9 research outputs found

    The number of unit-area triangles in the plane: Theme and variations

    Get PDF
    We show that the number of unit-area triangles determined by a set SS of nn points in the plane is O(n20/9)O(n^{20/9}), improving the earlier bound O(n9/4)O(n^{9/4}) of Apfelbaum and Sharir [Discrete Comput. Geom., 2010]. We also consider two special cases of this problem: (i) We show, using a somewhat subtle construction, that if SS consists of points on three lines, the number of unit-area triangles that SS spans can be Ω(n2)\Omega(n^2), for any triple of lines (it is always O(n2)O(n^2) in this case). (ii) We show that if SS is a {\em convex grid} of the form A×BA\times B, where AA, BB are {\em convex} sets of n1/2n^{1/2} real numbers each (i.e., the sequences of differences of consecutive elements of AA and of BB are both strictly increasing), then SS determines O(n31/14)O(n^{31/14}) unit-area triangles

    Maximal Area Triangles in a Convex Polygon

    Full text link
    The widely known linear time algorithm for computing the maximum area triangle in a convex polygon was found incorrect recently by Keikha et. al.(arXiv:1705.11035). We present an alternative algorithm in this paper. Comparing to the only previously known correct solution, ours is much simpler and more efficient. More importantly, our new approach is powerful in solving related problems

    On the number of tetrahedra with minimum, unit, and distinct volumes in three-space

    Full text link
    We formulate and give partial answers to several combinatorial problems on volumes of simplices determined by nn points in 3-space, and in general in dd dimensions. (i) The number of tetrahedra of minimum (nonzero) volume spanned by nn points in \RR^3 is at most 2/3n3O(n2){2/3}n^3-O(n^2), and there are point sets for which this number is 3/16n3O(n2){3/16}n^3-O(n^2). We also present an O(n3)O(n^3) time algorithm for reporting all tetrahedra of minimum nonzero volume, and thereby extend an algorithm of Edelsbrunner, O'Rourke, and Seidel. In general, for every k,d\in \NN, 1kd1\leq k \leq d, the maximum number of kk-dimensional simplices of minimum (nonzero) volume spanned by nn points in \RR^d is Θ(nk)\Theta(n^k). (ii) The number of unit-volume tetrahedra determined by nn points in \RR^3 is O(n7/2)O(n^{7/2}), and there are point sets for which this number is Ω(n3loglogn)\Omega(n^3 \log \log{n}). (iii) For every d\in \NN, the minimum number of distinct volumes of all full-dimensional simplices determined by nn points in \RR^d, not all on a hyperplane, is Θ(n)\Theta(n).Comment: 19 pages, 3 figures, a preliminary version has appeard in proceedings of the ACM-SIAM Symposium on Discrete Algorithms, 200

    Multilinear generalized Radon transforms and point configurations

    Full text link
    We study multilinear generalized Radon transforms using a graph-theoretic paradigm that includes the widely studied linear case. These provide a general mechanism to study Falconer-type problems involving (k+1)(k+1)-point configurations in geometric measure theory, with k2k \ge 2, including the distribution of simplices, volumes and angles determined by the points of fractal subsets ERdE \subset {\Bbb R}^d, d2d \ge 2. If Tk(E)T_k(E) denotes the set of noncongruent (k+1)(k+1)-point configurations determined by EE, we show that if the Hausdorff dimension of EE is greater than dd12kd-\frac{d-1}{2k}, then the (k+12){k+1 \choose 2}-dimensional Lebesgue measure of Tk(E)T_k(E) is positive. This compliments previous work on the Falconer conjecture (\cite{Erd05} and the references there), as well as work on finite point configurations \cite{EHI11,GI10}. We also give applications to Erd\"os-type problems in discrete geometry and a fractal regular value theorem, providing a multilinear framework for the results in \cite{EIT11}.Comment: 27 pages, no figures. To appear, Forum Mathematicu

    Sharp Bounds on Davenport-Schinzel Sequences of Every Order

    Full text link
    One of the longest-standing open problems in computational geometry is to bound the lower envelope of nn univariate functions, each pair of which crosses at most ss times, for some fixed ss. This problem is known to be equivalent to bounding the length of an order-ss Davenport-Schinzel sequence, namely a sequence over an nn-letter alphabet that avoids alternating subsequences of the form ababa \cdots b \cdots a \cdots b \cdots with length s+2s+2. These sequences were introduced by Davenport and Schinzel in 1965 to model a certain problem in differential equations and have since been applied to bounding the running times of geometric algorithms, data structures, and the combinatorial complexity of geometric arrangements. Let λs(n)\lambda_s(n) be the maximum length of an order-ss DS sequence over nn letters. What is λs\lambda_s asymptotically? This question has been answered satisfactorily (by Hart and Sharir, Agarwal, Sharir, and Shor, Klazar, and Nivasch) when ss is even or s3s\le 3. However, since the work of Agarwal, Sharir, and Shor in the mid-1980s there has been a persistent gap in our understanding of the odd orders. In this work we effectively close the problem by establishing sharp bounds on Davenport-Schinzel sequences of every order ss. Our results reveal that, contrary to one's intuition, λs(n)\lambda_s(n) behaves essentially like λs1(n)\lambda_{s-1}(n) when ss is odd. This refutes conjectures due to Alon et al. (2008) and Nivasch (2010).Comment: A 10-page extended abstract will appear in the Proceedings of the Symposium on Computational Geometry, 201

    The Number of Unit-Area Triangles in the Plane: Theme and Variations *

    Get PDF
    Abstract We show that the number of unit-area triangles determined by a set S of n points in the plane is O(n 20/9 ), improving the earlier bound O(n 9/4 ) of Apfelbaum and Sharir (ii) We show that if S is a convex grid of the form A × B, where A, B are convex sets of n 1/2 real numbers each (i.e., the sequences of differences of consecutive elements of A and of B are both strictly increasing), then S determines O(n 31/14 ) unit-area triangles

    Extremal problems on triangle areas in two and three dimensions

    Get PDF
    The study of extremal problems on triangle areas was initiated in a series of papers by Erdős and Purdy in the early 1970s. In this paper we present new results on such problems, concerning the number of triangles of the same area that are spanned by finite point sets in the plane and in 3-space, and the number of distinct areas determined by the triangles. In the plane, our main result is an O(n 44/19) = O(n 2.3158) upper bound on the number of unit-area triangles spanned by n points, which is the first breakthrough improving the classical bound of O(n 7/3) from 1992. We also make progress in a number of important special cases: We show that (i) For points in convex position, there exist n-element point sets that span Ω(n log n) triangles of unit area. (ii) The number of triangles of minimum (nonzero) area determined by n points is at most 2 3 (n2 −n); there exist n-element point sets (for arbitrarily large n) that span (6/π 2 − o(1))n 2 minimum-area triangles. (iii) The number of acute triangles of minimum area determined by n points is O(n); this is asymptotically tight. (iv) For n points in convex position, the number of triangles of minimum area is O(n); this is asymptotically tight. (v) If no three points are allowed to be collinear, there are n-element point set
    corecore