6,926 research outputs found

    Dynamical structure in neural population activity

    Get PDF
    The question of how the collective activity of neural populations in the brain gives rise to complex behaviour is fundamental to neuroscience. At the core of this question lie considerations about how neural circuits can perform computations that enable sensory perception, motor control, and decision making. It is thought that such computations are implemented by the dynamical evolution of distributed activity in recurrent circuits. Thus, identifying and interpreting dynamical structure in neural population activity is a key challenge towards a better understanding of neural computation. In this thesis, I make several contributions in addressing this challenge. First, I develop two novel methods for neural data analysis. Both methods aim to extract trajectories of low-dimensional computational state variables directly from the unbinned spike-times of simultaneously recorded neurons on single trials. The first method separates inter-trial variability in the low-dimensional trajectory from variability in the timing of progression along its path, and thus offers a quantification of inter-trial variability in the underlying computational process. The second method simultaneously learns a low-dimensional portrait of the underlying nonlinear dynamics of the circuit, as well as the system's fixed points and locally linearised dynamics around them. This approach facilitates extracting interpretable low-dimensional hypotheses about computation directly from data. Second, I turn to the question of how low-dimensional dynamical structure may be embedded within a high-dimensional neurobiological circuit with excitatory and inhibitory cell-types. I analyse how such circuit-level features shape population activity, with particular focus on responses to targeted optogenetic perturbations of the circuit. Third, I consider the problem of implementing multiple computations in a single dynamical system. I address this in the framework of multi-task learning in recurrently connected networks and demonstrate that a careful organisation of low-dimensional, activity-defined subspaces within the network can help to avoid interference across tasks

    Efficiency characterization of a large neuronal network: a causal information approach

    Get PDF
    When inhibitory neurons constitute about 40% of neurons they could have an important antinociceptive role, as they would easily regulate the level of activity of other neurons. We consider a simple network of cortical spiking neurons with axonal conduction delays and spike timing dependent plasticity, representative of a cortical column or hypercolumn with large proportion of inhibitory neurons. Each neuron fires following a Hodgkin-Huxley like dynamics and it is interconnected randomly to other neurons. The network dynamics is investigated estimating Bandt and Pompe probability distribution function associated to the interspike intervals and taking different degrees of inter-connectivity across neurons. More specifically we take into account the fine temporal ``structures'' of the complex neuronal signals not just by using the probability distributions associated to the inter spike intervals, but instead considering much more subtle measures accounting for their causal information: the Shannon permutation entropy, Fisher permutation information and permutation statistical complexity. This allows us to investigate how the information of the system might saturate to a finite value as the degree of inter-connectivity across neurons grows, inferring the emergent dynamical properties of the system.Comment: 26 pages, 3 Figures; Physica A, in pres

    Spin-Mediated Consciousness Theory: An Approach Based On Pan-Protopsychism

    Get PDF
    As an alternative to our original dualistic approach, we present here our spin-mediated consciousness theory based on pan-protopsychism. We postulate that consciousness is intrinsically connected to quantum mechanical spin since said spin is embedded in the microscopic structure of spacetime and may be more fundamental than spacetime itself. Thus, we theorize that consciousness emerges quantum mechanically from the collective dynamics of "protopsychic" spins under the influence of spacetime dynamics. That is, spin is the "pixel" of mind. The unity of mind is achieved by quantum entanglement of the mind-pixels. Applying these ideas to the particular structures and dynamics of the brain, we postulate that the human mind works as follows: The nuclear spin ensembles ("NSE") in both neural membranes and proteins quantum mechanically process consciousness-related information such that conscious experience emerges from the collapses of entangled quantum states of NSE under the influence of the underlying spacetime dynamics. Said information is communicated to NSE through strong spin-spin couplings by biologically available unpaired electronic spins such as those carried by rapidly diffusing oxygen molecules and neural transmitter nitric oxides that extract information from their diffusing pathways in the brain. In turn, the dynamics of NSE has effects through spin chemistry on the classical neural activities such as action potentials and receptor functions thus influencing the classical neural networks of said brain. We also present supporting evidence and make important predictions. We stress that our theory is experimentally verifiable with present technologies
    • …
    corecore