18 research outputs found

    Extraction of SSVEPs-Based Inherent Fuzzy Entropy Using a Wearable Headband EEG in Migraine Patients

    Full text link
    © 1993-2012 IEEE. Inherent fuzzy entropy is an objective measurement of electroencephalography (EEG) complexity reflecting the robustness of brain systems. In this study, we present a novel application of multiscale relative inherent fuzzy entropy using repetitive steady-state visual evoked potentials (SSVEPs) to investigate EEG complexity change between two migraine phases, i.e., interictal (baseline) and preictal (before migraine attacks) phases. We used a wearable headband EEG device with O1, Oz, O2, and Fpz electrodes to collect EEG signals from 80 participants [40 migraine patients and 40 healthy controls (HCs)] under the following two conditions: During resting state and SSVEPs with five 15-Hz photic stimuli. We found a significant enhancement in occipital EEG entropy with increasing stimulus times in both HCs and patients in the interictal phase, but a reverse trend in patients in the preictal phase. In the 1st SSVEP, occipital EEG entropy of the HCs was significantly lower than that of patents in the preictal phase (FDR-adjusted p < 0.05). Regarding the transitional variance of EEG entropy between the 1st and 5th SSVEPs, patients in the preictal phase exhibited significantly lower values than patients in the interictal phase (FDR-adjusted p < 0.05). Furthermore, in the classification model, the AdaBoost ensemble learning showed an accuracy of 81 pm 6%and area under the curve of 0.87 for classifying interictal and preictal phases. In contrast, there were no differences in EEG entropy among groups or sessions by using other competing entropy models, including approximate entropy, sample entropy, and fuzzy entropy on the same dataset. In conclusion, inherent fuzzy entropy offers novel applications in visual stimulus environments and may have the potential to provide a preictal alert to migraine patients

    Tensor Decomposition for EEG Signal Retrieval

    Full text link
    Prior studies have proposed methods to recover multi-channel electroencephalography (EEG) signal ensembles from their partially sampled entries. These methods depend on spatial scenarios, yet few approaches aiming to a temporal reconstruction with lower loss. The goal of this study is to retrieve the temporal EEG signals independently which was overlooked in data pre-processing. We considered EEG signals are impinging on tensor-based approach, named nonlinear Canonical Polyadic Decomposition (CPD). In this study, we collected EEG signals during a resting-state task. Then, we defined that the source signals are original EEG signals and the generated tensor is perturbed by Gaussian noise with a signal-to-noise ratio of 0 dB. The sources are separated using a basic non-negative CPD and the relative errors on the estimates of the factor matrices. Comparing the similarities between the source signals and their recovered versions, the results showed significantly high correlation over 95%. Our findings reveal the possibility of recoverable temporal signals in EEG applications

    Tensor decomposition for EEG signals retrieval

    Get PDF
    © 2019 IEEE. Prior studies have proposed methods to recover multi-channel electroencephalography (EEG) signal ensembles from their partially sampled entries. These methods depend on spatial scenarios, yet few approaches aiming to a temporal reconstruction with lower loss. The goal of this study is to retrieve the temporal EEG signals independently which was overlooked in data pre-processing. We considered EEG signals are impinging on tensor-based approach, named nonlinear Canonical Polyadic Decomposition (CPD). In this study, we collected EEG signals during a resting-state task. Then, we defined that the source signals are original EEG signals and the generated tensor is perturbed by Gaussian noise with a signal-to-noise ratio of 0 dB. The sources are separated using a basic nonnegative CPD and the relative errors on the estimates of the factor matrices. Comparing the similarities between the source signals and their recovered versions, the results showed significantly high correlation over 95%. Our findings reveal the possibility of recoverable temporal signals in EEG applications

    EEG-based Brain-Computer Interfaces (BCIs): A Survey of Recent Studies on Signal Sensing Technologies and Computational Intelligence Approaches and Their Applications.

    Full text link
    Brain-Computer interfaces (BCIs) enhance the capability of human brain activities to interact with the environment. Recent advancements in technology and machine learning algorithms have increased interest in electroencephalographic (EEG)-based BCI applications. EEG-based intelligent BCI systems can facilitate continuous monitoring of fluctuations in human cognitive states under monotonous tasks, which is both beneficial for people in need of healthcare support and general researchers in different domain areas. In this review, we survey the recent literature on EEG signal sensing technologies and computational intelligence approaches in BCI applications, compensating for the gaps in the systematic summary of the past five years. Specifically, we first review the current status of BCI and signal sensing technologies for collecting reliable EEG signals. Then, we demonstrate state-of-the-art computational intelligence techniques, including fuzzy models and transfer learning in machine learning and deep learning algorithms, to detect, monitor, and maintain human cognitive states and task performance in prevalent applications. Finally, we present a couple of innovative BCI-inspired healthcare applications and discuss future research directions in EEG-based BCI research

    A Low Power Multi-Class Migraine Detection Processor Based on Somatosensory Evoked Potentials

    Get PDF
    Migraine is a disabling neurological disorder that can be recurrent and persist for long durations. The continuous monitoring of the brain activities can enable the patient to respond on time before the occurrence of the approaching migraine episode to minimize the severity. Therefore, there is a need for a wearable device that can ensure the early diagnosis of a migraine attack. This brief presents a low latency, and power-efficient feature extraction and classification processor for the early detection of a migraine attack. Somatosensory Evoked Potentials (SEP) are utilized to monitor the migraine patterns in an ambulatory environment aiming to have a processor integrated on-sensor for power-efficient and timely intervention. In this work, a complete digital design of the wearable environment is proposed. It allows the extraction of multiple features including multiple power spectral bands using 256-point fast Fourier transform (FFT), root mean square of late HFO bursts and latency of N20 peak. These features are then classified using a multi-classification artificial neural network (ANN)-based classifier which is also realized on the chip. The proposed processor is placed and routed in a 180nm CMOS with an active area of 0.5mm(2). The total power consumption is 249 mu W while operating at a 20MHz clock with full computations completed in 1.31ms

    Information Volume of Mass Function

    Get PDF
    Given a probability distribution, its corresponding information volume is Shannon entropy. However, how to determine the information volume of a given mass function is still an open issue. Based on Deng entropy, the information volume of mass function is presented in this paper. Given a mass function, the corresponding information volume is larger than its uncertainty measured by Deng entropy. In addition, when the cardinal of the frame of discernment is identical, both the total uncertainty case and the BPA distribution of the maximum Deng entropy have the same information volume. Some numerical examples are illustrated to show the efficiency of the proposed information volume of mass function

    Intelligent Digital Twins for Personalized Migraine Care

    Get PDF

    Abnormal Entropy Modulation of the EEG Signal in Patients With Schizophrenia During the Auditory Paired-Stimulus Paradigm

    Get PDF
    The complexity change in brain activity in schizophrenia is an interesting topic clinically. Schizophrenia patients exhibit abnormal task-related modulation of complexity, following entropy of electroencephalogram (EEG) analysis. However, complexity modulation in schizophrenia patients during the sensory gating (SG) task, remains unknown. In this study, the classical auditory paired-stimulus paradigm was introduced to investigate SG, and EEG data were recorded from 55 normal controls and 61 schizophrenia patients. Fuzzy entropy (FuzzyEn) was used to explore the complexity of brain activity under the conditions of baseline (BL) and the auditory paired-stimulus paradigm (S1 and S2). Generally, schizophrenia patients showed significantly higher FuzzyEn values in the frontal and occipital regions of interest (ROIs). Relative to the BL condition, the normalized values of FuzzyEn of normal controls were decreased greatly in condition S1 and showed less variance in condition S2. Schizophrenia patients showed a smaller decrease in the normalized values in condition S1. Moreover, schizophrenia patients showed significant diminution in the suppression ratios of FuzzyEn, attributed to the higher FuzzyEn values in condition S1. These results suggested that entropy modulation during the process of sensory information and SG was obvious in normal controls and significantly deficient in schizophrenia patients. Additionally, the FuzzyEn values measured in the frontal ROI were positively correlated with positive scores of Positive and Negative Syndrome Scale (PANSS), indicating that frontal entropy was a potential indicator in evaluating the clinical symptoms. However, negative associations were found between the FuzzyEn values of occipital ROIs and general and total scores of PANSS, likely reflecting the compensation effect in visual processing. Thus, our findings provided a deeper understanding of the deficits in sensory information processing and SG, which contribute to cognitive deficits and symptoms in patients with schizophrenia
    corecore