability of the interconnected class of dynamical systems and a class of extremum seeking algorithms
	Industrial case study: constrained optimization of EUV light generation in a Laser Produced Plasma (LPP) source
	System description
	LPP source model
	Closed-loop mirror control system
	Static nonlinearities
	User-defined filtering

	Constrained optimization problem
	Gradient-based sampled-data extremum-seeking algorithm with barrier functions
	Simulation results

	Conclusion
	Acknowledgments
	Appendix A. Proof of Lemma 12
	Appendix B. Proof of Theorem 13
	References


