31 research outputs found

    Extensions and limits to vertex sparsification

    Get PDF
    Suppose we are given a graph G = (V, E) and a set of terminals K āŠ‚ V. We consider the problem of constructing a graph H = (K, E[subscript H]) that approximately preserves the congestion of every multicommodity flow with endpoints supported in K. We refer to such a graph as a flow sparsifier. We prove that there exist flow sparsifiers that simultaneously preserve the congestion of all multicommodity flows within an O(log k / log log k)-factor where |K| = k. This bound improves to O(1) if G excludes any fixed minor. This is a strengthening of previous results, which consider the problem of finding a graph H = (K, E[subscript H]) (a cut sparsifier) that approximately preserves the value of minimum cuts separating any partition of the terminals. Indirectly our result also allows us to give a construction for better quality cut sparsifiers (and flow sparsifiers). Thereby, we immediately improve all approximation ratios derived using vertex sparsification in [14]. We also prove an Ī©(log log k) lower bound for how well a flow sparsifier can simultaneously approximate the congestion of every multicommodity flow in the original graph. The proof of this theorem relies on a technique (which we refer to as oblivious dual certifcates) for proving super-constant congestion lower bounds against many multicommodity flows at once. Our result implies that approximation algorithms for multicommodity flow-type problems designed by a black box reduction to a "uniform" case on k nodes (see [14] for examples) must incur a super-constant cost in the approximation ratio

    A Linear-time Algorithm for Sparsification of Unweighted Graphs

    Full text link
    Given an undirected graph GG and an error parameter Ļµ>0\epsilon > 0, the {\em graph sparsification} problem requires sampling edges in GG and giving the sampled edges appropriate weights to obtain a sparse graph GĻµG_{\epsilon} with the following property: the weight of every cut in GĻµG_{\epsilon} is within a factor of (1Ā±Ļµ)(1\pm \epsilon) of the weight of the corresponding cut in GG. If GG is unweighted, an O(mlogā”n)O(m\log n)-time algorithm for constructing GĻµG_{\epsilon} with O(nlogā”n/Ļµ2)O(n\log n/\epsilon^2) edges in expectation, and an O(m)O(m)-time algorithm for constructing GĻµG_{\epsilon} with O(nlogā”2n/Ļµ2)O(n\log^2 n/\epsilon^2) edges in expectation have recently been developed (Hariharan-Panigrahi, 2010). In this paper, we improve these results by giving an O(m)O(m)-time algorithm for constructing GĻµG_{\epsilon} with O(nlogā”n/Ļµ2)O(n\log n/\epsilon^2) edges in expectation, for unweighted graphs. Our algorithm is optimal in terms of its time complexity; further, no efficient algorithm is known for constructing a sparser GĻµG_{\epsilon}. Our algorithm is Monte-Carlo, i.e. it produces the correct output with high probability, as are all efficient graph sparsification algorithms

    Network Design with Coverage Costs

    Get PDF
    We study network design with a cost structure motivated by redundancy in data traffic. We are given a graph, g groups of terminals, and a universe of data packets. Each group of terminals desires a subset of the packets from its respective source. The cost of routing traffic on any edge in the network is proportional to the total size of the distinct packets that the edge carries. Our goal is to find a minimum cost routing. We focus on two settings. In the first, the collection of packet sets desired by source-sink pairs is laminar. For this setting, we present a primal-dual based 2-approximation, improving upon a logarithmic approximation due to Barman and Chawla (2012). In the second setting, packet sets can have non-trivial intersection. We focus on the case where each packet is desired by either a single terminal group or by all of the groups, and the graph is unweighted. For this setting we present an O(log g)-approximation. Our approximation for the second setting is based on a novel spanner-type construction in unweighted graphs that, given a collection of g vertex subsets, finds a subgraph of cost only a constant factor more than the minimum spanning tree of the graph, such that every subset in the collection has a Steiner tree in the subgraph of cost at most O(log g) that of its minimum Steiner tree in the original graph. We call such a subgraph a group spanner.Comment: Updated version with additional result

    Optimal Lower Bounds for Universal and Differentially Private Steiner Tree and TSP

    Get PDF
    Given a metric space on n points, an {\alpha}-approximate universal algorithm for the Steiner tree problem outputs a distribution over rooted spanning trees such that for any subset X of vertices containing the root, the expected cost of the induced subtree is within an {\alpha} factor of the optimal Steiner tree cost for X. An {\alpha}-approximate differentially private algorithm for the Steiner tree problem takes as input a subset X of vertices, and outputs a tree distribution that induces a solution within an {\alpha} factor of the optimal as before, and satisfies the additional property that for any set X' that differs in a single vertex from X, the tree distributions for X and X' are "close" to each other. Universal and differentially private algorithms for TSP are defined similarly. An {\alpha}-approximate universal algorithm for the Steiner tree problem or TSP is also an {\alpha}-approximate differentially private algorithm. It is known that both problems admit O(logn)-approximate universal algorithms, and hence O(log n)-approximate differentially private algorithms as well. We prove an {\Omega}(logn) lower bound on the approximation ratio achievable for the universal Steiner tree problem and the universal TSP, matching the known upper bounds. Our lower bound for the Steiner tree problem holds even when the algorithm is allowed to output a more general solution of a distribution on paths to the root.Comment: 14 page

    Steiner Point Removal with Distortion O(logā”k)O(\log k)

    Full text link
    In the Steiner point removal (SPR) problem, we are given a weighted graph G=(V,E)G=(V,E) and a set of terminals KāŠ‚VK\subset V of size kk. The objective is to find a minor MM of GG with only the terminals as its vertex set, such that the distance between the terminals will be preserved up to a small multiplicative distortion. Kamma, Krauthgamer and Nguyen [KKN15] used a ball-growing algorithm with exponential distributions to show that the distortion is at most O(logā”5k)O(\log^5 k). Cheung [Che17] improved the analysis of the same algorithm, bounding the distortion by O(logā”2k)O(\log^2 k). We improve the analysis of this ball-growing algorithm even further, bounding the distortion by O(logā”k)O(\log k)

    Vertex Sparsifiers: New Results from Old Techniques

    Get PDF
    Given a capacitated graph G=(V,E)G = (V,E) and a set of terminals KāŠ†VK \subseteq V, how should we produce a graph HH only on the terminals KK so that every (multicommodity) flow between the terminals in GG could be supported in HH with low congestion, and vice versa? (Such a graph HH is called a flow-sparsifier for GG.) What if we want HH to be a "simple" graph? What if we allow HH to be a convex combination of simple graphs? Improving on results of Moitra [FOCS 2009] and Leighton and Moitra [STOC 2010], we give efficient algorithms for constructing: (a) a flow-sparsifier HH that maintains congestion up to a factor of O(logā”k/logā”logā”k)O(\log k/\log \log k), where k=āˆ£Kāˆ£k = |K|, (b) a convex combination of trees over the terminals KK that maintains congestion up to a factor of O(logā”k)O(\log k), and (c) for a planar graph GG, a convex combination of planar graphs that maintains congestion up to a constant factor. This requires us to give a new algorithm for the 0-extension problem, the first one in which the preimages of each terminal are connected in GG. Moreover, this result extends to minor-closed families of graphs. Our improved bounds immediately imply improved approximation guarantees for several terminal-based cut and ordering problems.Comment: An extended abstract appears in the 13th International Workshop on Approximation Algorithms for Combinatorial Optimization Problems (APPROX), 2010. Final version to appear in SIAM J. Computin

    Vertex Sparsification for Edge Connectivity in Polynomial Time

    Get PDF
    corecore