96 research outputs found

    Constructions of Large Graphs on Surfaces

    Full text link
    We consider the degree/diameter problem for graphs embedded in a surface, namely, given a surface Σ\Sigma and integers Δ\Delta and kk, determine the maximum order N(Δ,k,Σ)N(\Delta,k,\Sigma) of a graph embeddable in Σ\Sigma with maximum degree Δ\Delta and diameter kk. We introduce a number of constructions which produce many new largest known planar and toroidal graphs. We record all these graphs in the available tables of largest known graphs. Given a surface Σ\Sigma of Euler genus gg and an odd diameter kk, the current best asymptotic lower bound for N(Δ,k,Σ)N(\Delta,k,\Sigma) is given by 38gΔk/2.\sqrt{\frac{3}{8}g}\Delta^{\lfloor k/2\rfloor}. Our constructions produce new graphs of order \begin{cases}6\Delta^{\lfloor k/2\rfloor}& \text{if $\Sigma$ is the Klein bottle}\\ \(\frac{7}{2}+\sqrt{6g+\frac{1}{4}}\)\Delta^{\lfloor k/2\rfloor}& \text{otherwise,}\end{cases} thus improving the former value by a factor of 4.Comment: 15 pages, 7 figure

    On the maximum order of graphs embedded in surfaces

    Get PDF
    The maximum number of vertices in a graph of maximum degree Δ3\Delta\ge 3 and fixed diameter k2k\ge 2 is upper bounded by (1+o(1))(Δ1)k(1+o(1))(\Delta-1)^{k}. If we restrict our graphs to certain classes, better upper bounds are known. For instance, for the class of trees there is an upper bound of (2+o(1))(Δ1)k/2(2+o(1))(\Delta-1)^{\lfloor k/2\rfloor} for a fixed kk. The main result of this paper is that graphs embedded in surfaces of bounded Euler genus gg behave like trees, in the sense that, for large Δ\Delta, such graphs have orders bounded from above by begin{cases} c(g+1)(\Delta-1)^{\lfloor k/2\rfloor} & \text{if $k$ is even} c(g^{3/2}+1)(\Delta-1)^{\lfloor k/2\rfloor} & \text{if $k$ is odd}, \{cases} where cc is an absolute constant. This result represents a qualitative improvement over all previous results, even for planar graphs of odd diameter kk. With respect to lower bounds, we construct graphs of Euler genus gg, odd diameter kk, and order c(g+1)(Δ1)k/2c(\sqrt{g}+1)(\Delta-1)^{\lfloor k/2\rfloor} for some absolute constant c>0c>0. Our results answer in the negative a question of Miller and \v{S}ir\'a\v{n} (2005).Comment: 13 pages, 3 figure

    Minor Excluded Network Families Admit Fast Distributed Algorithms

    Full text link
    Distributed network optimization algorithms, such as minimum spanning tree, minimum cut, and shortest path, are an active research area in distributed computing. This paper presents a fast distributed algorithm for such problems in the CONGEST model, on networks that exclude a fixed minor. On general graphs, many optimization problems, including the ones mentioned above, require Ω~(n)\tilde\Omega(\sqrt n) rounds of communication in the CONGEST model, even if the network graph has a much smaller diameter. Naturally, the next step in algorithm design is to design efficient algorithms which bypass this lower bound on a restricted class of graphs. Currently, the only known method of doing so uses the low-congestion shortcut framework of Ghaffari and Haeupler [SODA'16]. Building off of their work, this paper proves that excluded minor graphs admit high-quality shortcuts, leading to an O~(D2)\tilde O(D^2) round algorithm for the aforementioned problems, where DD is the diameter of the network graph. To work with excluded minor graph families, we utilize the Graph Structure Theorem of Robertson and Seymour. To the best of our knowledge, this is the first time the Graph Structure Theorem has been used for an algorithmic result in the distributed setting. Even though the proof is involved, merely showing the existence of good shortcuts is sufficient to obtain simple, efficient distributed algorithms. In particular, the shortcut framework can efficiently construct near-optimal shortcuts and then use them to solve the optimization problems. This, combined with the very general family of excluded minor graphs, which includes most other important graph classes, makes this result of significant interest

    A Note on the Maximum Genus of Graphs with Diameter 4

    Get PDF
    Let G be a simple graph with diameter four, if G does not contain complete subgraph K3 of order three

    The degree-diameter problem for sparse graph classes

    Full text link
    The degree-diameter problem asks for the maximum number of vertices in a graph with maximum degree Δ\Delta and diameter kk. For fixed kk, the answer is Θ(Δk)\Theta(\Delta^k). We consider the degree-diameter problem for particular classes of sparse graphs, and establish the following results. For graphs of bounded average degree the answer is Θ(Δk1)\Theta(\Delta^{k-1}), and for graphs of bounded arboricity the answer is \Theta(\Delta^{\floor{k/2}}), in both cases for fixed kk. For graphs of given treewidth, we determine the the maximum number of vertices up to a constant factor. More precise bounds are given for graphs of given treewidth, graphs embeddable on a given surface, and apex-minor-free graphs

    Long induced paths in graphs

    Full text link
    We prove that every 3-connected planar graph on nn vertices contains an induced path on Ω(logn)\Omega(\log n) vertices, which is best possible and improves the best known lower bound by a multiplicative factor of loglogn\log \log n. We deduce that any planar graph (or more generally, any graph embeddable on a fixed surface) with a path on nn vertices, also contains an induced path on Ω(logn)\Omega(\sqrt{\log n}) vertices. We conjecture that for any kk, there is a contant c(k)c(k) such that any kk-degenerate graph with a path on nn vertices also contains an induced path on Ω((logn)c(k))\Omega((\log n)^{c(k)}) vertices. We provide examples showing that this order of magnitude would be best possible (already for chordal graphs), and prove the conjecture in the case of interval graphs.Comment: 20 pages, 5 figures - revised versio

    Extremal density for sparse minors and subdivisions

    Full text link
    We prove an asymptotically tight bound on the extremal density guaranteeing subdivisions of bounded-degree bipartite graphs with a mild separability condition. As corollaries, we answer several questions of Reed and Wood on embedding sparse minors. Among others, \bullet (1+o(1))t2(1+o(1))t^2 average degree is sufficient to force the t×tt\times t grid as a topological minor; \bullet (3/2+o(1))t(3/2+o(1))t average degree forces every tt-vertex planar graph as a minor, and the constant 3/23/2 is optimal, furthermore, surprisingly, the value is the same for tt-vertex graphs embeddable on any fixed surface; \bullet a universal bound of (2+o(1))t(2+o(1))t on average degree forcing every tt-vertex graph in any nontrivial minor-closed family as a minor, and the constant 2 is best possible by considering graphs with given treewidth.Comment: 33 pages, 6 figure

    Every Minor-Closed Property of Sparse Graphs is Testable

    Full text link
    Suppose GG is a graph with degrees bounded by dd, and one needs to remove more than ϵn\epsilon n of its edges in order to make it planar. We show that in this case the statistics of local neighborhoods around vertices of GG is far from the statistics of local neighborhoods around vertices of any planar graph GG' with the same degree bound. In fact, a similar result is proved for any minor-closed property of bounded degree graphs. As an immediate corollary of the above result we infer that many well studied graph properties, like being planar, outer-planar, series-parallel, bounded genus, bounded tree-width and several others, are testable with a constant number of queries, where the constant may depend on ϵ\epsilon and dd, but not on the graph size. None of these properties was previously known to be testable even with o(n)o(n) queries

    Minors in expanding graphs

    Full text link
    Extending several previous results we obtained nearly tight estimates on the maximum size of a clique-minor in various classes of expanding graphs. These results can be used to show that graphs without short cycles and other H-free graphs contain large clique-minors, resolving some open questions in this area
    corecore