30 research outputs found

    RNNs Implicitly Implement Tensor Product Representations

    Full text link
    Recurrent neural networks (RNNs) can learn continuous vector representations of symbolic structures such as sequences and sentences; these representations often exhibit linear regularities (analogies). Such regularities motivate our hypothesis that RNNs that show such regularities implicitly compile symbolic structures into tensor product representations (TPRs; Smolensky, 1990), which additively combine tensor products of vectors representing roles (e.g., sequence positions) and vectors representing fillers (e.g., particular words). To test this hypothesis, we introduce Tensor Product Decomposition Networks (TPDNs), which use TPRs to approximate existing vector representations. We demonstrate using synthetic data that TPDNs can successfully approximate linear and tree-based RNN autoencoder representations, suggesting that these representations exhibit interpretable compositional structure; we explore the settings that lead RNNs to induce such structure-sensitive representations. By contrast, further TPDN experiments show that the representations of four models trained to encode naturally-occurring sentences can be largely approximated with a bag of words, with only marginal improvements from more sophisticated structures. We conclude that TPDNs provide a powerful method for interpreting vector representations, and that standard RNNs can induce compositional sequence representations that are remarkably well approximated by TPRs; at the same time, existing training tasks for sentence representation learning may not be sufficient for inducing robust structural representations.Comment: Accepted to ICLR 201

    Learning Causal State Representations of Partially Observable Environments

    Get PDF
    Intelligent agents can cope with sensory-rich environments by learning task-agnostic state abstractions. In this paper, we propose mechanisms to approximate causal states, which optimally compress the joint history of actions and observations in partially-observable Markov decision processes. Our proposed algorithm extracts causal state representations from RNNs that are trained to predict subsequent observations given the history. We demonstrate that these learned task-agnostic state abstractions can be used to efficiently learn policies for reinforcement learning problems with rich observation spaces. We evaluate agents using multiple partially observable navigation tasks with both discrete (GridWorld) and continuous (VizDoom, ALE) observation processes that cannot be solved by traditional memory-limited methods. Our experiments demonstrate systematic improvement of the DQN and tabular models using approximate causal state representations with respect to recurrent-DQN baselines trained with raw inputs

    Weighted Automata Extraction from Recurrent Neural Networks via Regression on State Spaces

    Full text link
    We present a method to extract a weighted finite automaton (WFA) from a recurrent neural network (RNN). Our algorithm is based on the WFA learning algorithm by Balle and Mohri, which is in turn an extension of Angluin's classic \lstar algorithm. Our technical novelty is in the use of \emph{regression} methods for the so-called equivalence queries, thus exploiting the internal state space of an RNN to prioritize counterexample candidates. This way we achieve a quantitative/weighted extension of the recent work by Weiss, Goldberg and Yahav that extracts DFAs. We experimentally evaluate the accuracy, expressivity and efficiency of the extracted WFAs.Comment: AAAI 2020. We are preparing to distribute the implementatio
    corecore