79 research outputs found

    Extracting Spooky-activation-at-a-distance from Considerations of Entanglement

    Get PDF
    Following an early claim by Nelson & McEvoy \cite{Nelson:McEvoy:2007} suggesting that word associations can display `spooky action at a distance behaviour', a serious investigation of the potentially quantum nature of such associations is currently underway. This paper presents a simple quantum model of a word association system. It is shown that a quantum model of word entanglement can recover aspects of both the Spreading Activation equation and the Spooky-activation-at-a-distance equation, both of which are used to model the activation level of words in human memory.Comment: 13 pages, 2 figures; To appear in Proceedings of the Third Quantum Interaction Symposium, Lecture Notes in Artificial Intelligence, vol 5494, Springer, 200

    Quantum Structure in Cognition: Why and How Concepts are Entangled

    Full text link
    One of us has recently elaborated a theory for modelling concepts that uses the state context property (SCoP) formalism, i.e. a generalization of the quantum formalism. This formalism incorporates context into the mathematical structure used to represent a concept, and thereby models how context influences the typicality of a single exemplar and the applicability of a single property of a concept, which provides a solution of the 'Pet-Fish problem' and other difficulties occurring in concept theory. Then, a quantum model has been worked out which reproduces the membership weights of several exemplars of concepts and their combinations. We show in this paper that a further relevant effect appears in a natural way whenever two or more concepts combine, namely, 'entanglement'. The presence of entanglement is explicitly revealed by considering a specific example with two concepts, constructing some Bell's inequalities for this example, testing them in a real experiment with test subjects, and finally proving that Bell's inequalities are violated in this case. We show that the intrinsic and unavoidable character of entanglement can be explained in terms of the weights of the exemplars of the combined concept with respect to the weights of the exemplars of the component concepts.Comment: 10 page

    Quantum entanglement in physical and cognitive systems: a conceptual analysis and a general representation

    Get PDF
    We provide a general description of the phenomenon of entanglement in bipartite systems, as it manifests in micro and macro physical systems, as well as in human cognitive processes. We do so by observing that when genuine coincidence measurements are considered, the violation of the 'marginal laws', in addition to the Bell-CHSH inequality, is also to be expected. The situation can be described in the quantum formalism by considering the presence of entanglement not only at the level of the states, but also at the level of the measurements. However, at the "local'" level of a specific joint measurement, a description where entanglement is only incorporated in the state remains always possible, by adopting a fine-tuned tensor product representation. But contextual tensor product representations should only be considered when there are good reasons to describe the outcome-states as (non-entangled) product states. This will not in general be true, hence, the entangement resource will have to generally be allocated both in the states and in the measurements. In view of the numerous violations of the marginal laws observed in physics' laboratories, it remains unclear to date if entanglement in micro-physical systems is to be understood only as an 'entanglement of the states', or also as an 'entanglement of the measurements'. But even if measurements would also be entangled, the corresponding violation of the marginal laws (no-signaling conditions) would not for this imply that a superluminal communication would be possible

    Concepts and Their Dynamics: A Quantum-Theoretic Modeling of Human Thought

    Full text link
    We analyze different aspects of our quantum modeling approach of human concepts, and more specifically focus on the quantum effects of contextuality, interference, entanglement and emergence, illustrating how each of them makes its appearance in specific situations of the dynamics of human concepts and their combinations. We point out the relation of our approach, which is based on an ontology of a concept as an entity in a state changing under influence of a context, with the main traditional concept theories, i.e. prototype theory, exemplar theory and theory theory. We ponder about the question why quantum theory performs so well in its modeling of human concepts, and shed light on this question by analyzing the role of complex amplitudes, showing how they allow to describe interference in the statistics of measurement outcomes, while in the traditional theories statistics of outcomes originates in classical probability weights, without the possibility of interference. The relevance of complex numbers, the appearance of entanglement, and the role of Fock space in explaining contextual emergence, all as unique features of the quantum modeling, are explicitly revealed in this paper by analyzing human concepts and their dynamics.Comment: 31 pages, 5 figure

    Quantum Interaction Approach in Cognition, Artificial Intelligence and Robotics

    Full text link
    The mathematical formalism of quantum mechanics has been successfully employed in the last years to model situations in which the use of classical structures gives rise to problematical situations, and where typically quantum effects, such as 'contextuality' and 'entanglement', have been recognized. This 'Quantum Interaction Approach' is briefly reviewed in this paper focusing, in particular, on the quantum models that have been elaborated to describe how concepts combine in cognitive science, and on the ensuing identification of a quantum structure in human thought. We point out that these results provide interesting insights toward the development of a unified theory for meaning and knowledge formalization and representation. Then, we analyze the technological aspects and implications of our approach, and a particular attention is devoted to the connections with symbolic artificial intelligence, quantum computation and robotics.Comment: 10 page

    Quantum computation, quantum theory and AI

    Get PDF
    The main purpose of this paper is to examine some (potential) applications of quantum computation in AI and to review the interplay between quantum theory and AI. For the readers who are not familiar with quantum computation, a brief introduction to it is provided, and a famous but simple quantum algorithm is introduced so that they can appreciate the power of quantum computation. Also, a (quite personal) survey of quantum computation is presented in order to give the readers a (unbalanced) panorama of the field. The author hopes that this paper will be a useful map for AI researchers who are going to explore further and deeper connections between AI and quantum computation as well as quantum theory although some parts of the map are very rough and other parts are empty, and waiting for the readers to fill in. © 2009 Elsevier B.V. All rights reserved

    A Hilbert Space Geometric Representation of Shared Awareness and Joint Decision Making

    Get PDF
    Two people in the same situation may ascribe very different meanings to their experiences. They will form different awareness, reacting differently to shared information. Various factors can give rise to this behavior. These factors include, but are not limited to, prior knowledge, training, biases, cultural factors, social factors, team vs. individual context, time, resources, and technology. At the individual level, the differences in attaining separate actions by accessing shared information may not be considered as an anomaly from the perspective of rational decision-making. But for group behavior, reacting differently to the shared information can give rise to conflicts and deviations from an expected behavior, and are categorized as an anomaly or irrational behavior. The lack of proper recognition of the reasons for differences can even impede the shared action towards attaining a common objective. The manifestation of differences becomes noticeable in complex situations. The shared awareness approaches that originate from available situational awareness models fail to recognize the reasons of an unexpected decision in these situations. One reason for this is that in complex situations, incompatible events can become dominant. Human information processing is sensitive to the compatibility of the events. This, and various other human psychological characteristics, require models to be developed that include comprehensive formalisms for both compatible and incompatible events in complex situations. Quantum probability provides a geometrical probabilistic formalism to study the decision and the dynamic cognitive systems in complex situations. The event representation in Hilbert space provides the necessary foundation to represent an individual\u27s knowledge of a situation. Hilbert space allows representing awareness as a superposition of indefinite states. These states form a complete N-dimensional Hilbert space. Within the space generated, events are represented as a subspace. By using these characteristics of Hilbert space and quantum geometrical probabilities, this study introduces a representation of self and other-than-self in a situation. An area of awareness with the possibility of projection onto the same event allows representing shared awareness geometrically. This formalism provides a coherent explanation of shared awareness for both compatible and incompatible events. Also, by using the superposition principles, the dissertation introduces spooky action at a distance concept in studying shared awareness
    corecore