5,035 research outputs found

    TypEx : a type based approach to XML stream querying

    Get PDF
    We consider the topic of query evaluation over semistructured information streams, and XML data streams in particular. Streaming evaluation methods are necessarily eventdriven, which is in tension with high-level query models; in general, the more expressive the query language, the harder it is to translate queries into an event-based implementation with finite resource bounds

    CHARDA: Causal Hybrid Automata Recovery via Dynamic Analysis

    Full text link
    We propose and evaluate a new technique for learning hybrid automata automatically by observing the runtime behavior of a dynamical system. Working from a sequence of continuous state values and predicates about the environment, CHARDA recovers the distinct dynamic modes, learns a model for each mode from a given set of templates, and postulates causal guard conditions which trigger transitions between modes. Our main contribution is the use of information-theoretic measures (1)~as a cost function for data segmentation and model selection to penalize over-fitting and (2)~to determine the likely causes of each transition. CHARDA is easily extended with different classes of model templates, fitting methods, or predicates. In our experiments on a complex videogame character, CHARDA successfully discovers a reasonable over-approximation of the character's true behaviors. Our results also compare favorably against recent work in automatically learning probabilistic timed automata in an aircraft domain: CHARDA exactly learns the modes of these simpler automata.Comment: 7 pages, 2 figures. Accepted for IJCAI 201

    A Model-Derivation Framework for Software Analysis

    Full text link
    Model-based verification allows to express behavioral correctness conditions like the validity of execution states, boundaries of variables or timing at a high level of abstraction and affirm that they are satisfied by a software system. However, this requires expressive models which are difficult and cumbersome to create and maintain by hand. This paper presents a framework that automatically derives behavioral models from real-sized Java programs. Our framework builds on the EMF/ECore technology and provides a tool that creates an initial model from Java bytecode, as well as a series of transformations that simplify the model and eventually output a timed-automata model that can be processed by a model checker such as UPPAAL. The framework has the following properties: (1) consistency of models with software, (2) extensibility of the model derivation process, (3) scalability and (4) expressiveness of models. We report several case studies to validate how our framework satisfies these properties.Comment: In Proceedings MARS 2017, arXiv:1703.0581

    A Model-Derivation Framework for Software Analysis

    Get PDF
    Model-based verification allows to express behavioral correctness conditions like the validity of execution states, boundaries of variables or timing at a high level of abstraction and affirm that they are satisfied by a software system. However, this requires expressive models which are difficult and cumbersome to create and maintain by hand. This paper presents a framework that automatically derives behavioral models from real-sized Java programs. Our framework builds on the EMF/ECore technology and provides a tool that creates an initial model from Java bytecode, as well as a series of transformations that simplify the model and eventually output a timed-automata model that can be processed by a model checker such as UPPAAL. The framework has the following properties: (1) consistency of models with software, (2) extensibility of the model derivation process, (3) scalability and (4) expressiveness of models. We report several case studies to validate how our framework satisfies these properties.Comment: In Proceedings MARS 2017, arXiv:1703.0581

    Automated Game Design Learning

    Full text link
    While general game playing is an active field of research, the learning of game design has tended to be either a secondary goal of such research or it has been solely the domain of humans. We propose a field of research, Automated Game Design Learning (AGDL), with the direct purpose of learning game designs directly through interaction with games in the mode that most people experience games: via play. We detail existing work that touches the edges of this field, describe current successful projects in AGDL and the theoretical foundations that enable them, point to promising applications enabled by AGDL, and discuss next steps for this exciting area of study. The key moves of AGDL are to use game programs as the ultimate source of truth about their own design, and to make these design properties available to other systems and avenues of inquiry.Comment: 8 pages, 2 figures. Accepted for CIG 201

    Adaptable transition systems

    Get PDF
    We present an essential model of adaptable transition systems inspired by white-box approaches to adaptation and based on foundational models of component based systems. The key feature of adaptable transition systems are control propositions, imposing a clear separation between ordinary, functional behaviours and adaptive ones. We instantiate our approach on interface automata yielding adaptable interface automata, but it may be instantiated on other foundational models of component-based systems as well. We discuss how control propositions can be exploited in the specification and analysis of adaptive systems, focusing on various notions proposed in the literature, like adaptability, control loops, and control synthesis
    corecore