1,445 research outputs found

    Fast Polarization for Processes with Memory

    Full text link
    Fast polarization is crucial for the performance guarantees of polar codes. In the memoryless setting, the rate of polarization is known to be exponential in the square root of the block length. A complete characterization of the rate of polarization for models with memory has been missing. Namely, previous works have not addressed fast polarization of the high entropy set under memory. We consider polar codes for processes with memory that are characterized by an underlying ergodic finite-state Markov chain. We show that the rate of polarization for these processes is the same as in the memoryless setting, both for the high and for the low entropy sets.Comment: 17 pages, 3 figures. Submitted to IEEE Transactions on Information Theor

    Capacity of Locally Recoverable Codes

    Full text link
    Motivated by applications in distributed storage, the notion of a locally recoverable code (LRC) was introduced a few years back. In an LRC, any coordinate of a codeword is recoverable by accessing only a small number of other coordinates. While different properties of LRCs have been well-studied, their performance on channels with random erasures or errors has been mostly unexplored. In this note, we analyze the performance of LRCs over such stochastic channels. In particular, for input-symmetric discrete memoryless channels, we give a tight characterization of the gap to Shannon capacity when LRCs are used over the channel.Comment: Invited paper to the Information Theory Workshop (ITW) 201

    Broadcast Capacity Region of Two-Phase Bidirectional Relaying

    Full text link
    In a three-node network a half-duplex relay node enables bidirectional communication between two nodes with a spectral efficient two phase protocol. In the first phase, two nodes transmit their message to the relay node, which decodes the messages and broadcast a re-encoded composition in the second phase. In this work we determine the capacity region of the broadcast phase. In this scenario each receiving node has perfect information about the message that is intended for the other node. The resulting set of achievable rates of the two-phase bidirectional relaying includes the region which can be achieved by applying XOR on the decoded messages at the relay node. We also prove the strong converse for the maximum error probability and show that this implies that the [\eps_1,\eps_2]-capacity region defined with respect to the average error probability is constant for small values of error parameters \eps_1, \eps_2.Comment: 25 pages, 2 figures, submitted to IEEE Transactions on Information Theor

    Re-proving Channel Polarization Theorems: An Extremality and Robustness Analysis

    Get PDF
    The general subject considered in this thesis is a recently discovered coding technique, polar coding, which is used to construct a class of error correction codes with unique properties. In his ground-breaking work, Ar{\i}kan proved that this class of codes, called polar codes, achieve the symmetric capacity --- the mutual information evaluated at the uniform input distribution ---of any stationary binary discrete memoryless channel with low complexity encoders and decoders requiring in the order of O(NlogN)O(N\log N) operations in the block-length NN. This discovery settled the long standing open problem left by Shannon of finding low complexity codes achieving the channel capacity. Polar coding settled an open problem in information theory, yet opened plenty of challenging problems that need to be addressed. A significant part of this thesis is dedicated to advancing the knowledge about this technique in two directions. The first one provides a better understanding of polar coding by generalizing some of the existing results and discussing their implications, and the second one studies the robustness of the theory over communication models introducing various forms of uncertainty or variations into the probabilistic model of the channel.Comment: Preview of my PhD Thesis, EPFL, Lausanne, 2014. For the full version, see http://people.epfl.ch/mine.alsan/publication

    Distributed Channel Synthesis

    Full text link
    Two familiar notions of correlation are rediscovered as the extreme operating points for distributed synthesis of a discrete memoryless channel, in which a stochastic channel output is generated based on a compressed description of the channel input. Wyner's common information is the minimum description rate needed. However, when common randomness independent of the input is available, the necessary description rate reduces to Shannon's mutual information. This work characterizes the optimal trade-off between the amount of common randomness used and the required rate of description. We also include a number of related derivations, including the effect of limited local randomness, rate requirements for secrecy, applications to game theory, and new insights into common information duality. Our proof makes use of a soft covering lemma, known in the literature for its role in quantifying the resolvability of a channel. The direct proof (achievability) constructs a feasible joint distribution over all parts of the system using a soft covering, from which the behavior of the encoder and decoder is inferred, with no explicit reference to joint typicality or binning. Of auxiliary interest, this work also generalizes and strengthens this soft covering tool.Comment: To appear in IEEE Trans. on Information Theory (submitted Aug., 2012, accepted July, 2013), 26 pages, using IEEEtran.cl

    The Generalized Area Theorem and Some of its Consequences

    Full text link
    There is a fundamental relationship between belief propagation and maximum a posteriori decoding. The case of transmission over the binary erasure channel was investigated in detail in a companion paper. This paper investigates the extension to general memoryless channels (paying special attention to the binary case). An area theorem for transmission over general memoryless channels is introduced and some of its many consequences are discussed. We show that this area theorem gives rise to an upper-bound on the maximum a posteriori threshold for sparse graph codes. In situations where this bound is tight, the extrinsic soft bit estimates delivered by the belief propagation decoder coincide with the correct a posteriori probabilities above the maximum a posteriori threshold. More generally, it is conjectured that the fundamental relationship between the maximum a posteriori and the belief propagation decoder which was observed for transmission over the binary erasure channel carries over to the general case. We finally demonstrate that in order for the design rate of an ensemble to approach the capacity under belief propagation decoding the component codes have to be perfectly matched, a statement which is well known for the special case of transmission over the binary erasure channel.Comment: 27 pages, 46 ps figure
    corecore