43 research outputs found

    Positive independence densities of finite rank countable hypergraphs are achieved by finite hypergraphs

    Full text link
    The independence density of a finite hypergraph is the probability that a subset of vertices, chosen uniformly at random contains no hyperedges. Independence densities can be generalized to countable hypergraphs using limits. We show that, in fact, every positive independence density of a countably infinite hypergraph with hyperedges of bounded size is equal to the independence density of some finite hypergraph whose hyperedges are no larger than those in the infinite hypergraph. This answers a question of Bonato, Brown, Kemkes, and Pra{\l}at about independence densities of graphs. Furthermore, we show that for any kk, the set of independence densities of hypergraphs with hyperedges of size at most kk is closed and contains no infinite increasing sequences.Comment: To appear in the European Journal of Combinatorics, 12 page

    New lower bounds for the independence number of sparse graphs and hypergraphs

    Full text link
    We obtain new lower bounds for the independence number of KrK_r-free graphs and linear kk-uniform hypergraphs in terms of the degree sequence. This answers some old questions raised by Caro and Tuza \cite{CT91}. Our proof technique is an extension of a method of Caro and Wei \cite{CA79, WE79}, and we also give a new short proof of the main result of \cite{CT91} using this approach. As byproducts, we also obtain some non-trivial identities involving binomial coefficients
    corecore