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The single biggest problem in communication
is the illusion that it has taken place.

— George Bernard Shaw.

Yet, picture yourself in a place where you don’t even
have that illusion. Then, listen to its silence.

. . .
A man once told me

“I will not talk to you ever again!”
after I complained about the situation in which I

was placed by this man and another women to sit in a room
with another man who was suspected by this other women not to talk with

women due to his religious and cultural background based on the observation that
it took three years for the man to talk with the other women by looking into her eyes

and about whom the man who will not talk to me ever again once asked me
whether the man was talking or not inside the room and then told me

that I should talk with the man sitting in the room
because the man was very nice

but just shy.
. . .

The man in the room later told me
“I thought I should keep the room quiet”.

. . .
At the end, I found myself in an absurd place where you don’t even

have that illusion. Only humor was left in its silence.
— Une Drôle de Silence
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Abstract

The general subject considered in this thesis is a recently discovered coding technique,
polar coding, which is used to construct a class of error correction codes with
unique properties. In his ground-breaking work, Arıkan proved that this class of
codes, called polar codes, achieve the symmetric capacity — the mutual information
evaluated at the uniform input distribution — of any stationary binary discrete
memoryless channel with low complexity encoders and decoders requiring in the
order of O(N logN) operations in the block-length N . This discovery settled
the long standing open problem left by Shannon of finding low complexity codes
achieving the channel capacity.

Polar codes are not only appealing for being the first to ‘close the deal’. In
contrast to most of the existing coding schemes, polar codes admit an explicit low
complexity construction. In addition, for symmetric channels, the polar code con-
struction is deterministic; the theoretically beautiful but practically limited “average
performance of an ensemble of codes is good, so there must exist one particular code
in the ensemble at least as good as the average” formalism of information theory is
bypassed. Simulations are thus not necessary in principle for evaluating the error
probability which is shown in a study by Telatar and Arıkan to scale exponentially in
the square root of the block-length. As such, at the time of this writing, polar codes
are appealing for being the only class of codes proved, and proved with mathematical
elegance, to possess all of these properties.

Polar coding settled an open problem in information theory, yet opened plenty
of challenging problems that need to be addressed. This novel coding scheme is a
promising method from which, in addition to data transmission, problems such as
data compression or compressed sensing, which includes all types of measurement
processes like the MRI or ultrasound, could benefit in terms of efficiency. To make
this technique fulfill its promise, the original theory has been, and should still be,
extended in multiple directions. A significant part of this thesis is dedicated to
advancing the knowledge about this technique in two directions. The first one
provides a better understanding of polar coding by generalizing some of the existing
results and discussing their implications, and the second one studies the robustness
of the theory over communication models introducing various forms of uncertainty
or variations into the probabilistic model of the channel.

The idea behind the design of a polar code is a phenomenon called channel
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polarization. This consists of synthesizing two new channels by applying the polar
transform to two other channels. In the process, it is observed that while the sum
symmetric capacities are preserved, the overall reliability is improved by creating
‘variance’, i.e., the two new channels are created in such a way that the difference
between their symmetric capacities is strictly larger than the difference between the
symmetric capacities of the original pair of channels as long as the channels are
not already perfect or completely noisy. Consequently, the new synthetic channels
polarize: one becomes better and the other worse than the original mediocre channels.
This result follows as a corollary to information combining which shows that the
extremal bounds of the difference between the symmetric capacities of the created
channels are attained by the binary erasure channel and the binary symmetric channel.

The mutual information, though fundamental, is not the only information measure
of interest to the information theory community. In the field’s literature, ‘Gallager’s
E0(ρ)’, for ρ > −1, is a well rooted family of information measures appearing
in various error exponent problems and also in sequential decoding. The mutual
information, determining the theoretical limit of information transmission, and the
cutoff rate, another channel parameter which used to be interpreted as the ‘practical
limit’ of information transmission, turn out both to be special cases of E0(ρ)/ρ. In
retrospect, Arıkan’s discovery came as the offspring of his prior work looking into a
method to close the gap between the mentioned two limits.

Based on this account, we study as part of this thesis the evolution of this more
general family of information measures under the polar transform. In particular, we
prove that the polar transform improves E0(ρ) for binary input channels. The result
helps us understand better why the polar transform yields capacity achieving and
low complexity codes: the improvement in E0(ρ) translates into an improvement in
the complexity–error-probability trade-off. This is a concept introduced in the 1996
Shannon Lecture given by Forney. In addition, we prove that even if we change the
measure of information from the customary mutual information to E0(ρ), the binary
erasure channel and the binary symmetric channel still remain extremal. Speaking of
extremality, we also show independent from any polarization context the extremality
of these two channels amongst all binary input channels of a given E0(ρ) value
evaluated at a fixed ρ.

Once a deeper understanding of the technique of polar coding is developed, the
thesis proceeds with the study of a practical problem related to the design of polar
codes: “robustness against channel parameter variations”, as stated in Arıkan’s
original work. Working out this problem is particularly challenging for polar coding
as the initial development revealed that polar codes are channel specific designs.
However, from an engineering point of view, it is critical that the results of a theory be
robust. This is why right after its conception, partial orderings for channels became
relevant for designing polar codes. Two channels are ordered if the code designed for
one of the channels can be mapped to a code resulting in at most the same decoding
error probability when used over the other channel. In fact, it was once more Shannon
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who introduced in a note the concept of partial orderings for discrete memoryless
channels. In this thesis, we first touch this topic by introducing a rigorous framework
in which we propose to study partial orderings for communication channels in
the context of stochastic orders known as convex orderings. In this process, we
discover a novel partial ordering for binary discrete memoryless channels we call the
symmetric convex ordering. Then, the thesis focuses on different communication
models proposed in the literature for building more robust systems; chapters are
dedicated to extend the original theory of polar coding to the following complex
scenarios:

Coding with a given decision rule— In this scenario, we study the performance
of mismatched polar decoders. A mismatched polar decoder is a polar successive
cancellation decoder which uses, instead of the true channel’s law, the metric of a
mismatched channel during the decision procedure. We find the transmission capacity
of polar coding with mismatched polar decoding. Moreover, we show that this
capacity is lower bounded by a certain family of improving lower bounds converging
to the polar mismatched capacity; whenever any of these bounds are positive, strictly
positive communication rates can be achieved with properly constructed polar codes.
We also observe that the block decoding error probability still decays exponentially
in the square root of the block-length as in the matched case. It is worth emphasizing
that while extending the theory of polar coding to mismatched communication
scenarios, the mismatched polar decoder preserves the O(N logN) low complexity
structure of the ‘matched’ polar decoder. This structural advantage further motivates
polar coding in the presence of a decoding mismatch.

Communication over a class of channels— We also investigate in this thesis the
design of robust polar codes over a class of channels. Generally in this scenario, the
code designer has access only to a partial knowledge about the true channel through
the class to which it belongs. The problem is approached from different angles. First
by allowing the decoder to know the true channel, we link polar ordering to the
symmetric convex ordering, the novel order introduced by this thesis. Then letting
instead the encoder know the channel, we extend the results about the mismatched
capacity of polar codes to the compound setting by using the notion of one-sided sets
of channels introduced by Abbe and Zheng. Taking yet another approach, we show
that polar codes using an approximation at the decoder side are robust over the class
of binary symmetric channels. Combining this result with simulations, we provide
strong evidence that polar codes are ‘practically universal’ over binary symmetric
channels. Finally, we prove that universality can be traded for complexity by showing
that multiple runs of the polar decoder implementing a generalized likelihood ratio
test give a universal decoding rule for binary input channels satisfying certain mild
conditions. Hence, more resources at the decoder is the price for universality.

Communication over non-stationary channels— A further original contribution of
this thesis is the extension of the theory of channel polarization over non-stationary
memoryless channels. This is a model which is quite useful to capture the effects of
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time-varying noise present in real communication systems as it is no longer assumed
that the communication channel is stationary during the transmission of information.
As the existing proof techniques are not applicable to this scenario, we first reprove
the polarization phenomenon by using only elementary methods. Then by using
the same method, we show that Arıkan’s construction also polarizes non-stationary
memoryless channels in the same way it polarizes stationary ones.

Key words: Polar coding, polar codes, channel polarization, mismatched de-
coding, compound channels, robust code design, generalized likelihood ratio test
(GRLT), coding for non-stationary channels, extremal channels, Gallager’s E0, error
exponents, information combining.
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Résumé

Le sujet principal de cette thèse est une technique de codage récemment découverte,
le codage polaire, destinée à construire une famille de codes correcteurs aux pro-
priétés uniques. Dans son travail de fondateur, Arıkan a démontré que cette famille
de codes correcteurs, appelés les codes polaires, atteignent la capacité symétrique—
l’information mutuelle évaluée sous une distribution d’entrée uniforme— de tout
canal binaire discret sans mémoire et stationnaire avec des codeurs et des décodeurs
à faible complexité exigeant de l’ordre de O(N logN) opérations en la longueur du
bloc N . Cette découverte a résolu le problème laissé ouvert par Shannon d’inventer
des codes qui atteignent la capacité avec une faible complexité.

Les codes polaires ne sont pas seulement intéressants parce qu’ils sont les pre-
miers ‘à conclure l’affaire’. Contrairement à la plupart des systèmes de codage
existants, les codes polaires admettent une construction explicite de faible com-
plexité. De plus, pour les canaux symétriques, la construction de codes polaires est
déterministe. La technique usuelle de la théorie de l’information attestant que “si
la performance moyenne d’un ensemble de codes est bonne, alors il doit y avoir au
moins un code de l’ensemble aussi bon que la moyenne” est belle en théorie mais
limitée en pratique ; les codes polaries contournent cette approche traditionnelle et
des simulations ne sont pas en principe nécessaires pour évaluer la probabilité d’er-
reur d’un code donné. Une étude réalisée par Telatar et Arıkan indique que celle-ci
décroît proportionnellement à l’exponentielle de la racine carrée de la longueur du
bloc. A ce titre, au moment d’écrire ces lignes, les codes polaires sont la seule famille
de codes démontrée, et démontrée avec élégance mathématique, à posséder toutes
ces propriétés.

Le codage polaire a résolu un problème ouvert depuis longtemps en théorie
de l’information mais, en même temps, a posé plusieurs problèmes difficiles qui
doivent être abordés. Ce nouveau schéma de codage est une méthode prometteuse
grâce à laquelle, en plus de la transmission de données, des problèmes tels que la
compression de données ou l’acquisition comprimée, comprenant tous les types
de processus de mesure comme l’IRM ou l’échographie, pourraient en bénéficier
en efficacité. Afin de permettre à cette technique de tenir sa promesse, la théorie
originale a été, et devra encore être, étendue dans plusieurs directions. Une partie
considérable de cette thèse est consacrée à l’avancement des connaissances sur cette
technique dans deux directions. La première permet une meilleure compréhension
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du codage polaire en généralisant certains résultats existants et en discutant leurs
implications, et la seconde étudie la robustesse de la théorie par rapport aux modèles
de communication introduisant diverses formes d’incertitude ou de variations dans
le modèle probabiliste du canal.

L’idée derrière la conception de codes polaires est un phénomène appelé la
polarisation de canal. Ce phénomène consiste en ceci : à synthétiser deux nouveaux
canaux en appliquant la transformée polaire à deux autres canaux. Il est observé
que, dans le procédé, la somme des capacités symétriques est conservée tandis
que la fiabilité globale est améliorée par la création de ‘variance ’, c’est-à-dire
que les deux nouveaux canaux sont créés de manière à ce que la différence entre
leurs capacités symétriques soit strictement plus grande que la différence entre les
capacités symétriques des canaux originaux tant que ces derniers ne sont pas déjà sans
bruit ou complètement bruités. Par conséquent, les nouveaux canaux synthétiques
sont polarisés : l’un devient meilleur et l’autre plus mauvais que les canaux médiocres
du début. Ce résultat est un corollaire à ‘information combining’ qui montre que
les limites extrémals de la différence entre les capacités symétriques des nouveaux
canaux sont atteintes par le canal binaire à effacement et le canal binaire symétrique.

L’information mutuelle, bien que fondamentale, n’est pas la seule mesure d’in-
formation d’intérêt pour la communauté de la théorie de l’information. Dans la
littérature, les fonctions E0(ρ) introduites par Gallager, pour ρ > −1, constituent
une famille de mesures d’information bien enracinée qui apparaît dans divers pro-
blèmes d’exposants d’erreurs et aussi dans le décodage séquentiel. L’information
mutuelle, qui détermine la limite théorique de la transmission de l’information, et le
taux de coupure, un autre paramètre de canal qui a été interprété autrefois comme
la ‘limite pratique’ de la transmission de l’information, se révèlent en tant que cas
spéciaux de E0(ρ)/ρ. En rétrospective, la découverte d’Arıkan est le résultat de sa
recherche d’une méthode pour combler l’écart entre les deux limites mentionnées.

A cet égard, nous étudions dans le cadre de cette thèse l’évolution de cette
famille de mesures d’information sous la transformée polaire. En particulier, nous
démontrons que la transformée polaire améliore le paramètre E0(ρ) des canaux
à entrées binaires. Le résultat nous permet de mieux comprendre la raison pour
laquelle la transformée polaire donne des codes qui atteignent la capacité et qui
sont de faible complexité : l’amélioration du paramètre E0(ρ) se traduit par une
amélioration du compromis entre la complexité et la probabilité d’erreur. Il s’agit
d’un concept introduit en 1996 par Forney. De plus, nous démontrons que même si
la mesure d’information est changée de l’information mutuelle habituelle à E0(ρ), le
canal binaire à effacement et le canal binaire symétrique restent toujours extrémaux.
En parlant des canaux extrémaux, nous caractérisons aussi, indépendamment de tout
contexte de polarisation, l’extrémalité de ces deux canaux parmi tous les canaux à
entrées binaires ayant une valeur donnée de E0(ρ) pour une valeur fixe de ρ.

Après avoir développé une compréhension plus profonde de la technique de co-
dage polaire, la thèse procède à l’étude d’un problème pratique relié à la conception
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de codes polaires indiqué dans l’étude originale d’Arıkan : “la robustesse contre les
variations des paramètres du canal”. La résolution de ce problème est particulière-
ment difficile pour le codage polaire, parce que le développement initial a montré que
la conception d’un code polaire est adaptée spécifiquement à la loi de distribution du
canal de communication. Cependant, du point de vue de l’ingénieur, il est essentiel
que les résultats d’une théorie soit robustes. Ainsi, juste après sa conception, les
ordres partiels pour les canaux sont devenus pertinents pour la conception de codes
polaires. Deux canaux sont ordonnés si le code destiné à l’un des canaux peut être
transformé en un code qui donne au maximum la même probabilité d’erreur de
décodage si utilisé sur l’autre canal. Une fois de plus, c’est Shannon qui a introduit
dans une note le concept d’ordres partiels pour les canaux discrets sans mémoire.
Dans cette thèse, nous traitons ce sujet en introduisant un cadre rigoureux dans lequel
nous proposons d’étudier les ordres partiels pour les canaux de communication dans
le contexte d’ordres stochastiques appelés ordres convexes. Plus précisément, nous
découvrons un nouvel ordre partiel pour les canaux binaires discrets sans mémoire
que nous appelons l’ordre convexe symétrique. Par la suite, la thèse examine les
différents modèles de communication proposés dans la littérature pour construire des
systèmes plus robustes. Des chapitres de cette thèse sont dédiés à étendre la théorie
originale du codage polaire aux scénarios complexes suivants :

Codage avec une règle de décision donnée— Dans ce scénario, nous étudions la
performance des décodeurs polaires désadaptés. Un décodeur polaire désadapté est
un décodeur polaire à annulations successives qui utilise au cours de la procédure
de décision la loi de distribution d’un canal désadapté au lieu de la loi du vrai canal.
Nous définissons la capacité de transmission avec décodage polaire désadapté. De
plus, nous montrons qu’il existe une famille de bornes inférieures à cette capacité
et nous faisons la conjecture que la familles de bornes converge vers cette capacité
lorsque la longueur du bloc devient grande. Donc, quand l’une de ces bornes est
positive, des taux de communication strictement positifs peuvent être atteints avec
des codes polaires appropriés. Nous observons également que la probabilité d’erreur
de décodage du bloc décroît proportionnellement à l’exponentielle de la racine
carrée de la longueur du bloc, comme précédemment. Il faut aussi souligner que,
tout en étendant la théorie du codage polaire à des cas de communication avec
des canaux désadaptés, le décodeur polaire désadapté préserve la même structure à
faible complexité de l’ordre de O(N logN) que le décodeur polaire ‘adapté’. Cette
structure à faible complexité motive davantage le codage polaire en présence de
décodage désadapté.

Communication sur une famille de canaux— Nous étudions également dans
cette thèse la conception de codes polaires robustes sur une famille de canaux.
Généralement, dans ce scénario, nous avons seulement accès à une connaissance
partielle du vrai canal via la famille à laquelle il appartient. Donc, un code universel
doit être conçu pour la famille de canaux. Le problème est abordé sous différents
points de vue. D’abord, en permettant au décodeur (mais pas au codeur) de connaître
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le vrai canal, nous relions l’ordre polaire à l’ordre convexe symétrique, le nouvel
ordre partiel introduit par cette thèse. Ensuite, en permettant au codeur, au lieu
du décodeur, d’avoir connaissance du vrai canal, nous étendons les résultats de la
thèse sur la capacité de transmission avec décodage polaire désadapté en utilisant la
notion de famille de canaux unilatéraux introduite par Abbé et Zheng. Prenant encore
une autre approche, nous montrons que les codes polaires utilisant une méthode de
calcul approximative au décodeur sont robustes pour la famille de canaux binaires
symétriques. En combinant ce résultat avec des simulations, nous fournissons des
preuves solides qui montrent que les codes polaires sont ‘pratiquement universels’
sur les canaux binaires symétriques. Enfin, nous démontrons que l’universalité peut
être échangée contre la complexité. Nous montrons que plusieurs appels au décodeur
polaire mettant en œuvre un test du rapport de vraisemblance généralisé donnent une
règle de décodage universelle sur les canaux à entrées binaires qui satisfont certaines
conditions. Par conséquent, il y a besoin de plus de ressources au niveau du décodeur
pour atteindre l’universalité.

Communication sur les canaux non-stationnaires— Une autre contribution origi-
nale de cette thèse est l’extension de la théorie de la polarisation de canal aux canaux
sans mémoire qui sont non-stationnaires. Ce modèle, qui ne suppose plus que le
canal de communication est stationnaire durant la transmission de l’information, est
très utile pour capter les effets des variations temporelles du bruit présent dans les
systèmes de communication réels. Comme les techniques de preuve existantes ne
sont pas applicables à ce scénario, nous reprouvons à nouveau le phénomène de po-
larisation pour le cas stationnaire en utilisant uniquement des méthodes élémentaires.
Ensuite, en nous servant de la même méthode, nous montrons que la construction
d’Arıkan polarise également les canaux non-stationnaires sans mémoire, de la même
manière qu’elle polarise ceux qui sont stationnaires.

Mots clefs : Codage polaire, codes polaires, polarisation de canal, décodage
désadapté, famille de canaux, conception de code robuste, test du rapport de vraisem-
blance généralisé (GLRT), codage pour canaux non-stationnaires, canaux extrémaux,
E0 de Gallager, exposants d’erreur, ‘information combining’.
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Chapter 1

Introduction

Suppose we would like to transmit a message to a destination over a noisy communi-
cation medium. My 6 years old nephew Batuhan and my 4 years old niece Yasemin
would say write the message 10 times and send it by a dragon, a wagon, ultimate
alien, our penguin friends (les manchots in french), . . . and the post office. After all,
the imaginary world is for free! We, on the other hand, have to be more realistic.

We start thinking and try to remember: What did we learn in Information Theory
and Coding? A mathematical model of communication! Upon that, we decide to
consider the communication system described in Figure 1.1. The communication
medium is modeled as a ‘probabilistic box’ represented in the figure by a station-
ary discrete memoryless channel (DMC) W : X → Y, where X denotes the input
alphabet, Y the finite output alphabet, and W (y|x) the channel transition probabil-
ities for x ∈ X and y ∈ Y. If we assign to the channel an input random variable
X ∼ P (x), then ` consecutive uses of the channel will describe the input-output
mapping X`

1 → Y `
1 , for X`

1 ∈ X` and Y `
1 ∈ Y`. The communication channel is

memoryless in the sense that the conditional probabilities satisfy

P[Yi = yi|Y1 = y1, . . . Yi−1 = yi−1, X1 = x1, . . . Xi = xi] = P[Yi = yi|Xi = xi],

for any i = 1, 2, . . ., and the channel is stationary due to the following property:

P[Yi = y|Xi = x] = W (y|x).

- - - -
u1 . . . uk x1 . . . x` y1 . . . y` û1 . . . ûkEncoder

Enc
DMC
W

Decoder
Dec

Figure 1.1: Communication over a DMC W .
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Chapter 1. Introduction

1

0

1

?

0

1− ε

ε

ε

1− ε

Figure 1.2: Binary erasure channel.

1

0

1

0

1− p

p

p

1− p

Figure 1.3: Binary symmetric channel.

This means that, at each time instant, the law of the DMC determines the behavior
of the medium independently of the past. A popular channel model is the binary
erasure channel (BEC). As shown in Figure 1.2, the BEC either transmits correctly
the input bit or erases it. The erasure probability of the channel is usually denoted by
ε ∈ [0, 1]. Another popular model is the binary symmetric channel (BSC) shown in
Figure 1.3. No erasure occurs this time, but each input can be flipped at the output.
The chances of a flip happening is determined by the crossover probability of the
BSC denoted by p ∈ [0, 1].

The toy model of Figure 1.1 in our pocket, we set off for reliable communication.
The Professor said that redundancy should be added to the data. But, how much?
We suddenly recall that the channel capacity is the fundamental measure for reliable
communication, and we decide to compute the capacity of the channel defined as [1]

C(W ) = max
P (x)

I(X;Y ),

where the maximization is over all possible channel input distributions P (x), for
x ∈ X, and the hard to forget formula of the mutual information between X ∼ P (x)

and Y ∼ PW (y) is

I(X;Y ) = I(P ;W ) :=
∑
x∈X

∑
y∈Y

P (x)W (y|x) log

 W (y|x)∑
x′∈X

P (x′)W (y|x′)

 .

So, we will need to find the maximizing input distribution (a computer might be
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1.1. Structural Components of Polar Coding

helpful). Trial and error, imagine we did. To add the redundancy, we will design1 the
encoder which will map one of the 2k messages identified by a k-bit data sequence
uk1 into a codeword Enc(uk1) = x`1 of length `(uk1). All the codeword mappings will
compose the codebook C. Some tools for designing the encoder and the codebook
come to our minds: block codes (` is the same for all the possible k-bit messages,
and it would be wise to chose ` ≥ k and k/` ≤ C(W ).), typical sequences, Huffman
codes, no, that was for source coding, random codes, linear codes, Reed Solomon
codes, convolutional codes, . . . Imagine we built an encoding scheme from our
toolbox. Then, after we transmit the codeword and receive the output of the channel
y`1, we will have to decode the output with the decoder to produce an estimate
ûk1 = Dec(y`1) of the data. Let us list some options: optimal maximum likelihood
decoding, minimum distance decoding, typicality decoding, or if we were lucky
enough, we might have also heard about sequential decoding or iterative decoding.
Which one to chose so that we recover the initial message with low error probability?
Undecided, we realize it is time to make a good review of all these notions. Relax,
due to space and time limitations, we will not do that here. Instead, let us catch the
latest in modern coding trends: Polar coding.

1.1 Structural Components of Polar Coding
Just above, we have quite simplified the procedure; apologies to the great masters.
In this section, we introduce the structural components of the polar coding scheme
described in [2].

Channel Combining

Suppose that a binary sequence of random variables UN
1 is drawn independent

and identically distributed (i.i.d.) from the uniform distribution Punif, and another
binary sequence XN

1 is generated by applying to UN
1 a one-to-one transformation

GN : {0, 1}N → {0, 1}N . It can be easily inferred from this that the sequence
XN

1 = UN
1 GN is also i.i.d. with uniform distribution.

Assume we make N independent channel uses of a binary discrete memoryless
channel (B-DMC) W : F2 → Y to transmit XN

1 and we obtain Y N
1 . Then, we have

WN(yN1 |xN1 ) =
N∏
i=1

W (yi|xi), (1.1)

1At this point, the subject matter calls for duty the engineers.
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Chapter 1. Introduction

by independence, and

WN(yN1 |uN1 ) := WN(yN1 |uN1 GN), (1.2)

by the one-to-one transformation. Moreover, as (X1, Y1), . . . , (XN , YN) are i.i.d.
pairs of random variables, the combined channel satisfies

I(UN
1 ;Y N

1 ) = I(XN
1 ;Y N

1 ) =
N∑
i=1

I(Xi;Yi) = NI(Punif;W ). (1.3)

Channel Splitting

Once we combined the channels which map Xi → Yi, for i = 1, . . . , N , we can
re-split the combined channel describing UN

1 → Y N
1 by applying the chain rule to

obtain

I(UN
1 ;Y N

1 ) =
N∑
i=1

I(Ui;Y
N

1 | U i−1
1 ) =

N∑
i=1

I(Ui;Y
N

1 U i−1
1 ), (1.4)

where the second equality follows by the independence of U i−1
1 from Ui. Therefore,

instead of the N independent channel uses of W we described in (1.3), we can
consider from the chain rule perspective N successive uses of the synthetic channels
mapping Ui → Y N

1 U i−1
1 , for i = 1, . . . , N , and we can write

NI(Punif;W ) =
N∑
i=1

I(Punif;W
(i)
N ),

where W (1)
N (yN1 | u1), . . . ,W

(N)
N (yN1 u

N−1
1 | uN) denote the transition probabilities

of these synthetic channels, respectively.

Channel Polarization

Following the splitting operation, channel polarization depicts an extremal case of
the transition probabilities of the synthetic channels.

Definition 1.1. [2] Channel polarization is defined as the case when each of the
channels W (i)

N : F2 → YN × Fi−1
2 , for i = 1, . . . , N , converges either to a perfect

channel or a completely noisy channel. Under this event, the empirical distribution
of the mutual information terms in summation (1.4) satisfies

1

N
#{i ∈ {1, . . . , N} : I(Ui;Y

N
1 U i−1

1 ) ∈ (γ, 1− γ)} −−−→
N→∞

0, (1.5)

for any γ ∈ (0, 1).
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1.1. Structural Components of Polar Coding

These two extremal situations are interesting for the following reason: In the case
of an almost perfect channel with I ≈ 1, no coding would be necessary and the data
could be transmitted uncoded over the channel since no information loss occurs, and
in the case of an almost completely noisy channel with I ≈ 0, no coding scheme
would be helpful since all the information would be lost during transmission and any
design would be to no end. Polar codes exploit exactly this idea.

Low Complexity Polar Encoding

The described channel combining operation makes use of linear label maps. To
reduce the complexity of this mapping, polar coding employs a special type of en-
coding structure to transform the inputs into codewords. The matrix GN is generated
in a recursive fashion from the following basic polar transformation matrix:

F2 :=

[
1 0

1 1

]
. (1.6)

The recursion is applied through the Kronecker products of this basic matrix by
computing

FN = F⊗N2 ,

where F⊗N2 denotes the N -th Kronecker product of F2. As a result, the recursion
constraints the block-length to N = 2n, where n = 0, 1, . . . is the number of times
the recursion is applied. Finally, for systematic convenience during the decoding
procedure, a permutation matrix BN known as bit-reversal is applied to obtain

GN = BNFN .

The main advantage of this special structure is that it can be implemented efficiently
in O(N logN) time complexity [2, Theorem 5], while leading to channel polariza-
tion [2, Theorem 1]. The purpose of this section being to explore the ‘infrastructure’
of polar coding, we deliberately leave the explanation of the polarization argument
to the beginning of Chapter 4.

Definition 1.1 implies that, after a long sequence of polar transformations, po-
larization divides the channels W (1)

N (yN1 | u1), . . . ,W
(N)
N (yN1 u

N−1
1 | uN) into two

clusters. Those having their mutual information close to 1 are classified as the good
channels. The information set of polar coding, denoted by AN ⊂ {1, 2, . . . , N},
refers to the indices of the channels in this category. The set of the remaining indices
Ac
N := {1, 2, . . . , N} \AN is called the frozen set. As data can only be transmitted

reliably over the indices in AN , to transmit a k-bit message, the encoder of polar
codes has to (i) know or compute AN , and (ii) fix the value of ui, for all i ∈ Ac

N .
With this knowledge, the encoder can take the initial k-bit message, embed this
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Chapter 1. Introduction

data into the positions of the sequence uN1 belonging to AN (assuming N is large
enough so that the size of the information set |AN | ≥ k), and fill the remaining posi-
tions with the apriori fixed values. The codeword can then be found by computing
xN1 = uN1 GN .

Low Complexity Polar Code Construction

The description of the encoding operation has just revealed that a polar code can
be constructed by specifying the information set AN and fixing the inputs of the
frozen set. Specifying AN , in turn, requires computing either directly the transition
probabilities of the synthetic channels, or some information measures of these
probabilities which would help to assess the quality of the channels. However,
observe that as the block-length N grows large, the cardinalities of the output
alphabets of the synthetic channels W (i)

N : F2 → YN ×Fi−1
2 grow exponentially large.

Tracking the exact transition probabilities is therefore in general a high complexity
operation. Nevertheless, an algorithm to compute efficiently the information sets
of polar codes is proposed in [3]; the idea is to replace the exact computations
with approximations. Currently, the best known complexity bound for the code
construction is O(N log(2N)). A discussion at the end of Chapter 6 will bring an
enlightening look into how AN can be efficiently computed via approximations.

Let us here illustrate the design principle over an exceptional channel model, the
BEC, for which the exact computations can be carried out efficiently. An example
which discusses the effects of channel combining and splitting over the BEC can
also be found in [4, Example 3]. Let W be a BEC of erasure probability ε ∈ [0, 1].
Suppose two copies ofW are combined through the basic polar transformation matrix
F2 given in (1.6). After combining, the channel inputs are given by X1 = U1 ⊕ U2

andX2 = U2, and the splitting method synthesizes the channels mapping U1 → Y1Y2

and U2 → Y1Y2U1. We observe that U1 = X1⊕X2 will be erased if and only if either
channel inputs X1 or X2 are erased. Therefore, the channel describing U1 → Y1Y2

is a BEC, and its erasure probability is given by ε− = 2ε− ε2. Similarly, the channel
describing U2 → Y1Y2U1 is also a BEC, and its erasure probability is given by
ε+ = ε2, as given the correct value of U1, the input U2 = X2 will be erased if and
only if both channel inputs are erased. It follows from this analysis that being a
BEC is a property preserved by the polar transform. Hence, one can compute AN

efficiently in O(N logN) time by using the ε± recursion of the BEC.

Low Complexity Polar Decoding

Due to the nature of the channel splitting operation, the synthetic channels lend
themselves to a particular decoding procedure referred to as successive cancellation
decoding. Let LW (y) := W (y|1)/W (y|0), for y ∈ Y, denote the likelihood ratio of
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the channel W . After uN1 is encoded and transmitted, the successive cancellation
decoder of polar codes will decode the received channel output sequence yN1 using
the following estimators:

ûi =

{
ui, if i ∈ Ac

N

f (i)(yN1 , û
i−1
1 ), if i ∈ AN

, (1.7)

where Arıkan chooses for f (i)(yN1 , û
i−1
1 ) the maximum likelihood decoding rule for

the i-th synthetic channel W (i)
N given by

f (i)(yN1 , û
i−1
1 ) :=


0, if L

W
(i)
N

(yN1 , û
i−1
1 ) < 1

1, if L
W

(i)
N

(yN1 , û
i−1
1 ) > 1

∗, if L
W

(i)
N

(yN1 , û
i−1
1 ) = 1

, (1.8)

with ∗ chosen from the set {0, 1} by a fair coin flip.

At the i-th stage of decoding, to estimate the input ui of the channel with law
W

(i)
N (yN1 u

i−1
1 | ui), the polar decoder should have, in principle, correctly estimated

the inputs ui−1
1 of the previous stages. For otherwise, the decoder would be computing

the likelihood ratio of the channel L
W

(i)
N

(yN1 , û
i−1
1 ) for the wrong outputs. Though no

genie exists to give the correct estimates, the analysis carried in [2] shows that this
decoder performs with vanishing error probability. This result is illustrated by upper
bounding the best achievable block error probability under successive cancellation
decoding of polar coding with block-length N and information set AN as follows:

Pe(W,AN) = P

[ ⋃
i∈AN

{
Û i−1

1 = ui−1
1 , Ûi 6= ui

}]

= P

[ ⋃
i∈AN

{
Û i−1

1 = ui−1
1 , f (i)(yN1 , Û

i−1
1 ) 6= ui

}]

≤ P

[ ⋃
i∈AN

{
f (i)(yN1 , u

i−1
1 ) 6= ui

}]
≤
∑
i∈AN

Pe, ML(W
(i)
N ),

where we define

Pe, ML(W ) :=
∑
y :

LW (y)>1

W (y|0) +
1

2

∑
y :

LW (y)=1

W (y|0)

+
∑
y :

LW (y)<1

W (y|1) +
1

2

∑
y :

LW (y)=1

W (y|1). (1.9)

So, Pe, ML(W
(i)
N ) is the error probability of the ‘genie-aided’ decoder for the i-th

synthetic channel. The upper bound shows that as long as the synthetic channel at
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hand is almost perfect, the contribution of this channel to the overall decoding error
probability is almost negligible.

From the above description, it is not obvious that the polar decoder can be imple-
mented with low complexity operations. In fact, it is once more the construction via
the basic polar transformation matrix F2 which leads to a low complexity recursive
decoder implementation. The recursion implementing the polar decoder described
above in O(N logN) complexity [2, Theorem 5] is given by [2, Eqs. (74) and (75)]:

L
(2i−1)
N (yN1 , û

2i−2
1 ) =

L
(i)
N/2(y

N/2
1 , û2i−2

1,o ⊕ û2i−2
1,e ) + L

(i)
N/2(yNN/2+1, û

2i−2
1,e )

L
(i)
N/2(y

N/2
1 , û2i−2

1,o ⊕ û2i−2
1,e )L

(i)
N/2(yNN/2+1, û

2i−2
1,e ) + 1

, (1.10)

and

L
(2i)
N (yN1 , û

2i−1
1 ) =

[
L

(i)
N/2(y

N/2
1 , û2i−2

1,o ⊕ û2i−2
1,e )

]1−2û2i−1

· L(i)
N/2(yNN/2+1, û

2i−2
1,e ),

(1.11)
where the notation L(i)

N (yN1 , û
i−1
1 ) refers to L

W
(i)
N

(yN1 , û
i−1
1 ), and the ‘o’ and ‘e’ sub-

scripts to odd and even indexed components of the sequences, respectively.

1.2 State of the Art
Reliable communication is one of the major problems considered by the field of
information and coding theory. Towards this objective, channel codes are designed
where channel encoders construct redundant channel input sequences, such that
upon reception, the corresponding channel decoders can overcome the effects of
noise introduced during transmission and recover the transmitted message. An
information rate is achievable over the channel if no matter how small the decoding
error probability is, we can find a code with a sufficiently large block-length of
that rate. Shannon defined the channel capacity as the highest achievable rate that
information can be sent through the channel. The error probability analysis over
random code ensembles used with typicality decoders, tailored to jointly typical
sequences, provides a simple way to show that the mutual information between
the channel input and output is a fundamental quantity in determining the channel
capacity [1].

The reliability function E(R) provides a finer measure on the quality of the
channel: for any R less than the channel capacity, it is possible to find a se-
quence of codes of increasing block-length, each of which of rate at least R,
and whose block decoding error probability decays exponentially to zero as the
block-length increases — E(R) is the largest possible rate of this decay. Using
a random ensemble with maximum likelihood decoding, Gallager’s classical trea-
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tise [5] gives a lower bound to E(R), the random coding exponent Er(R) in the
form Er(R) = maxρ∈[0,1] [E0(ρ)− ρR], where E0(ρ) is known as ‘Gallager’s E0’2.
Remarkably, this lower bound is tight for rates above the critical rate E ′0(1).

A particular aspect of the methods to prove the above outcomes is that they are
based on averaging over code ensembles. We know there are codes which are good
with respect to the achievability criteria. However, no real system exists without
cost. This last one is dictated by the storage capabilities and the computational
complexity limitations in the case of communication systems. Consider a block code
with exponentially many codewords in the block-length. Quickly we find ourselves
out of memory for small values of the block-length, and of making a prohibitive
number of pairwise comparisons to identify the correct message sent through the
channel.

Coding theorists have spent decades to find good codes with low encoding and
decoding complexities. A historical account on the evolution of channel coding
can be found in [6]. Let us highlight here a few developments of interest to polar
coding. In the previous section, we observed that polar codes are linear: The encoder
transforms the input message uN1 to a codeword xN1 = uN1 GN using a generator
matrix. As a class of codes having an efficient structure for the codeword generation
process, the class of linear codes gives a partial solution to the low complexity coding
problem. What’s more is that the properties of this class of codes established linearity
as a prerequisite rather than an option. Quoting as phrased in [6]: “In practice,
practically all codes are linear”. On the other hand, to help reduce the complexity
at the decoder side, a line of research focused on devising sequential decoding
algorithms, such as Fano’s algorithm [7] suitable for decoding convolutional codes
invented by Elias [8]. The theoretical analysis of sequential decoding showed that the
function E0(ρ) that appears as an auxiliary function on the road to deriving Er(R)

turns out to be of independent interest on its own right. In particular, E0(ρ)/ρ is
the largest rate for which a sequential decoder can operate while keeping the ρ-th
moment of the decoder’s computation effort per symbol bounded [9].

In 2006, Arıkan [4] proposed channel combining and splitting as a method to
improve E0(1), the cutoff rate of the channel, using multiple sequential decoders
in a successive cancellation configuration. Afterwards, polar codes emerged in his
seminal paper [2] as an appealing error correction method based on channel com-
bining and splitting. Although algebraic coding techniques and probabilistic coding
techniques such as convolutional codes have found applications in the real world
before polar codes were invented, none of these techniques are proved to achieve the
symmetric capacity with low complexity and with an explicit construction.

2The functions E0(ρ) and Er(R) are in fact parameters which depend on the channel. They are
defined rigorously in Chapter 2, see (2.1) and (2.9).
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Beside their computational complexity, typicality decoders and maximum likeli-
hood decoders present another obstacle: they require the exact channel knowledge to
function. To study the situations in which such a complete knowledge is missing, the
study of reliable communication under channel uncertainty becomes relevant. The
qualitative notion of channel uncertainty is made more concrete by the definition of
more complex channel models. For instance, in the compound channel model, the
unknown channel is restricted to belong to a given class of channels, and in this case,
the selected code should ensure good performance for all the channels in the class.
Blackwell et. al. [10] studied this problem and defined the capacity of a class of chan-
nels. More details on this topic are discussed in Section 8.1. Another more complex
model is the arbitrarily varying channel model [11]. Here the channel law is allowed
to vary over each use of the channel, notably in a malicious fashion. In addition to
partial or missing channel information, the use of sub-optimal decoders might also
arise due to practical implementation constraints. Although the use of such decoders
may result in capacity loss, this is in general unavoidable. The paper [12] focus on
additive decoding rules called d-decoders and analyze the transmission capacity with
a given d-decoder. More details on this topic are discussed in Sections 7.1 and 7.4.1.

The need to communicate reliably without using the channel knowledge has
led to the concept of universal coding. Using the method of types, Csiszár [13]
proved that universally attainable transmission rates can be obtained for any discrete
memoryless channel with finite input and output alphabets by using the maximum
mutual information (MMI) decoder. This is a decoder which declares an input
message if and only if the corresponding codeword maximizes the empirical mutual
information computed from the joint type (empirical distribution) of the codeword
and the received channel output sequence. The decoder is, unfortunately, too costly
to be implementable in practice. Hence from a practical perspective, universal
coding with low complexity decoders is the ‘next’ problem in line which needs to be
undertaken.

1.3 Thesis Outline
The first two chapters of this thesis are the only ones whose contents are indepen-
dent from any polarization context. Chapter 2 is a preliminary which introduces
Gallager’s E0 and derives some basic results which will be used later, especially in
the subsequent two chapters. Chapter 3 describes certain extremalities for B-DMCs
when the information measure is E0. We show that the BEC and the BSC are the
extremal channels of the considered problems. As Chapter 3 is independent of the
polarization context, it can also be read at last.

Chapter 4 starts with a quick overview of the main channel polarization result
concerning the evolution of the synthetic channels’ symmetric capacity parame-
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ters under the polar transform. Three properties —polarization, conservation, and
extremality— and the ‘Conservation and Convergence Laws’ they imply are partic-
ularly emphasized. From that chapter onward, these properties and laws form the
leitmotiv of this thesis. While the problems we tackle change, the answers we are
searching for tell variations of the recurrent theme. For instance Chapter 5 proves,
in the same spirit, the properties and laws for the variational distance between the
transition probabilities W (y|0) and W (y|1) of symmetric B-DMCs.

Chapter 6 introduces a new partial ordering for B-DMCs called the symmetric
convex ordering. Convex orderings3 are stochastic orders which are often encoun-
tered in statistics and actuarial sciences. Using this framework, the chapter shows
that the polar transform preserves symmetric convex orderings, and as a consequence,
the information sets of symmetric convex ordered channels are also ordered.

Starting from Chapter 7, the thesis begins to examine the robustness of polar
coding against various perturbations of the original model. In Chapter 7, the decision
rule used by the polar decoder, i.e., f (i) given in (1.8), is no longer assumed to be
necessarily matched to the true channel. The chapter investigates the transmission
capacity of polar coding with mismatched polar decoding.

In Chapter 8, the problem of designing universal polar codes over a set of com-
pound B-DMCs is studied. The goal of this chapter is to identify the conditions a
class of channels should satisfy so that a specific information set (preferably as large
as possible) and polar decoder design can be used over all the channels in the class
without degrading performance.

Subsequently, Chapter 9 removes the stationarity assumption from the probabilis-
tic box modeling the communication medium, and instead, assumes the medium
is modeled with a non-stationary memoryless channel. A polar coding theorem is
proved, one last time in the thesis, for non-stationary B-DMCs with the help of a
new proof technique. Chapter 10, the final chapter of this thesis, gives an overview
of the contributions of this thesis and identifies future directions for research.

An important remark is in order before we close this introduction. Most of the
results presented in this thesis are derived for a slightly more general polar transform
which synthesizes two channels by using the exact same kernel F2 given in (1.6) but
in order to combine two independent but not necessarily identical B-DMCs. The
transform will be defined more formally in Chapter 4.

3We use the term convex orderings to refer to any stochastic order based on second order properties
such as the convex ordering, the increasing convex ordering, etc.
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Chapter 2

A General Measure of Information

Given a DMC W : X→ Y, fix a distribution Q on its input alphabet. Let

E0(ρ) = E0(ρ,Q,W ) := − log
∑
y∈Y

[∑
x∈X

Q(x)W (y | x)
1

1+ρ

]1+ρ

, (2.1)

for ρ > −1.

What’s Coming, Doc?
In this chapter, we will study the above quantity, ‘Gallager’s E0’, review some of
its basic properties, and derive some facts related to the E0 function of B-DMCs
evaluated under the uniform input distribution. (The choice of the uniform input
distribution will be advocated.) In between, we will also mention some applications
in information theory involving this parameter. The reader should not, however,
expect a complete tutorial coverage of the subject. The included material is selected
primarily so as to provide the necessary background for Chapter 3 and Chapter 4 of
this thesis. Yet, we also hope that some of the derivations might be useful beyond
the context of this thesis.

2.1 All roads lead to E0

Arimoto [14] introduced an alternative description of E0(ρ,Q,W )/ρ using the
concept of Rényi’s entropy functions. This description, which is also mentioned
in [9] and [15], gives an interpretation to E0(ρ,Q,W )/ρ as a general measure of
information. We start by exploring this connection.
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The Rényi’s entropy function of order α of a discrete random variable X ∼ P (x)

is defined in [16] as

Hα(X) :=
α

1− α
log

(∑
x∈X

P (x)α

) 1
α

,

for α ≥ 0, α 6= 1. This definition is extended to the Rényi’s conditional entropy
function of order α of a discrete random variable X given Y with joint distribution
P (x)W (y|x) in [14] as1

Hα(X | Y ) :=
α

1− α
log
∑
y∈Y

(∑
x∈X

P (x)αW (y|x)α

) 1
α

= Hα(X) +
α

1− α
log
∑
y∈Y

(∑
x∈X

Pα
tilt(x)W (y | x)α

) 1
α

, (2.2)

where Pα
tilt(x) :=

P (x)α∑
x

P (x)α
is called the tilted probability distribution. Note that

lim
α→1

Hα(X) = H(X) = H(P ) :=
∑
x∈X

−P (x) logP (x),

lim
α→1

Hα(X|Y ) = H(X|Y ) = H(X, Y )−H(Y ),

where H(X, Y ) denotes the joint entropy of the pair (X, Y ). So, Shannon entropy is
a special case of Rényi entropy.

Letting α = 1
1 + ρ , we get

H 1
1+ρ

(X) =
1

ρ
log

(∑
x∈X

P (x)
1

1+ρ

) 1
1+ρ

,

H 1
1+ρ

(X | Y ) = H 1
1+ρ

(X) +
1

ρ
log
∑
y∈Y

(∑
x∈X

Pα
tilt(x)W (y | x)

1
1+ρ

)1+ρ

.

Taking Q = Pα
tilt in the definition of E0(ρ,Q,W ) in (2.1), we deduce

E0(ρ,Q,W )

ρ
= H 1

1+ρ
(X)−H 1

1+ρ
(X | Y ). (2.3)

1Although different definitions are proposed in the literature for a possible extension of Rényi’s
entropy function to a quantity similar to the conditional entropy function, as one suitable for the
context of this thesis, we adopt the definition in (2.2).
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This quantity is called the mutual information of order α = 1
1 + ρ in [14], and the

following properties are observed:

(i) For a fixed Q, E0(ρ,Q,W )/ρ is a decreasing function in ρ.

(ii) The mutual information I(Q;W ) is given by

lim
ρ→0

E0(ρ,Q,W )

ρ
= I(Q;W ). (2.4)

In fact, it is the slope of the E0 curve at ρ = 0 [5, Figure 5.6.2], i.e.,

I(Q;W ) =
∂

∂ρ
E0(ρ,Q,W )

∣∣∣
ρ=0

.

Finally, in analogue to the definition of the channel capacity, the maximization of
(2.3) over all Q(x) yields the capacity of order α = 1

1 + ρ , for α ∈ [1/2,∞).

2.1.1 Error/Guessing Exponents

In the context of channel coding, E0 appears as a useful system parameter in various
error exponent problems and also in sequential decoding. Alongside with the block-
length N and the rate R, E0 emerges in these coding problems in the exponent of
the derived bounds to the expected performance, establishing a trade-off between the
various performance measures. Below, we illustrate some of these applications:

A.1 Originally, E0 was defined by Gallager in [17, Theorem 1]. The theorem states
that for a DMC W and a fixed rate R > 0, the average block decoding error
probability Pe, avg using maximum likelihood decoding over the ensemble of
random block codes with codewords of length N and distribution Q on them
can be upper bounded by

Pe, avg ≤ exp2 {−N [E0(ρ,Q,W )− ρR]} ,

for any ρ ∈ [0, 1]. Here, the exponent establishes the compromise between
Pe, avg, N , and R. The tightest exponent in the above upper bound is called the
random coding exponent and is given by [5, Equation 5.6.16]

Er(R,W ) := max
ρ∈[0,1]

max
Q

[E0(ρ,Q,W )− ρR] , (2.5)

for R ≥ 0.

The properties of E0(ρ,Q,W ) with respect to the variable ρ are summarized
in [5, Theorem 5.6.3]. For ρ ≥ 0, E0(ρ,Q,W ) is a positive concave increasing
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Chapter 2. A General Measure of Information

function in ρ. As a result, for a fixed input distribution Q, the maximization in

max
ρ∈[0,1]

[E0(ρ,Q,W )− ρR]

can be described in terms of the following parametric equations:

R(ρ,Q,W ) =
∂

∂ρ
E0(ρ,Q,W ), (2.6)

Er(ρ,Q,W ) = E0(ρ,Q,W )− ρ ∂
∂ρ
E0(ρ,Q,W ), (2.7)

for R in the range R(1, Q,W ) ≤ R ≤ R(0, Q,W ). The noisy channel coding
theorem [5, Theorem 5.6.4] shows that for any DMC W , Er(R,W ) is a
positive convex decreasing function of R, for R < C(W ).

A.2 Arimoto [18] showed that for any code with block-length N , the block decod-
ing error probability Pe under maximum likelihood decoding is lower bounded
by

Pe ≥ 1− exp2

{
−N min

Q
[E0(ρ,Q,W )− ρR]

}
,

for any ρ ∈ (−1, 0]. The strong converse exponent is defined as [18]

Esc(R,W ) := max
ρ∈(−1,0]

min
Q

[E0(ρ,Q,W )− ρR] . (2.8)

It is shown in [18, Theorem 2] that if R > C(W ), Esc(R,W ) is a positive
increasing convex function in R.

A.3 Suppose that instead of the maximum likelihood decoder a list decoder is used
in the decoding procedure to produce the list of the L most likely codewords
for a given output sequence. In this case, the ensemble average probability of
list decoding error Pe, avg,L can be upper bounded by [5, Problem 5.20]

Pe, avg,L ≤ exp2

{
−N max

ρ∈[0,L]
max
Q

[E0(ρ,Q,W )− ρR]

}
.

A.4 Assume an input sequence X is transmitted through a channel W and the
output sequence Y is received. A sequential decoder can be described as a
device which, based on the received value, keeps guessing which particular
input was transmitted until the correct decision is made. The number of guesses
made during this procedure and the number of computations performed by the
decoder are parallel quantities. They both depend on the order in which the
guesses are made. This order, in turn, is determined by a function G(x | y)

called the guessing function. Thus, the computational complexity of sequential
decoding can be expressed in terms of the random variable G(X | Y ). In [19],
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Massey observes that the average number of guesses is minimized by guessing
the value of the random variable X given Y in a decreasing order of the
conditional probabilities. In [9], Arıkan considers sequential decoders which
have arbitrary guessing functions and derives the following lower bound to the
moments of computational complexity of sequential decoding:

E[G(X | Y )ρ] ≥ (1 +NR)−ρ exp2{N [ρR− E0(ρ,W )]},

for any ρ ≥ 0. Here, a trade-off between the rate, the block-length, and the com-
putational complexity is established. The critical value maxQE0(ρ,Q,W )/ρ,
called the cutoff rate for the ρ-th moment, imposes a limit on the rate R.
Above this limit, as the block-length N is increased, the ρ-th moment of
computation tends to infinity. In particular, above the cutoff rate of the chan-
nel given by maxQE0(1, Q,W ), the sequential decoder needs to perform
infinitely many computations, so complexity is unbounded. Conversely, when
R < maxQE0(ρ,Q,W )/ρ, there is a “tree code” for which the sequential
decoder will make a bounded number of computations per decoded bit.

2.1.2 The Uniform Input Distribution

Definition 2.1. A DMC W is a symmetric channel if for some permutation π on the
output alphabet Y satisfying π = π−1, we have W (y|1) = W (π(y)|0) for all y ∈ Y.

It is well known that the uniform input distribution Punif maximizes (2.5) for any
ρ ∈ [0, 1] when the channel W is symmetric [5, Chapter 5]. The random coding
exponent of a symmetric channel is then given by

Er(R,W ) = max
ρ∈[0,1]

[E0(ρ, Punif,W )− ρR]. (2.9)

Moreover, the right hand side of (2.9) is always a lower bound to the random coding
exponent of any asymmetric channel W . Thus, for an ensemble of block codes using
the maximizing input distribution Q, regardless of channel symmetry, the bound

Pe, avg ≤ exp2 {−N [E0(ρ, Punif,W )− ρR]}

holds for any ρ ∈ [0, 1]. Similarly, the uniform input distribution minimizes (2.8)
for ρ ∈ (−1, 0] when the channel is symmetric. The strong converse exponent of a
symmetric channel is then given by

Esc(R,W ) = max
ρ∈(−1,0]

[E0(ρ, Punif,W )− ρR]. (2.10)

However, when the channel is not symmetric, we cannot relax the bound in (2.8)
using (2.10).
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Chapter 2. A General Measure of Information

Throughout this thesis, we will be concerned with B-DMCs and fix the input dis-
tribution to the uniform probability assignment. Beside being optimal for symmetric
channels, this choice of the distribution will effectively make the problems more
tractable. Yet, this is not the only justification. It turns out that no loss is incurred
by this restriction in the today’s practically relevant coding systems which are all
based on linear coding schemes. To support this claim, we refer to an exercise in
[5, Problem 6.3 (b)]. The problem shows that all binary linear codebooks can be
generated by drawing each letter of the codewords independently from the uniform
distribution. Thus for any B-DMC W , E0(ρ, Punif,W )/ρ is the practically relevant
information measure for analyzing the performance of practical codes.

2.2 E0 and E ′0 of B-DMCs
From now on, we assume X = F2 and fix Q to Punif. Then, (2.1) becomes

E0(ρ,W ) := E0(ρ, Punif,W ) = − log
∑
y∈Y

[
1

2
W (y | 0)

1
1+ρ +

1

2
W (y | 1)

1
1+ρ

]1+ρ

.

(2.11)
The symmetric capacity of the channel — the mutual information evaluated at the
uniform input distribution — and the symmetric cutoff rate will be denoted by I(W )

and R0(W ) := E0(1,W ), respectively.

The proofs of the extremality results we will carry in the following two chapters
will rely neither on the ‘raw definition’ of E0(ρ,W ) in (2.11), nor on the interpre-
tation in terms of Renyi’s entropy functions in (2.3). Instead, we will make use of
a description of E0(ρ,W ) introduced in [20] which is more suitable for deriving
extremal bounds.

For a given B-DMC W : F2 → Y, [20] shows that there exists a random variable
Z taking values in the [0, 1] interval such that

E0(ρ,W ) = − logE [g(ρ, Z)], (2.12)

for any ρ > −1, where the function g(ρ, z) is defined as

g(ρ, z) :=

(
1

2
(1 + z)

1
1+ρ +

1

2
(1− z)

1
1+ρ

)1+ρ

, (2.13)

for ρ > −1 and z ∈ [−1, 1].

To see this, define

qW (y) :=
W (y | 0) +W (y | 1)

2
, (2.14)
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2.2. E0 and E ′0 of B-DMCs

for y ∈ Y, and

∆W (y) :=
W (y | 0)−W (y | 1)

W (y | 0) +W (y | 1)
, (2.15)

so that W (y | 0) = qW (y) (1 + ∆W (y)) and W (y | 1) = qW (y) (1−∆W (y)).
Then, one can manipulate (2.11) to find that Z := |∆W (Y )| with Y ∼ qW (y)

satisfies (2.12)2.

The next lemma gives the first and the second order properties of g(ρ, z) with
respect to the variable z. The proof is carried in Appendix 2.A.

Lemma 2.2. The function g(ρ, z) defined in (2.13) is a concave non-increasing
function in z ∈ [0, 1] for ρ ∈ [0,∞) and a convex non-decreasing function in
z ∈ [0, 1] for ρ ∈ (−1, 0]. As g(ρ, z) is symmetric around z = 0, these properties
also determine the function’s behavior for z ∈ [−1, 0].

We denote by g−1(ρ, t) the inverse of the function g(ρ, z) with respect to its second
argument. The variable t always takes values from a subset of the interval [0, 2].
More specifically, t ∈ [2−ρ, 1] when ρ ≥ 0 and t ∈ [1, 2−ρ] when ρ ∈ (−1, 0]. For
shorthand notation, we denote the range of possible values by t ∈ [2−ρ, 1] ∪ [1, 2−ρ],
for ρ > −1.

We note that by using (2.12), the function R(ρ,W ) := E ′0 =
∂

∂ρ
E0(ρ,W ) which

appears in the parametric form of the random coding exponent we stated in (2.6) can
be written as

R(ρ,W ) =
−∂E [g(ρ, Z)] /∂ρ

E [g(ρ, Z)] ln 2
=
E [−∂g(ρ, Z)/∂ρ]

E [g(ρ, Z)] ln 2
, (2.16)

where the exchange of the partial derivative and the expectation operators in the
second equality follows by the dominated convergence theorem.

2.2.1 Fun Facts About E0 and E ′0 of BECs and BSCs

In this section, we explain some simple facts related to the E0 curves of BECs and
BSCs. We will be using some of these facts multiple times throughout the next two
chapters.

Consider first the representation in (2.12). It is not difficult to see that the BECs
and the BSCs are special cases of this representation.

Fact 1. [20] The random variable ZBEC of a BEC is {0, 1} valued and satisfies
P[ZBEC = 0] = ε, where ε ∈ [0, 1] is the erasure probability of the channel. The

2Do not confuse the random variable Z with the channel Bhattacharyya parameter denoted as
Z(W )! For the definition of the latter, see (4.8).
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Chapter 2. A General Measure of Information

random variable ZBSC of a BSC is a constant given by zBSC =|1 − 2p|, where
p ∈ [0, 1] is the crossover probability of the channel.

It is well known that the set of BECs and the set of BSCs with crossover probabil-
ities in [0, 0.5] are ordered in terms of their channel capacities: if the chances of an
erasure to happen at the output of a BEC model, or similarly of a bit flip at the output
of a BSC model is increased, the transmission capacities shall decrease, see for
instance the textbook [5]. Intuitively, we expect this graceful degradation to order as
well other measures of channel quality. For that purpose, we start by computing the
E0 and E ′0 parameters of a BEC and a BSC as a function of the erasure probability
and the crossover probability of the channels. Let BEC be a BEC with erasure
probability ε ∈ [0, 1]. Then, one can easily derive that

E0(ρ,BEC) = − log (2−ρ(1− ε) + ε), (2.17)

and

R(ρ,BEC) =
∂

∂ρ
E0(ρ,BEC) =

2−ρ(1− ε)
2−ρ(1− ε) + ε

. (2.18)

Let BSC be a BSC with crossover probability p ∈ [0, 0.5]. In this case, we are
saved from the trouble by [5, Example 1 p.146] which has the derivation of the E0

parameter of a BSC in Equation (5.6.40) and its rate parameter in Equation (5.6.41).
Rewriting these equations, we get

E0(ρ,BSC) = ρ− (1 + ρ) log
(
p

1
1+ρ + (1− p)

1
1+ρ

)
, (2.19)

and
R(ρ,BSC) = 1− h2(δ), (2.20)

where δ =
p

1
1+ρ

p
1

1+ρ + (1− p)
1

1+ρ

.

Now, we show that these parameters are monotone functions in the erasure and
crossover probabilities of the channels.

Lemma 2.3.

(i) For any ρ ≥ 0, E0(ρ,BEC) [E0(ρ,BSC)] is decreasing in ε [p].

(ii) For any ρ ∈ (−1, 0], E0(ρ,BEC) [E0(ρ,BSC)] is increasing in ε [p].

(iii) For any ρ > −1, R(ρ,BEC) [R(ρ,BSC)] is decreasing in ε [p].

Proof. Taking the first derivative of (2.17) with respect to ε, we get

∂

∂ε
E0(ρ,BEC) = − 1− 2−ρ

(2−ρ(1− ε) + ε) ln 2
.
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2.2. E0 and E ′0 of B-DMCs

One can check that

∂

∂ε
E0(ρ,BEC)


> 0, for ρ ∈ (−1, 0)

= 0, for ρ = 0

< 0 for ρ > 0

.

As E0(0,W ) = 0, the E0 curves of all BECs will be ordered such that while for
ρ > 0 the E0 curves of BECs with smaller erasure probabilities will be larger, the
opposite will be true for ρ ∈ (−1, 0).

Next, we show an ordering also holds for the rate parameters of BECs. Taking
the first derivative of (2.18) with respect to ε, we get

∂

∂ε
R(ρ,BEC) = − 2ρ

(1 + (−1 + 2ρ)ε)2
< 0.

Hence, the rate parameters will be decreasing with the erasure probability of the
channel for any ρ > −1. This completes the proof for the BEC.

Let us prove the claims for the set of BSCs. First, we note that the term inside the
logarithm in (2.19) satisfies

∂

∂p

(
p

1
1+ρ + (1− p)

1
1+ρ

)
=
p−

ρ
1+ρ − (1− p)−

ρ
1+ρ

1 + ρ
=


< 0, for ρ ∈ (−1, 0)

= 1, for ρ = 0

> 0 for ρ > 0

,

for p ∈ [0, 0.5]. Hence, we also have

∂

∂p
E0(ρ,BSC)


> 0, for ρ ∈ (−1, 0)

= 0, for ρ = 0

< 0 for ρ > 0

,

which proves the ordering for E0(ρ,BSC). To prove the claim for R(ρ,BSC), we
simply note that in (2.20), for p ∈ [0, 0.5], we have δ ∈ [0, 0.5] increasing in p and
the binary entropy function h2(δ) increasing in δ ∈ [0, 0.5]. Thus, as claimed

∂

∂p
R(ρ,BSC) < 0.

By this lemma, the second fact is in order:

Fact 2. For any ρ > −1, the class of BECs and the class of BSCs (p ∈ [0, 0.5]) are
strictly ordered in their E0(ρ,W ) parameters, except at ρ = 0 where E0(0,W ) = 0,
and in their R(ρ,W ) parameters.
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Chapter 2. A General Measure of Information

The ordering we have just discussed is not peculiar to BECs and BSCs and can be
generalized to more general classes of channels. Lemma 2.7 in Appendix 2.B shows
that the E0 parameters of any two stochastically degraded DMCs are as well ordered
for any choice of the input distribution. Lemma 2.3 will, however, be sufficient
for our purposes as the derivations we carry later will not need results of such a
generality.

Next, we argue the validity of an assumption we will encounter in the hypothesis
of the main theorem.

Lemma 2.4. For any given B-DMC W and any fixed ρ > −1, there exist a BEC
BEC and a BSC BSC such that

E0(ρ,W ) = E0(ρ,BEC) = E0(ρ,BSC). (2.21)

The erasure probability of the channel BEC and the crossover probability of the
channel BSC depend both on the channel W and the parameter ρ.

Proof. Observe that, by (2.12), the equality of theE0 functions in (2.21) is equivalent
to the equality of

E [g(ρ, Z)] = E [g(ρ, ZBEC)] = g(ρ, zBSC), (2.22)

where Z, ZBEC and zBSC correspond to the ‘Z’ random variables of the channel
W , the channel BEC, and the channel BSC, respectively. Therefore, to show that
there exist a BSC and a BEC satisfying (2.21), it is sufficient to show that there exist
ZBEC and zBSC random variables satisfying (2.22).

By the monotonicity results stated in Lemma 2.2, we know that

g(ρ, z) ∈ [2−ρ, 1], for ρ ≥ 0,

g(ρ, z) ∈ [1, 2−ρ], for ρ ∈ (−1, 0],

for z ∈ [0, 1]. As a result,

E[g(ρ, Z)] ∈ [2−ρ, 1], for ρ ≥ 0,

E[g(ρ, Z)] ∈ [1, 2−ρ], for ρ ∈ (−1, 0].

Moreover, g being continuous in z for fixed values of ρ implies that every intermedi-
ate value of the corresponding bounded interval will be taken by the function g(ρ, z)

for z ∈ [0, 1], i.e., we can always find a z∗ ∈ [0, 1] such that E[g(ρ, Z)] = g(ρ, z∗).
Since, as indicated in Fact 1, the random variable ZBSC is a constant zBSC , the
BSC defined in (2.22) will be a BSC such that zBSC = z∗. From this the crossover
probability of the channel can be inferred.
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2.2. E0 and E ′0 of B-DMCs

To find a BEC which satisfies (2.22), we will use the BSC we have just defined
with parameter z∗. Note that the extreme values of the bounded interval from which
g(ρ, z) takes values are given by 2−ρ = g(ρ, 0) and 1 = g(ρ, 1). Moreover, the
function g being continuous in z ∈ [0, 1] for fixed values of ρ, we can weight these
two values with a probability distribution p0 and 1− p0 such that

g(ρ, z∗) = p0g(ρ, 0) + (1− p0)g(ρ, 1).

As by Fact 1, the random variable ZBEC is {0, 1} valued, the BEC defined in (2.22)
will be a BEC with erasure probability given by P (ZBEC = 0) = p0.

Upon this lemma, another property of BECs and BSCs is due:

Fact 3. The set of BECs and the set of BSCs both sweep all the possible values the
E0 parameters of B-DMCs can take at any ρ > −1.

Suppose now the E0 curves of a BEC and a BSC intersect at a particular ρ∗ > −1

such that ρ∗ 6= 0. We would like to know if there are any other ρ > −1, apart from
the trivial ρ = 0, such that the E0 curves of these two channels intersect again.

Lemma 2.5. Suppose a BSC BSC and a BEC BEC satisfy

E0(ρ∗, BEC) = E0(ρ∗, BSC), (2.23)

for some ρ∗ > −1 such that ρ∗ 6= 0. Then, if ρ∗ ≤ 1, there is only one other
intersection point between the E0 curves of the channels at ρ = 0. If ρ∗ > 1, the
only intersection point in the interval (−1, 1] is once more at ρ = 0, and for the rest
either the E0 curves of the channels are tangent to each others at ρ∗, i.e.,

R(ρ∗, BEC) = R(ρ∗, BSC) (2.24)

is satisfied, or there exists a different ρ′ > 1 such that

E0(ρ′, BEC) = E0(ρ′, BSC). (2.25)

Proof. Let the erasure probability of the channel BEC be ε and the channel BSC
be such that zBSC = z. By (2.17) and (2.19), the condition for equality in (2.23)
translates into

g(ρ∗, z) = 2−ρ
∗
(1− ε) + ε.

Let the function g̃(ρ, z) be defined as

g̃(ρ, z) =
g(ρ, z)− 2−ρ

1− 2−ρ
.
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Appendix

Observe that
g̃(ρ∗, z) = ε,

and in order for (2.25) to hold, we are looking for another ρ′ such that g̃(ρ′, z) = ε. To
find the answer, we need to study the monotonicity properties of the function g̃(ρ, z)

with respect to ρ. Indeed, a straightforward but tedious analysis shows that the first
derivative of g̃(ρ, z) with respect to ρ changes sign only once at ρmax(z) ≥ 3 for every
fixed value of z such that g̃(ρ, z) is increasing for ρ ∈ (0, ρmax(z)) and decreasing for
ρ > ρmax(z) with limρ→∞ g̃(ρ, z) = g̃(1, z). Consequently, if ρ∗ ∈ (−1, 0) ∪ (0, 1],
no other ρ′ can satisfy (2.25). On the other hand, if ρ∗ > 1, but ρ∗ 6= ρmax(z), then
the two curves intersect twice. Finally, if ρ∗ = ρmax(z), not only no other ρ′ can
satisfy (2.25), but also

g̃(ρ∗, z) = g̃(ρmax(z), z) ≥ g̃(ρ, z)

holds for all ρ > −1. In this case, the E0 curves of the channels will be tangent to
each other, so (2.24) will hold as well.

The previous lemma says that if the E0 curves of a BEC and a BSC intersect
somewhere between the interval (−1, 0)∪ (0, 1], they cannot intersect a second time,
except trivially at 0, and if otherwise they intersect in the interval (1,∞), either the
two curves are tangent to each other or they intersect twice in that interval, and the
only intersection point in the interval (−1, 1] is again at 0. The significance of this
lemma will become clear later when we interpret the extremality results. The lemma
will help us to understand why some intervals of ρ > −1 are more interesting in the
context of the extremality results presented in Theorem 3.1.

Appendix
The first part of this appendix proves Lemma 2.2. In the second part, Lemma 2.7
shows that the E0 function of stochastically degraded channels are ordered.

2.A Proof of Lemma 2.2

Proof. Taking the first derivative of (2.13) with respect to z, we get

∂g(ρ, z)

∂z
=

(
1

2
(1 + z)

1
1+ρ +

1

2
(1− z)

1
1+ρ

)ρ(
1

2
(1 + z)

−ρ
1+ρ − 1

2
(1− z)

−ρ
1+ρ

)
=

(
1

2

)1+ρ
(

1 +

(
1− z
1 + z

) 1
1+ρ

)ρ

︸ ︷︷ ︸
≥0

(
1−

(
1− z
1 + z

) −ρ
1+ρ

)
. (2.26)
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As we have (1− z)/(1 + z) ≤ 1, for ∀z ∈ [0, 1], the monotonicity claims follow by
noting that when ρ ∈ [0,∞):

ρ

1 + ρ
≥ 0 ⇒

(
1−

(
1− z
1 + z

) −ρ
1+ρ

)
≤ 0 ⇒ ∂g(ρ, z)

∂z
≤ 0,

and when ρ ∈ (−1, 0]:

ρ

1 + ρ
≤ 0 ⇒

(
1−

(
1− z
1 + z

) −ρ
1+ρ

)
≥ 0 ⇒ ∂g(ρ, z)

∂z
≥ 0.

Taking the second derivative with respect to z, we get

∂2g(ρ, z)

∂z2
= − ρ

1 + ρ

(
1− z2

) 1
1+ρ
−2
(

1

2
(1 + z)

1
1+ρ +

1

2
(1− z)

1
1+ρ

)−1+ρ

︸ ︷︷ ︸
≥0

.

The convexity claims follow once again by inspecting the sign of
ρ

1 + ρ
in different

intervals, i.e., when ρ ∈ [0,∞):

ρ

1 + ρ
≥ 0 ⇒ ∂2g(ρ, z)

∂z2
≤ 0,

and when ρ ∈ (−1, 0]:

ρ

1 + ρ
≤ 0 ⇒ ∂2g(ρ, z)

∂z2
≥ 0.

2.B Stochastic Degradation Ordering

We first introduce the definition of stochastic degradation and then prove the ordering
lemma.

Definition 2.6. A DMC W : X → Y1 is stochastically degraded with respect to
another DMC V : X→ Y2 if there exists a channel P : Y1 → Y2 such that

V (z|x) =
∑
y∈Y1

W (y|x)P (z|y), for all z ∈ Y2. (2.27)

Lemma 2.7. Let W and V be two DMCs such that V is stochatically degraded with
respect to W . Then, for any input distribution Q,

E0(ρ,Q, V ) ≤ E0(ρ,Q,W ), for ρ ≥ 0,

E0(ρ,Q, V ) ≥ E0(ρ,Q,W ), for ρ ∈ (−1, 0].
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Proof. Suppose that V is stochastically degraded with respect to W and Q is fixed.
We define E0(ρ,Q,W ) = − logF (ρ,Q,W ), for ρ > −1, with

F (ρ,Q,W ) :=
∑
y∈Y1

[∑
x∈X

Q(x)W (y|x)1/r

]r

=
∑
y∈Y1

∑
z∈Y2

P (z|y)

[∑
x∈X

Q(x)W (y|x)1/r

]r

=
∑
y∈Y1

∑
z∈Y2

[∑
x∈X

Q(x)(P (z|y)W (y|x))1/r

]r
,

for r = 1 + ρ. Similarly, we write E0(ρ,Q, V ) = − logF (ρ, V ) with

F (ρ,Q, V ) =
∑
z∈Y2

∑
x∈X

Q(x)

(∑
y∈Y1

P (z|y)W (y|x)

)1/r
r .

If for every fixed z = z0, we have

∑
y∈Y1

[∑
x∈X

Q(x) (P (z0|y)W (y|x))1/r

]r

≤

∑
x∈X

Q(x)

(∑
y∈Y1

Q(z0|y)W (y|x)

)1/r
r , (2.28)

for r ≥ 1 (thus ρ ≥ 0), and the reverse inequality for r ∈ (0, 1] (thus ρ ∈ (−1, 0]),
we will come through with the desired orderings. Now, if we let

a(x, y) = Q(x)rP (z0|y)W (y|x) ≥ 0,

for r > 0, (2.28) is equivalent to

∑
y∈Y1

[∑
x∈X

a(x, y)1/r

]r
≤

∑
x∈X

(∑
y∈Y1

a(x, y)

)1/r
r ,

for r ≥ 1. But this is true by Minkowski’s integral inequality, see [5, Problem
4.15(g)]. Similarly, the reverse inequality holds for r ∈ (0, 1]. This concludes the
proof.
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Chapter 3

Extremality for Gallager’s Reliability
Function E0

Do not get confused by the fancy word: Extremality refers here to the condition
of being extremal, meaning that it is a condition of or relating to extrema, i.e.,
maximal or minimal values [21]. We thus ensure we will be safely doing information
theory, upper and lower bounding the possible range of our measure of information.
Nonetheless, our bounds will not be simply upper and lower, but in addition, they
will be attained by the extremal channels. The goal of this chapter is to characterize
the extremality of the E0(ρ) curves of the BEC and the BSC among all the E0(ρ)

curves that can be generated under the uniform input distribution by the class of
B-DMCs whose E0(ρ) curves pass through a given point (ρ0, e0), for some ρ0 > −1.

What’s Coming, Doc?

In Theorem 3.1, we will prove that when ρ0 ∈ (−1, 1], these two channels remain
extremal along the E0(ρ) curves for any ρ > −1. We will also prove that when
ρ0 > 1, while these two channels are extremal along the E0(ρ) curves for any
ρ ∈ (−1, 1], no extremality beyond ρ > 1 can be formulated in general1. We will
also show in the theorem that a certain extremality property holds even when the
quantities appearing in the parametric form of the random coding error exponent,
i.e., E0 and E ′0, are evaluated at different values of the parameter ρ. In particular, we
will prove that among all channels with a given value of E0(ρ1), for any ρ1 ∈ [0, 1],
the BEC and the BSC distinguish themselves as follows: they have, respectively,
the largest and the smallest value of E ′0(ρ2) for any ρ2 ≥ ρ1. As the random
coding exponent is obtained by tracing the map ρ→ (E ′0(ρ), E0(ρ)− ρE ′0(ρ)), for

1As a particular case, we will show that when ρ0 ∈ [1, 3], the E0(ρ) curves of the BEC and the
BSC are still extremal for ρ ∈ (−1, 3].
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ρ ∈ [0, 1], among the simple corollaries of this will be the conclusion that of all the
symmetric channels with the same capacity, the BEC and the BSC have the largest
and the smallest value of the random coding exponents Er(R), a result reported in
[22]. Finally, we will discuss how these properties yield in straightforward fashion
extremal properties for the Rényi entropies.

The extremal results for E0 and E ′0 in the region where ρ > −1 can be applied to
obtain upper and lower bounds to various error exponents and the guessing exponent.
We introduced some of these exponents in the previous chapter. For a concise list of
the definitions of other error exponents involving the E0 function, we refer to [23], a
recent study which also examined the extremality of E0(ρ) for ρ > −1, but only for
the special class of symmetric B-DMCs of the same capacity.

3.1 The Extremality Theorem
The main result of this chapter is stated in the following theorem. The proof of the
theorem is given in Section 3.3.

Theorem 3.1. Given any fixed value of ρ1 > −1, suppose a B-DMC W , a binary
symmetric channel BSC, and a binary erasure channel BEC satisfy

E0(ρ1, BSC)
(a)

≤ E0(ρ1,W )
(a′)

≤ E0(ρ1, BEC), (3.1)

for ρ1 6= 0, or

lim
ρ→0

E0(ρ,BSC)

ρ

(a0)

≤ lim
ρ→0

E0(ρ,W )

ρ

(a0′)

≤ lim
ρ→0

E0(ρ,BEC)

ρ
, (3.2)

for ρ1 = 0.

(Part 1) If ρ1 ∈ [0, 3], then

R(ρ2, BSC)
(b)

≤ R(ρ2,W )
(b′)

≤ R(ρ2, BEC), (3.3)

E0(ρ2, BSC)
(c)

≤ E0(ρ2,W )
(c′)

≤ E0(ρ2, BEC), (3.4)

for any ρ2 ∈ [ρ1, 3].

(Part 2) If ρ1 ∈ (−1, 0], then

R(ρ2, BEC)
(d)

≤ R(ρ2,W )
(d′)

≤ R(ρ2, BSC), (3.5)

E0(ρ2, BSC)
(e)

≤ E0(ρ2,W )
(e′)

≤ E0(ρ2, BEC), (3.6)
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for any ρ2 ∈ (−1, ρ1],

(Part 3) If ρ1 ∈ (−1, 0], then

E0(ρ2, BSC)
(f)

≤ E0(ρ2,W )
(f ′)

≤ E0(ρ2, BEC), (3.7)

for any ρ2 ≥ 0.

If ρ1 ∈ [0, 1], then

E0(ρ2, BSC)
(g)

≤ E0(ρ2,W )
(g′)

≤ E0(ρ2, BEC), (3.8)

for any ρ2 ≥ ρ1.

If ρ1 > 1, then

E0(ρ2, BEC)
(h)

≤ E0(ρ2,W )
(h′)

≤ E0(ρ2, BSC), (3.9)

for any ρ2 ∈ [0, 1].

If ρ1 > 1, then

E0(ρ2, BSC)
(i)

≤ E0(ρ2,W )
(i′)

≤ E0(ρ2, BEC), (3.10)

for any ρ2 ∈ (−1, 0].

Moreover, the extremalities hold with strict inequalities, except for ρ2 = 0, whenever
(a) and (a′) in (3.1) are strict for ρ1 6= 0, or (a0) and (a′0) in (3.2) are strict for
ρ1 = 0.

Remark 3.2. In Theorem 3.1, the inequalities (a) and (a0) imply the inequalities (b),
(c), (d), (e), (f), (g), (h), and (i). Similarly, the inequalities (a′) and (a′0) imply the
inequalities (b′) through (i′).

Remark 3.3. The value “3” that appears in the intervals in Part 1 of the theorem is a
conservative estimate. The reader who follows the proof of Lemma 3.6, stated in
Section 3.3 and proved in Appendix 3.A, will notice that this “3” may be replaced
by a ρ∗(W ) that depends on the channel W . In the proof of Lemma 3.6, it is shown
that ρ∗(W ) ≥ 3 for any W , but the lower bound is not necessarily tight. We chose
the value 3 so as to not further complicate the statement of the theorem.

For the special case where ρ1 = ρ2 = ρ, for ρ ∈ [0, 1], we recover in the next
corollary, a result obtained in [20].

Corollary 3.4 ([20]). Given a symmetric B-DMCW , for any fixed value of ρ ∈ [0, 1],
find a binary symmetric channel BSC, and a binary erasure channel BEC through
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the equality
R(ρ,W ) = R(ρ,BEC) = R(ρ,BSC). (3.11)

Then,

E0(ρ,BEC) ≤ E0(ρ,W ) ≤ E0(ρ,BSC), (3.12)

Er(ρ,BEC) ≤ Er(ρ,W ) ≤ Er(ρ,BSC).

Proof. Since Er(ρ,W ) = E0(ρ,W )− ρR(ρ,W ), it suffices to prove the first set of
inequalities in view of (3.11). Taking ρ1 = ρ2 = ρ, (3.12) holds by Theorem 3.1. To
see this, observe that had the channels on the contrary satisfied

E0(ρ,BSC) < E0(ρ,W ) < E0(ρ,BEC),

the results in Part 1 of the theorem would imply

R(ρ,BSC) < R(ρ,W ) < R(ρ,BEC),

contradicting the assumption (3.11) of the corollary.

Another particular case of Theorem 3.1 when ρ1 = 0 recovers the result in [22]:
amongst all symmetric B-DMCs of the same capacity, the BEC and the BSC are
extremal with respect to the random coding exponent.

Corollary 3.5 ([22, Theorem 2.3]). Given a symmetric B-DMCW of capacity I(W ),
we define a binary symmetric channel BSC, and a binary erasure channel BEC of
the same capacity through the equality

I(W ) = I(BEC) = I(BSC).

Then, the random coding error exponent of the channels satisfy

Er(R,BSC) ≤ Er(R,W ) ≤ Er(R,BEC).

Proof. Recall from Chapter 2 that the equality of the capacities is equivalent to

lim
ρ→0

E0(ρ,W )

ρ
= lim

ρ→0

E0(ρ,BEC)

ρ
= lim

ρ→0

E0(ρ,BSC)

ρ
,

and for a symmetric channel, the random coding exponent is given by

Er(R,W ) = max
ρ∈[0,1]

[E0(ρ,W )− ρR].

30



3.2. A Graphical Interpretation

But in this case, we know by Part 1 of Theorem 3.1 that we have

E0(ρ2, BSC) ≤ E0(ρ2,W ) ≤ E0(ρ2, BEC),

for any ρ2 ∈ [0, 1]. This, in turn, implies the inequality for the random coding
exponent.

Finally, note that in [23] the above result of [22] was extended to the region where
ρ > −1. Namely, amongst all symmetric B-DMCs of the same capacity, the BEC
and the BSC are extremal with

E0(ρ,BSC) ≤ E0(ρ,W ) ≤ E0(ρ,BEC),

for all ρ > −1. In particular, [23, Theorem 1] can also be recovered from Theorem
3.1.

3.2 A Graphical Interpretation
In this section, we provide a graphical interpretation of Theorem 3.1 and the corol-
laries through Figures 1 to 5. Suppose that the E0 curves of a given B-DMC, a BEC,
and a BSC pass through a given point (ρ0, e0), for some ρ0 > −1.

By the results stated in (3.6) and (3.7), we know that when ρ0 ∈ (−1, 0), then
these curves do not intersect again except at ρ = 0, and the BEC and BSC al-
ways remain extremal even though their extremal behaviour get reversed after the
intersection points. Figure 3.1 illustrates this relation.

A special case where the E0 curves of the BEC and the BSC remain extremal for
the entire ρ > −1 region, and with no reversal, corresponds to channels of the same
capacity; as discussed after Corollary 3.5, Theorem 3.1 shows that the E0 curves of
these channels are upper bounded by the BEC’s curve and lower bounded by the
BSC’s one. Figure 3.2 illustrates this relation.

Another case where the E0 curves of the BEC and the BSC exhibit extremality
for the entire region ρ > −1 is when ρ0 ∈ (0, 1]; one can infer from (3.4), (3.7), and
(3.8) that the BEC and the BSC will beE0 extremal, once again with the extremalities
reversed after the intersections. Figure 3.3 illustrates this relation.

Now, we consider the case when ρ0 > 1. Part 3 shows that the curves only
intersect at ρ = 0 in the interval ρ ∈ (−1, 1], and the BEC and the BSC are extremal
in the intervals (−1, 0) and (0, 1] with reversed extremalities. Although Part 1

provides a partial result, it is not clear what happens in the interval ρ > 1. It turns
out that the BEC and the BSC are no longer extremal for ρ > 1 in general. We will
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Figure 3.1: Extremality of E0(ρ) when the channels intersect at ρ0 ∈ (−1, 0).
Dashed line: BEC(0.3) & Solid line: BSC(0.1102).
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Figure 3.2: Extremality of E0(ρ) when the channels have equal capacity 0.5. Dashed
line: BEC(0.5) & Solid line: BSC(0.1102).
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Figure 3.3: Extremality of E0(ρ) when the channels have equal cutoff rate. Dashed
line: BEC(0.626278) & Solid line: BSC(0.1102).
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Figure 3.4: Extremality of E0(ρ) when the channels have equal E0(ρ∗) and equal
rate at ρ∗ > 1. Dashed line: BEC(0.6777) & Solid line: BSC(0.1102).
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Figure 3.5: Extremality of E0(ρ) when the channels intersect at ρ0 > 1. Dashed line:
BEC(0.67) & Solid line: BSC(0.1102).

show this result by studying the intersection points of the E0 curves of a given BSC
with different BECs using Lemma 2.5.

Suppose a BEC BEC and a BSC BSC satisfy

E0(ρ∗, BEC) = E0(ρ∗, BSC), (3.13)

R(ρ∗, BEC) = R(ρ∗, BSC), (3.14)

for a particular ρ∗ > 1. By Lemma 2.5, this corresponds to the case where the E0

curves of these two channels are tangent at ρ∗ > 1 and do not intersect at any other
point except ρ = 0. Moreover, by Theorem 3.1, the capacities of the channels are
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such that I(BEC) ≤ I(BSC). Figure 3.4 illustrates this relation.

Suppose the erasure probability of the BEC channel is increased. By the ordering
we discussed in Fact 2, it is not difficult to see that the E0 curves of the BSC and
the new BEC will not intersect at any point other than ρ = 0. Instead, suppose that
the erasure probability of the channel is decreased, but the capacity of the new BEC
is still smaller than the capacity of the BSC. In this case, as long as the cutoff rate
of the BSC is larger than the cutoff rate of the BEC, the BSC and the new BECs
will intersect twice after ρ = 0, first in the interval (1, ρ∗), then after ρ∗. Figure 3.5
illustrates this relation. Once the cutoff rate of the BEC becomes larger than that of
the BSC, we are back at the situation where the intersection point falls in the interval
[0, 1], and we recover the general extremality result we have already discussed. Then,
we can keep decreasing the erasure probability until the BEC and the BSC have the
same capacity to recover another special case. Finally, decreasing more the erasure
probability, until there is no other intersection anywhere except at ρ = 0, will cause
the E0 curves of the BSC and the new BECs to intersect in the interval (−1, 0). In
this latter case, the BSC and the BECs will once more be E0 extremal for the entire
ρ > −1 region.

The analysis above shows us that most of the BECs and the BSCs whose E0

curves intersect in the interval where ρ > 1 have two intersection points in that
interval. In such a case, the BEC and the BSC are no longer extremal as for a class
of B-DMCs which satisfy for all the channels W in the class the equality

E0(ρ0,W ) = E0(ρ0, BEC) = E0(ρ0, BSC),

for any fixed ρ0 > 1, we do not expect the E0 curves of the channels in this class to
intersect again at the point where the E0 curves of the BEC and the BSC intersect
a second time, i.e, where E0(ρ′, BEC) = E0(ρ′, BSC) holds for ρ′ > 1 such that
ρ′ 6= ρ0.

3.3 Proof of the Theorem
The proof of Theorem 3.1 rests on the next two convexity lemmas. The lemmas are
proved in Appendix 3.A and 3.B, respectively.

Lemma 3.6. For fixed values of ρ1, ρ2 ∈ R \ {−1}, we define the function f̃ρ1,ρ2(t)
by

f̃ρ1,ρ2(t) :=
∂

∂ρ2

g(ρ2, g
−1(ρ1, t)),

for t ∈ [2−ρ, 1] ∪ [1, 2−ρ]. Let f̃ρ(t) denote the function when ρ1 = ρ2 = ρ. Then,
f̃ρ(t) is a concave function in twhen ρ ∈ (0, 3], convex when ρ ∈ (−∞,−1)∪(−1, 0].
Moreover, the function f̃ρ1,ρ2(t) is concave when ρ1, ρ2 ∈ [0, 1] such that ρ2 ≥ ρ1.
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Lemma 3.7. For fixed values of ρ1, ρ2 ∈ R \ {−1}, the function fρ1,ρ2(t) defined as

fρ1,ρ2(t) := g(ρ2, g
−1(ρ1, t)),

for t ∈ [2−ρ, 1] ∪ [1, 2−ρ], is concave in t when ρ1 ∈ (−1, 0] and ρ2 ≥ 0, when
ρ1 ∈ [0, 1] and ρ2 ≥ ρ1, and when ρ1 > 1 and ρ2 ∈ (−1, 0), and the function is
convex when ρ1 > 1 and ρ2 ∈ (0, 1].

Before proving the theorem’s statement in its most general form, we will prove
two particular cases of the theorem in the next two lemmas assuming ρ1 = ρ2 = ρ.

Lemma 3.8. Given any fixed value of ρ ∈ (0, 3), suppose a B-DMC W , a binary
symmetric channel BSC, and a binary erasure channel BEC satisfy the equality

E0(ρ,BSC) ≤ E0(ρ,W ) ≤ E0(ρ,BEC). (3.15)

Then, the following holds:

R(ρ,BSC) ≤ R(ρ,W ) ≤ R(ρ,BEC), (3.16)

where the inequalities are strict if the inequalities in (3.15) are strict.

Proof. Let us define another binary erasure channel BEC∗ and another binary
symmetric channel BSC∗ through the following equality:

E0(ρ,BSC∗) = E0(ρ,W ) = E0(ρ,BEC∗). (3.17)

Observe that by (2.12), the equality condition in (3.17) is equivalent to the equality
of

E [g(ρ, Z)] = E [g(ρ, ZBEC∗)] = g(ρ, zBSC∗). (3.18)

Hence, the denominator in

R(ρ,W ) =
∂

∂ρ
E0(ρ,W ) =

E [−∂g(ρ, Z)/∂ρ]

E [g(ρ, Z)] ln 2
(3.19)

is the same for the three channels. Then, the proof can be completed using the
concavity of the function f̃ρ(t) in t for ρ ∈ (0, 3], which is shown in Lemma 3.6,
and the special structure of the Z random variables of a BEC and a BSC. To see
this, let us define the random variable A = g(ρ, Z) ∈ [2−ρ, 1]. Then, we note that
f̃ρ(A) = ∂g(ρ, Z)/∂ρ, and E[A] gives (3.18). So,

R(ρ,W ) =
E
[
f̃ρ(A)

]
E[A] ln 2

, R(ρ,BSC∗) =
f̃ρ(E[A])

E[A] ln 2
.
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To derive the expression for R(ρ,BEC∗), recall by Fact 1 that ZBEC∗ ∈ {0, 1}.
Using E[A] = E [g(ρ, ZBEC∗)], we get

P (ZBEC∗ = 0) =
E[A]− 1

2−ρ − 1
.

Hence,

R(ρ,BEC∗) =
f̃ρ(2

−ρ)P (ZBEC∗ = 0) + f̃ρ(1)P (ZBEC∗ = 1)

E[A] ln 2
.

Now, by the two sides of the Jensen’s inequality for concave functions, we have

f̃ρ(1) +
f̃ρ(1)− f̃ρ(2−ρ)

1− 2−ρ
(E [A]− 1) ≤ E

[
f̃ρ(A)

]
≤ f̃ρ(E [A]). (3.20)

Dividing all sides by E [A] ln 2 > 0 and negating the expressions in (3.20), we get

R(ρ,BSC∗) ≤ R(ρ,W ) ≤ R(ρ,BEC∗). (3.21)

The final step of the proof is to show (3.21) implies (3.16). For that purpose, recall
by Fact 2 that the set of BSCs and the set of BECs are strictly ordered in their E0

and R parameters for ρ ∈ (0, 3]. As we have

E0(ρ,BSC) ≤ E0(ρ,BSC∗), (3.22)

E0(ρ,BEC∗) ≤ E0(ρ,BEC), (3.23)

we conclude by Lemma 2.3 that

R(ρ,BSC) ≤ R(ρ,BSC∗), (3.24)

R(ρ,BEC∗) ≤ R(ρ,BEC) (3.25)

holds for ρ > 0. From this (3.16) follows. Moreover, if the inequalities in (3.15) are
strict than the ones in (3.22) and (3.23), and thus, (3.24) and (3.25) are strict as well.
Consequently, the inequalities in (3.16) hold strictly as claimed.

Remark 3.9. Note that Lemma 3.8 and Corollary 3.4 are of the same flavor. Indeed,
one can easily derive one from the other using the degradation argument discussed in
Fact 2. So, the result of [20] could also have been used to characterize the behavior
of the E0 curves for the ρ ∈ (0, 1] interval. However, the proof of the lemma and the
proof of the corollary are different as they involve different convexity analysis.

Lemma 3.10. Given any fixed value of ρ ∈ (−1, 0), suppose a B-DMC W , a binary
symmetric channel BSC, and a binary erasure channel BEC satisfy the condition
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(3.15) of Lemma 3.8. Then, the following holds:

R(ρ,BEC) ≤ R(ρ,W ) ≤ R(ρ,BSC), (3.26)

where the inequalities are strict if the inequalities in (3.15) are strict.

Proof. Let BEC∗ and BSC∗ be as defined in the proof of Lemma 3.8. Once again,
the equality condition in (3.17) implies the denominator in (3.19) is the same for the
three channels. Then, the inequalities

R(ρ,BEC∗) ≤ R(ρ,W ) ≤ R(ρ,BSC∗) (3.27)

follow using the convexity of the function f̃ρ(t) in t when ρ ∈ (−1, 0], which is
shown in Lemma 3.6, and applying Jensen’s inequalities. Finally, as E0(ρ,BSC) ≤
E0(ρ,BSC∗) and E0(ρ,BEC∗) ≤ E0(ρ,BEC), we know by Fact 2 that these
BSCs and BECs are ordered by degradation. So, we conclude by Lemma 2.3 that we
have R(ρ,BSC∗) ≤ R(ρ,BSC) and R(ρ,BEC) ≤ R(ρ,BEC∗), for ρ ∈ (−1, 0].
From this (3.26) follows. The claim about the strictness of the inequalities can be
proved similarly as in the proof of Lemma 3.8.

Now, we are ready to prove the theorem.

Proof of Theorem 3.1. We will first prove the claims for ρ1 ∈ (−1, 0) ∪ (0,∞),
leaving the case ρ1 = 0 to the last. In fact, we will show that the results proved for
ρ1 ∈ (−1, 0) ∪ (0,∞) will immediately extend to ρ1 = 0 by the continuity of E0 in
its arguments.

We start by proving the inequalities (3.3) and (3.4) in Part 1 for the case ρ1 ∈ (0, 3].
By Lemma 3.8, we know that (3.3) holds for ρ2 = ρ1. So, we only need to prove
the theorem for ρ2 ∈ (0, 3] such that ρ2 > ρ1. By the continuity of E0(ρ,BEC)

and E0(ρ,BSC) in the channels’ erasure and crossover probabilities, respectively, it
suffices to show that

E0(ρ1, BSC) < E0(ρ1,W ) < E0(ρ1, BEC)

implies
E0(ρ2, BSC) < E0(ρ2,W ) < E0(ρ2, BEC). (3.28)

Then, Lemma 3.8 will imply

R(ρ2, BSC) < R(ρ2,W ) < R(ρ2, BEC).

We define Γ(ρ) = E0(ρ,W )−E0(ρ,BEC). Let Γ′(ρ) denote the first derivative
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of Γ(ρ) with respect to ρ. Noting that R(ρ,W ) =
∂

∂ρ
E0(ρ,W ), the inequality in

(3.28) is implied by the following statement:

Γ(ρ1) < 0 and by Lemma 3.8 (Γ(ρ) < 0⇒ Γ′(ρ) < 0) ⇒ Γ(ρ2) < 0.

But this is true by elementary considerations on differential equations. Indeed,
suppose to the contrary that

Γ(ρ1) < 0, and (Γ(ρ) < 0⇒ Γ′(ρ) < 0), but Γ(ρ2) ≥ 0.

Then, there exists ρ1 < ρ3 ≤ ρ2 such that Γ(ρ) < 0, for ∀ρ ∈ [ρ1, ρ3), and Γ(ρ3) = 0.
But then there exists ρ1 < ρ4 < ρ3 such that

Γ′(ρ4) =
Γ(ρ3)− Γ(ρ1)

ρ3 − ρ1

> 0,

and Γ(ρ4) < 0, contradicting the assumption. The inequality for the BSC can be
obtained similarly by letting

Γ(ρ) = E0(ρ,BSC)− E0(ρ,W ),

and applying the above argument once more.

We continue with the proof of the inequalities in (3.5) and (3.6) in Part 2 for
the case ρ1 ∈ (−1, 0). The proof follows along the same lines of the previous part.
By Lemma 3.10, we know that the inequalities in (3.5) hold for ρ2 = ρ1. So, we
only need to prove the theorem for ρ2 < ρ1. By the continuity of E0(ρ,BEC) and
E0(ρ,BSC) in the channels’ erasure and crossover probabilities, respectively, it
suffices to show that

E0(ρ1, BSC) < E0(ρ1,W ) < E0(ρ1, BEC)

implies
E0(ρ2, BSC) < E0(ρ2,W ) < E0(ρ2, BEC).

Then, Lemma 3.10 will imply

R(ρ2, BEC) < R(ρ2,W ) < R(ρ2, BSC).

We define Γ(ρ) = E0(ρ,W ) − E0(ρ,BEC). Then, the corollary is implied by
the following statement:

Γ(ρ1) < 0 and by Lemma 3.10 (Γ(ρ) < 0⇒ Γ′(ρ) > 0) ⇒ Γ(ρ2) < 0.
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But this is true by an analogous reasoning as before. The inequality for the BSC can
be obtained similarly by letting

Γ(ρ) = E0(ρ,BSC)− E0(ρ,W ),

and applying the above argument once more. This concludes the proof of Part 2.

For Part 3, we will only do the proof of (3.7) for the case ρ1 ∈ (−1, 0) and ρ2 ≥ 0

as all the other claims can be proved in the same way using the convexity properties
of the function fρ1,ρ2(t) discussed in Lemma 3.7.

Let A = g(ρ1, Z). We know that the condition in (3.1) is equivalent to

E [g(ρ1, ZBEC)] ≤ E [g(ρ1, Z)] ≤ g(ρ1, zBSC).

Define the BEC BEC∗ and the BSC BSC∗ through the equality

E [g(ρ1, Z)] = E [g(ρ1, ZBEC∗)] = g(ρ1, zBSC∗).

As by Lemma 3.7 we know the function fρ1,ρ2(t) is concave in t when ρ1 ∈ (−1, 0]

and ρ2 ≥ 0, we can apply the two sides of Jensen’s inequality to obtain

E [fρ1,ρ2(g(ρ1, ZBEC∗))] ≤ E [fρ1,ρ2(A)] ≤ fρ1,ρ2(g(ρ1, ZBSC∗)),

which is equivalent to

E [g(ρ2, ZBEC∗)] ≤ E [g(ρ2, Z)] ≤ g(ρ2, zBSC∗).

To get the claimed inequalities in (3.7), we simply need to use the ordering argument
of Fact 2 for the two BECs and the two BSCs. As we have illustrated this argument
before in the proof of Lemma 3.8, we do not repeat it here.

The last step is to prove the theorem for the case ρ1 = 0. We will only present
the proof extension for the inequalities (b′) and (c′) in Part 1 as the same argument
can be used to extend all the remaining inequalities. Moreover, once again by the
continuity of E0(ρ,BEC) in the channels’ erasure probability, it suffices to show
the results assuming (a′0) in (3.2) holds with strict inequality.

So, we assume the given channels W and BEC satisfy I(W ) < I(BEC). Then,
using the identity in (2.4), we get

lim
ρ→0+

E0(ρ,W )− E0(ρ,BEC)

ρ
= I(W )− I(BEC) < 0.

(We assumed ρ → 0+ for simplicity as the above limit for ρ → 0 is well defined).
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Hence, for any sufficiently small ρ > 0, we have

E0(ρ,W ) < E0(ρ,BEC).

Moreover, we already proved that, for all ρ2 ∈ [ρ, 3], this implies

E0(ρ2,W ) ≤ E0(ρ2, BEC).

As ρ > 0 is arbitrary, we conclude the result should hold for all ρ2 ∈ [0, 3].

Now, we can carry the proof as follows. First, we let ε ∈ [0, 1] be the erasure
probability of the BEC BECε which satisfies I(Wε) = I(W ). Then, we take a
sequence of BECs BECεn of erasure probabilities εn ∈ [0, 1] such that the sequence
εn is increasing to ε. In this case, we know that

I(W ) < I(BECεn).

By the previous argument, we conclude that for all the channels BECεn ,

E0(ρ2,W ) ≤ E0(ρ2, BECεn)

holds for all ρ2 ∈ [0, 3]. Taking the limit for the sequence εn, we conclude by
continuity that the result also holds for the channel BECε, i.e.,

E0(ρ2,W ) ≤ E0(ρ2, BECε)

holds for ρ2 ∈ [0, 3]. As we have E0(ρ2, BECε) ≤ E0(ρ2, BEC), the inequality (c′)

in (3.4) is proved. By Lemma 3.8, the inequality (b′) follows.

3.4 Extremality of Rényi Entropies
In this section, we show how the results of Theorem 3.1 can be translated into
extremalities for Rényi entropies using the definition given in (2.3).

Observe that the assumption in (3.1) of Theorem 3.1 can be equivalently stated as

E0(ρ1, BSC)

ρ1

≤ E0(ρ1,W )

ρ1

≤ E0(ρ1, BEC)

ρ1

,

for ρ1 > 0, and

E0(ρ1, BEC)

ρ1

≤ E0(ρ1,W )

ρ1

≤ E0(ρ1, BSC)

ρ1

,

for ρ1 ∈ (−1, 0). The reversal caused by the sign of ρ will not be a problem for
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extending the proof of the previous section to Rényi entropies as we know that,
by Lemma 2.3, while for ρ1 > 0 a ‘worse’ BEC and a ‘worse’ BSC have smaller
E0 parameters, for ρ ∈ (−1, 0) the opposite is true. Consequently, all the results
obtained for the parameter E0(ρ,W ) can be restated in terms of Rényi entropies via
(2.3). For the sake of brevity, we will only restate in the next corollary the result
given in (3.8) in Part 3 of the theorem in terms of Rényi entropies.

Corollary 3.11. Given a binary uniform random variable X , among all jointly
distibuted random variables (X, Y ) of equal Rényi equivocation Hα(X | Y ) of
order α ∈ [1/2, 1], the Rényi equivocation of order β ≥ 0 such that β ≥ α is
maximized when X and Y are coupled by a BEC, and minimized when coupled by a
BSC. For β ≤ α values, the maximizing and minimizing distributions are reversed.

Proof. Recall that α = 1/(1 + ρ). So for α ∈ [1/2, 1], we have ρ ∈ [0, 1]. Moreover,
α is decreasing with ρ. Hence, the inequalities for β ≤ α and for β ≥ α follow
directly from (3.8) in Part 3 of Theorem 3.1 using the definition given in equation
(2.3) together with the fact that Hα(X) = 1 under the uniform distribution.

Appendix
The Appendices contain three parts. In the first two of them, we prove Lemma 3.6
and Lemma 3.7, respectively. The final part proves two other lemmas used in these
proofs.

3.A Proof of Lemma 3.6

Proof. We begin by introducing some definitions to simplify notations. Let

g′(ρ, z) :=
∂g(ρ, z)

∂z
.

We define

λ(z) :=
1− z
1 + z

, (3.29)

α(ρ, z) := (1 + λ(z)
1

1+ρ )ρ,

β(ρ, z) := (1− λ(z)
−ρ
1+ρ ),

for z ∈ [0, 1], ρ ∈ R \ {−1}. By (2.26) in Lemma 2.2, we have

g′(ρ, z) =

(
1

2

)1+ρ

α(ρ, z)β(ρ, z).
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Taking the first derivative of f̃ρ1,ρ2(t) with respect to t, we obtain

∂f̃ρ1,ρ2(t)

∂t
=

∂

∂t

∂

∂ρ2

g(ρ2, g
−1(ρ1, t))

=
∂

∂ρ2

∂

∂t
g(ρ2, g

−1(ρ1, t))

=
∂

∂ρ2

g′(ρ2, g
−1(ρ1, t))

g′(ρ1, g−1(ρ1, t))
.

Let z = g−1(ρ1, t). As g(ρ, z) is a monotone function in z by Lemma 2.2, so is
z = g−1(ρ, t) in t. Hence, we can check the convexity of f̃ρ1,ρ2(t) with respect to t
from the monotonicity with respect to z of the following expression:

∂

∂ρ2

g′(ρ2, z)

g′(ρ1, z)

=
∂

∂ρ2

2ρ1−ρ2
α(ρ2, z)β(ρ2, z)

α(ρ1, z)β(ρ1, z)

=
2−ρ2α(ρ2, z)β(ρ2, z)

2−ρ1α(ρ1, z)β(ρ1, z)

(
∂2−ρ2α(ρ2, z)/∂ρ2

2−ρ2α(ρ2, z)
+
∂β(ρ2, z)/∂ρ2

β(ρ2, z)

)
, (3.30)

where

∂2−ρ2α(ρ2, z)

∂ρ2

=
∂

∂ρ2

(
1 + λ(z)

1
1+ρ2

2

)ρ2

=

(
1 + λ(z)

1
1+ρ2

2

)ρ2

×ln

(
1 + λ(z)

1
1+ρ2

2

)
+ ρ2

1
2
λ(z)

1
1+ρ2

−1
(1+ρ2)2

lnλ(z)

1+λ(z)
1

1+ρ2

2


=2−ρ2α(ρ2, z)

ln

(
1 + λ(z)

1
1+ρ2

2

)
− ρ2λ(z)

1
1+ρ2 lnλ(z)

(1 + ρ2)2
(

1 + λ(z)
1

1+ρ2

)
 ,

and
∂β(ρ2, z)

∂ρ2

=
∂

∂ρ2

(
1− λ(z)

−ρ2
1+ρ2

)
=

1

(1 + ρ2)2
λ(z)

−ρ2
1+ρ2 lnλ(z).
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Hence, the expression inside the parenthesis in (3.30) equals

ln

(
1 + λ(z)

1
1+ρ2

2

)
− ρ2λ(z)

1
1+ρ2 lnλ(z)

(1 + ρ2)2
(

1 + λ(z)
1

1+ρ2

)
+

λ(z)
−ρ2
1+ρ2 lnλ(z)

(1 + ρ2)2
(

1− λ(z)
−ρ2
1+ρ2

)
= ln

(
1 + λ(z)

1
1+ρ2

2

)
− ρ2λ(z)

1
1+ρ2 lnλ(z)

(1 + ρ2)2
(

1 + λ(z)
1

1+ρ2

)
+

lnλ(z)

(1 + ρ2)2
(
λ(z)

ρ2
1+ρ2 − 1

) .
To simplify derivations we define

Φ(k, ρ1, ρ2) :=

(
1+k

1
1+ρ2

2

)ρ2 (
1− k

−ρ2
1+ρ2

)
(

1+k
1

1+ρ1

2

)ρ1 (
1− k

−ρ1
1+ρ1

) , (3.31)

and

Ψ(k, ρ2) := ln

(
1 + k

1
1+ρ2

2

)
+

ln k

(1 + ρ2)2

(
− ρ2k

1
1+ρ2

1 + k
1

1+ρ2

+
1

k
ρ2

1+ρ2 − 1

)

= ln

(
1 + k

1
1+ρ2

2

)
+

(
1 + k

1
1+ρ2 − ρ2

(
k − k

1
1+ρ2

))
ln k

(1 + ρ2)2η(k, ρ2)
, (3.32)

where
η(k, ρ2) :=

(
1 + k

1
1+ρ2

)(
k

ρ2
1+ρ2 − 1

)
. (3.33)

Then, (3.30) equals to the product

∂

∂ρ2

g′(ρ2, z)

g′(ρ1, z)
= Φ(λ(z), ρ1, ρ2)Ψ(λ(z), ρ2).

Let k = λ(z) ∈ [0, 1]. As k = λ(z) is decreasing in z, to check the monotonicity of
the above expression with respect to z, we can equivalently check the monotonicity
of Φ(k, ρ1, ρ2)Ψ(k, ρ2) with respect to k.
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Taking the derivative with respect to k gives

∂Φ(k, ρ1, ρ2)Ψ(k, ρ2)

∂k

=Φ′(k, ρ1, ρ2)Ψ(k, ρ2) + Φ(k, ρ1, ρ2)Ψ′(k, ρ2)

=Φ(k, ρ1, ρ2)Ψ(k, ρ2)

(
∂ ln Φ(k, ρ1, ρ2)

∂k
+

Ψ′(k, ρ2)

Ψ(k, ρ2)

)
, (3.34)

where Φ′(k, ρ1, ρ2) =
∂Φ(k, ρ1, ρ2)

∂k
and Ψ′(k, ρ) =

∂Ψ(k, ρ)

∂k
.

Now, we derive the expressions in (3.34):

ln Φ(k, ρ1, ρ2) = ρ2 ln

(
1 + k

1
1+ρ2

2

)
+ ln

(
1− k

−ρ2
1+ρ2

)
− ρ1 ln

(
1 + k

1
1+ρ1

2

)
− ln

(
1− k

−ρ1
1+ρ1

)
,

∂ ln Φ(k, ρ1, ρ2)

∂k
=

ρ2

1 + ρ2

k
−ρ2
1+ρ2

1 + k
1

1+ρ2

+
ρ2

1 + ρ2

k
−ρ2
1+ρ2

−1

1− k
−ρ2
1+ρ2

− ρ1

1 + ρ1

k
−ρ1
1+ρ1

1 + k
1

1+ρ1

− ρ1

1 + ρ1

k
−ρ1
1+ρ1

−1

1− k
−ρ1
1+ρ1

=
ρ2

1 + ρ2

1 + k

k
(

1 + k
1

1+ρ2

)(
k

ρ2
1+ρ2 − 1

)
− ρ1

1 + ρ1

1 + k

k
(

1 + k
1

1+ρ1

)(
k

ρ1
1+ρ1 − 1

)
=F (k, ρ2)− F (k, ρ1),

where
F (k, ρ) :=

ρ

1 + ρ

1 + k

k

1

η(k, ρ)
, (3.35)
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and

Ψ′(k, ρ2)

=
∂

∂k

(
ln

(
1 + k

1
1+ρ2

2

)
+

ln k

(1 + ρ2)2

(
− ρ2k

1
1+ρ2

1 + k
1

1+ρ2

+
1

k
ρ2

1+ρ2 − 1

))

=
k
− ρ2

1+ρ2

(1 + ρ2)(1 + k
1

1+ρ2 )
+

1

(1 + ρ2)2 k

(
−ρ2

k
1

1+ρ2

1 + k
1

1+ρ2

+
1

k
ρ2

1+ρ2 − 1

)

+
ln k

(1 + ρ2)2

− ρ2k
− ρ2

1+ρ2

(1 + ρ2)
(

1 + k
1

1+ρ2

)2 −
ρ2k

− 1
1+ρ2

(1 + ρ2)
(
k

ρ2
1+ρ2 − 1

)2


=

k + 1

(1 + ρ2)2 k η(k, ρ2)
−
ρ2 (k + 1)

(
k

ρ2
1+ρ2 + k

1
1+ρ2

)
ln k

(1 + ρ2)3 k η2(k, ρ2)

=
k + 1

(1 + ρ2)2 k η(k, ρ2)2

(
η(k, ρ2)−

(
k

ρ2
1+ρ2 + k

1
1+ρ2

)
ln k

ρ2
1+ρ2

)
, (3.36)

where η(k, ρ) is defined in (3.33).

To summarize the steps so far, we have shown that the second derivative of
f̃ρ1,ρ2(t) with respect to t is given by

∂2f̃ρ1,ρ2(t)

∂t2
=

∂

∂t

∂

∂ρ2

g′(ρ2, g
−1(ρ1, t))

g′(ρ1, g−1(ρ1, t))

=
∂

∂z

(
∂

∂ρ2

g′(ρ2, z)

g′(ρ1, z)

)
∂z

∂t

=
∂Φ(k, ρ1, ρ2)Ψ(k, ρ2)

∂k

∂k

∂z

∂z

∂t

where z = g−1(ρ1, t), k = λ(z) with λ(z) defined in (3.29), Φ(k, ρ1, ρ2) given by
(3.31), and Ψ(k, ρ2) given by (3.32).

We first prove the claims of the lemma for ρ1 = ρ2 = ρ. Coming back to (3.34),

∂Φ(k, ρ, ρ)Ψ(k, ρ)

∂k
= Ψ′(k, ρ)

as Φ(k, ρ, ρ) = 1 and
∂ ln Φ(k, ρ, ρ)

∂k
= 0. Hence to prove the convexity claims, we

need to investigate the sign of Ψ′(k, ρ) we derived in (3.36). Note that the factor in
front of the parenthesis in (3.36) is always positive for k ∈ [0, 1], ρ2 ∈ R \ {−1},
and the term inside the parenthesis equals to the function m(k, ρ2) defined in Lemma
3.12 in Appendix 3.C. So the sign of Ψ′(k, ρ2) is determined by the sign of m(k, ρ2).
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By Lemma 3.12 , we have

Ψ′(k, ρ2) ≥ 0, ∀ρ2 < −1

Ψ′(k, ρ2) ≤ 0, ∀ρ2 ∈ (−1, 0),

Ψ′(k, 0) = 0,

Ψ′(k, ρ2) ≤ 0, ∀ρ2 ∈ (0, ρ∗(k)),

Ψ′(k, ρ∗(k)) = 0,

Ψ′(k, ρ2) ≥ 0, ∀ρ2 ≥ ρ∗(k).

where ρ∗(k) ≥ 3 is a constant which depends on k ∈ [0, 1]. As k is decreasing in z,
which is, by Lemma 2.2, non-increasing in t when ρ ≥ 0, we have

∂2f̃ρ(t)

∂t2
= Ψ′(k, ρ)︸ ︷︷ ︸

≤0

∂k

∂z︸︷︷︸
<0

∂z

∂t︸︷︷︸
≤0

≤ 0,

for ρ ∈ [0, ρ∗(k)], and

∂2f̃ρ(t)

∂t2
= Ψ′(k, ρ)︸ ︷︷ ︸

≥0

∂k

∂z︸︷︷︸
<0

∂z

∂t︸︷︷︸
≤0

≥ 0,

for ρ ≥ ρ∗(k). Hence, the function f̃ρ(t) is concave in t when ρ ∈ (0, 3] as claimed.
On the other hand, we know by Lemma 2.2 that z is non-decreasing in t when
ρ ∈ (−1, 0). Hence, the function f̃ρ(t) is convex in t whenever ρ ∈ (−1, 0). Finally,
when ρ < −1, z is non-increasing in t by Lemma 2.2, so that f̃ρ(t) is convex in t.

To prove the last claim of the lemma concerning the case where ρ1, ρ2 ∈ (0, 1]

such that ρ1 < ρ2, we need to determine the sign of Ψ(k, ρ2). Note that, Ψ′(k, ρ) ≤ 0

for ρ ∈ (0, 3] implies

Ψ(k, ρ) ≥ lim
k→1

Ψ(1, ρ) =
2

(1 + ρ)2 lim
k→1

ln k

η(k, ρ)
=

1

ρ (1 + ρ)
≥ 0,

since

lim
k→1

ln k

η(k, ρ)
=

0

0

= lim
k→1

∂ ln k/∂k

∂η(k, ρ)/∂k
= lim

k→1

k + ρk

k
(
k + ρk − k

1
1+ρ + ρk

ρ
1+ρ

) =
1 + ρ

2ρ
.

As a result, Ψ(k, ρ2) ≥ 0 whenever ρ2 ∈ (0, 3]. Recall that we are interested in the
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sign of the following expression

∂Φ(k, ρ1, ρ2)Ψ(k, ρ2)

∂k

= Φ(k, ρ1, ρ2)Ψ(k, ρ2)

(
Ψ′(k, ρ2)

Ψ(k, ρ2)
+ F (k, ρ2)− F (k, ρ1)

)
.

Lemma 3.13 in Appendix 3.C shows that the function F (k, ρ) is decreasing in ρ ∈

(0, 1]. Moreover, we have just shown
Ψ′(k, ρ2)

Ψ(k, ρ2)
≤ 0, for ρ2 ∈ (0, 3]. Consequently,

when ρ1, ρ2 ∈ (0, 1] such that ρ1 ≤ ρ2, we have

Ψ′(k, ρ2)

Ψ(k, ρ2)
+ F (k, ρ2)− F (k, ρ1) ≤ 0,

and the product Φ(k, ρ1, ρ2)Ψ(k, ρ2) is non-increasing in k. As k is decreasing in z,
which is, by Lemma 2.2, non-increasing in t when ρ ≥ 0 , the expression in (3.30),
is decreasing in z whenever ρ1, ρ2 ∈ (0, 1] such that ρ1 ≤ ρ2. In this case,

∂2f̃ρ1,ρ2(t)

∂t2
=
∂Φ(k, ρ1, ρ2)Ψ(k, ρ2)

∂k︸ ︷︷ ︸
≤0

∂k

∂z︸︷︷︸
<0

∂z

∂t︸︷︷︸
≤0

≤ 0

holds. Hence, the function f̃ρ1,ρ2(t) is concave in t as claimed.

3.B Proof of Lemma 3.7

Proof. Taking the first derivative of fρ1,ρ2(t) with respect to t, we obtain

∂fρ1,ρ2(t)

∂t
=
∂g(ρ2, g

−1(ρ1, t))

∂t

=
g′(ρ2, g

−1(ρ1, t))

g′(ρ1, g−1(ρ1, t))
. (3.37)

Let z = g−1(ρ1, t). As g(ρ, z) is a monotone function in z by Lemma 2.2, so is
z = g−1(ρ, t) in t. Hence we can check the convexity of fρ1,ρ2(t) with respect to t,
from the monotonicity with respect to z of the expression g′(ρ2, z)/g

′(ρ1, z).

Taking the derivative with respect to z, we get

∂

∂z

g′(ρ2, z)

g′(ρ1, z)
=

∂

∂z
2ρ1−ρ2

α(ρ2, z)β(ρ2, z)

α(ρ1, z)β(ρ1, z)

=
2−ρ2α(ρ2, z)β(ρ2, z)

2−ρ1α(ρ1, z)β(ρ1, z)
(`(ρ2, z)− `(ρ1, z)) ,
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where

`(ρ, z) :=
∂α(ρ, z)/∂z

α(ρ, z)
+
∂β(ρ, z)/∂z

β(ρ, z)
.

One can easily check that α(ρ, z) ≥ 0, for any ρ > −1, and while β(ρ, z) ≥ 0, for
ρ ∈ (−1, 0), we have β(ρ, z) ≤ 0, for ρ ≥ 0. Moreover, we claim that

`(ρ2, z)− `(ρ1, z) ≥ 0 (3.38)

holds when ρ1 ∈ (−1, 0) and ρ2 ≥ 0, or when ρ1 ∈ (0, 1] and ρ2 ≥ ρ1, and we claim
that

`(ρ2, z)− `(ρ1, z) ≤ 0

holds when ρ1 > 1 and ρ2 ∈ (−1, 0), or when ρ1 > 1 and ρ2 ∈ (0, 1]. Therefore, by
this claim, if ρ1 ∈ (−1, 0] and ρ2 ≥ 0, we have

∂

∂z

g′(ρ2, z)

g′(ρ1, z)
=

2−ρ2α(ρ2, z)β(ρ2, z)

2−ρ1α(ρ1, z)β(ρ1, z)︸ ︷︷ ︸
≤0

(`(ρ2, z)− `(ρ1, z))︸ ︷︷ ︸
≥0

≤ 0,

and if ρ1 ∈ [0, 1] and ρ2 ≥ ρ1, we have

∂

∂z

g′(ρ2, z)

g′(ρ1, z)
=

2−ρ2α(ρ2, z)β(ρ2, z)

2−ρ1α(ρ1, z)β(ρ1, z)︸ ︷︷ ︸
≥0

(`(ρ2, z)− `(ρ1, z))︸ ︷︷ ︸
≥0

≥ 0.

On the other hand, if ρ1 > 1 and ρ2 ∈ (−1, 0), we have

∂

∂z

g′(ρ2, z)

g′(ρ1, z)
=

2−ρ2α(ρ2, z)β(ρ2, z)

2−ρ1α(ρ1, z)β(ρ1, z)︸ ︷︷ ︸
≤0

(`(ρ2, z)− `(ρ1, z))︸ ︷︷ ︸
≤0

≥ 0,

and if ρ1 > 1 and ρ2 ∈ (0, 1], we have

∂

∂z

g′(ρ2, z)

g′(ρ1, z)
=

2−ρ2α(ρ2, z)β(ρ2, z)

2−ρ1α(ρ1, z)β(ρ1, z)︸ ︷︷ ︸
≥0

(`(ρ2, z)− `(ρ1, z))︸ ︷︷ ︸
≤0

≤ 0.

Recall that we are interested in the sign of the second derivative of fρ1,ρ2 with
respect to t given by

∂2fρ1,ρ2(t)

∂t2
=

∂

∂t

∂g(ρ2, g
−1(ρ1, t))

∂t

=
∂

∂z

g′(ρ2, z)

g′(ρ1, z)

∂z

∂t
.
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As by Lemma 2.2, z is non-decreasing in t for ρ1 ∈ (−1, 0) and non-increasing for
ρ1 ≥ 0, the function fρ1,ρ2(t) is concave in t when ρ1 ∈ (−1, 0] and ρ2 ≥ 0, or when
ρ1 ∈ [0, 1] and ρ2 ≥ ρ1, or when ρ1 > 1 and ρ2 ∈ (−1, 0), and convex when ρ1 > 1

and ρ2 ∈ (0, 1].

Now, we prove the claim in (3.38). For that purpose, we show that the function

`(ρ.z) is non-decreasing in ρ for the interval ρ ∈ (−1, 3), and
∂`(ρ, z)

∂ρ
changes sign

only once after ρ ≥ 3. As

lim
ρ→1

`(ρ, z) = lim
ρ→∞

`(ρ, z) =
1

z − z3

holds, we can then conclude that

`(ρ, z) ≥ `(1, z), when ρ ≥ 1,

`(ρ, z) ≤ `(1, z), when ρ ∈ (−1, 1].

The above inequalities ensure `(ρ2, z)− `(ρ1, z) ≥ 0 when ρ1 ∈ (−1, 0) and ρ2 ≥ 0,
or when ρ1 ∈ [0, 1] and ρ2 ≥ ρ1. Similarly, the previous arguments ensure that
`(ρ2, z)− `(ρ1, z) ≤ 0 when ρ1 > 1 and ρ2 ∈ (−1, 1].

Note that
`(ρ, z) =

∂

∂z

(
ln
(
2−ρα(ρ, z)

)
+ ln (β(ρ, z))

)
.

Hence,

∂`(ρ, z)

∂ρ
=

∂

∂z

(
∂2−ρα(ρ, z)/∂ρ

2−ρα(ρ, z)
+
∂β(ρ, z)/∂ρ

β(ρ, z)

)
=
∂Ψ(k, ρ)

∂k

∂k

∂z

= Ψ′(k, ρ)
∂k

∂z

where k = λ(z) is defined in (3.29) and Ψ′(k, ρ) is defined in (3.36). Luckily, we
have already investigated the sign of Ψ′(k, ρ) in the proof of Lemma 3.6 stated in the
previous appendix. Indeed, we have shown that Ψ′(k, ρ) ≤ 0, for ρ ∈ (−1, 3), and
the function changes sign only once after ρ ≥ 3. As k is decreasing in z, the sign of
∂`(ρ, z)

∂ρ
is exactly the opposite of Ψ′(k, ρ). This concludes the proof.
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3.C Lemma 3.12 and Lemma 3.13

Lemma 3.12. For k ∈ [0, 1], we define

m(k, ρ) := −1 + k − k
1

1+ρ + k
ρ

1+ρ −
(
k

ρ
1+ρ + k

1
1+ρ

)
ln k

ρ
1+ρ . (3.39)

Then, for ∀k ∈ [0, 1], we have

m(k, ρ) ≥ 0, ∀ρ < −1,

m(k, ρ) ≤ 0, ∀ρ ∈ (−1, 0),

m(k, 0) = 0.

Moreover, ∃ ρ∗(k) ≥ 3 which depends on k such that:

m(k, ρ) ≤ 0, ∀ρ ∈ (−1, ρ∗(k)),

m(k, ρ∗) = 0,

m(k, ρ) ≥ 0, ∀ρ ∈ (ρ∗,∞).

Proof. We now follow a series of transformations. Let t =
ρ

1 + ρ
. Then, (3.39)

reduces to

m

(
k,

t

1− t

)
= −1 + k − k1−t + kt − (kt + k1−t) ln kt.

In addition, let s = −t ln k. Then,

m

(
k,

−s
ln k + s

)
= −1 + k − kes + e−s + s(e−s + kes).

We first note that the function is zero at s = 0. Taking the first derivative with respect
to s, we get

∂

∂s
m

(
k,

−s
ln k + s

)
= −kes − e−s + e−s + kes + s(−e−s + kes)

= s(−e−s + kes)

= t(kt − k1−t) ln k.

Hence the function m
(
k,

−s
ln k + s

)
is non-increasing in s for t ∈ [0, 1/2], and

non-decreasing otherwise. Moreover, the derivative of m
(
k,

t

1− t

)
with respect to

t is given by
∂

∂t
m

(
k,

t

1− t

)
=

∂

∂s
m

(
k,

−s
ln k + s

)
∂s

∂t
.
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As s is non-decreasing in t, we have shown that m
(
k,

t

1− t

)
is non-increasing in t

for t ∈ [0, 1/2], and non-decreasing otherwise. Similarly, the derivative of m(k, ρ)

with respect to ρ is given by

∂m (k, ρ)

∂ρ
=

∂

∂t
m

(
k,

t

1− t

)
∂t

∂ρ
.

As t is increasing in ρ for the intervals (−∞,−1), and (−1,∞), m(k, ρ) will be
non-increasing in ρ for t ∈ [0, 1/2], and non-decreasing otherwise. We simply need
to map this result to the claims of the lemma in terms of the intervals defined by ρ.

For the interval t ∈ [1,∞), we have ρ < −1, and m(k, ρ) is non-decreasing in ρ.
Moreover,

lim
ρ→−∞

m(k, ρ) = (−1 + k− 1 + k)− (k+ 1) ln k = −2(1− k) + (k+ 1) ln k ≥ 0,

where the sign follows by noting that at k = 1 the expression evaluates to 0, and it is
non-increasing in k as

∂

∂k
(−2(1− k) + (k + 1) ln k) = 1− 1

k
+ ln

1

k
≤ 0

follows by using the inequality lnx ≤ x− 1. This shows m(k, ρ) ≥ 0 for ρ < −1.

For the interval t ∈ (−∞, 0], we have ρ ∈ (−1, 0], and m(k, ρ) is non-decreasing
in ρ. As we have m(k, 0) = 0, we conclude m(k, ρ) ≤ 0 for ρ ∈ (−1, 0).

For the interval t ∈ [0, 1/2], we have ρ ∈ [0, 1], and m(k, ρ) is non-increasing in
ρ. As we have m(k, 0) = 0, we conclude m(k, ρ) ≤ 0 for ρ ∈ (0, 1].

For the interval t ∈ [1/2, 1], we have ρ ≥ 1, and m(k, ρ) is non-decreasing in ρ.
As m(k, 1) ≤ 0, and

lim
ρ→∞

m(k, ρ) = (−1 + k − 1 + k)− (k + 1) ln k = −2(1− k) + (k + 1) ln k ≥ 0,

the function will eventually cross zero. Now, we prove that the crossing point ρ∗,
i.e., m(k, ρ∗) = 0, is such that ρ∗ ≥ 3. For that purpose, we only need to show that
m(k, 3) is increasing in k because m(1, 3) = 0 holds.

Taking the first derivative with respect to k, we get

∂m(k, 3)

∂k
=

4(−1 + k3/4)− 3/4(1 + 3
√
k) ln k

4k3/4
≥ 0,

where equality holds if and only if k = 1. The sign follows by noting that the
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denominator is positive, the numerator is decreasing in k, and is equal to 0 if and
only if k = 1. Indeed, taking the first derivative with respect to k of the numerator,
we get

∂

∂k

(
4(−1 + k3/4)− 3/4(1 + 3

√
k) ln k

)
=
−3(2 + 6

√
k − 8k3/4 + 3

√
k ln k)

8k
≤ 0,

where equality holds if and only if k = 1. The sign follows by noting that the
denominator is positive, the numerator is increasing in k, and is equal to 0 if and
only if k = 1. To see this, once more we take the first derivative with respect to k of
the numerator. Then, we get

∂

∂k

(
−3(2 + 6

√
k − 8k3/4 + 3

√
k ln k) ln k

)
=
−9(4− 4k1/4 + ln k)

2
√
k

≥ 0,

where equality holds if and only if k = 1. The sign follows by noting that the
denominator is positive, the numerator is decreasing in k, and is equal to 0 if and
only if k = 1. To show this, we need to take the first derivative with respect to k of
the numerator one last time. Doing so, we get

∂

∂k

(
−9(4− 4k1/4 + ln k)

)
=

9(−1 + k1/4)

k
≤ 0,

for k ∈ [0, 1], and where equality holds if and only if k = 1. This concludes the
proof of the lemma.

Lemma 3.13. The function F (k, ρ) defined in (3.35) is a decreasing function in
ρ ∈ [0, 1].

Proof. For convenience, we define the function

H(k, ρ) := − k

1 + k
F (k, ρ).

Then,

H(k, ρ) =
ρ

1 + ρ

1(
1 + k

1
1+ρ

)(
1− k

ρ
1+ρ

) ≥ 0, (3.40)

where k ∈ [0, 1]. We note that instead of F (k, ρ), we can check the monotonicity of
H(k, ρ) with respect to ρ. We now follow a series of transformations. Let t =

ρ

1 + ρ
,

for t ∈ [0, 1
2
]. Then, (3.40) reduces to

H

(
k,

t

1− t

)
=

t

(1− kt) (1 + k1−t)
.
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In addition, let s = −t ln k, for s ∈ [0, 1
2

ln 1
k
]. Then,

H

(
k,

−s
ln k + s

)
=

1

ln 1
k

s

1− e−s
1

1 + kes
. (3.41)

We note that the first fraction in (3.41) can be treated as a constant and we ignore it.
We define the variable a = 1

k
≥ 1. For simplicity, we consider the function

1

H
(
k, −s

ln k+s

) =
ln a

a︸︷︷︸
constant

1− e−s

s
(a+ es) .

We first show that ln
(

1− e−s
s (a+ es)

)
is a convex function for all s ≥ 0. Taking

the first derivative with respect to s, we obtain

∂

∂s

(
− ln s+ ln

(
1

1− e−s

)
+ ln

(
es

a+ es

))
= −1

s
+

es

a+ es
+

1

es − 1
. (3.42)

Taking the second derivative in s, we get

∂2

∂s2

(
− ln s+ ln

(
1

1− e−s

)
+ ln

(
es

a+ es

))
=

1

s2
+

aes

(a+ es)2
− es

(es − 1)2

≥ 1

s2
− es

(es − 1)2

=
1

s2
−
(

1

e
s
2 + e

−s
2

)2

=
1

s2
− 1(

2 sinh s2

)2 ≥ 0,

where the non-negativity follows from sinhx ≥ x, for x ≥ 0. We proved that

ln
(

1− e−s
s (a+ es)

)
is a convex function for all s ≥ 0. Therefore the function

has only one minimum, and to decide whether the expression is decreasing in
s ∈ [0, 1

2
ln a], it is sufficient to evaluate (3.42) at s = 1

2
ln a:

∂

∂s

(
− ln s+ ln

(
1

1− e−s

)
+ ln

(
es

a+ es

))∣∣∣
s= 1

2
ln a

=− 1

ln
√
a

+

√
a

a+
√
a

+
1√
a− 1

=− 1

ln
√
a

+
2
√
a

a− 1
≤ 0,
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since for b =
√
a ≥ 1, we can show that

b2 − 1

2b
− ln b ≥ 0. (3.43)

Taking the first derivative of (3.43) with respect to b, we get

∂

∂b

b2 − 1

2b
− ln b =

1

2
+

1

2b2
− 1

b
=

(b− 1)2

2b2
≥ 0.

Therefore, we proved that for each k ∈ [0, 1] the function 1
/
H
(
k, −s

ln k+s

)
is decreas-

ing in s. By definition, the variable t is increasing in ρ, and s = −t ln k is also
increasing in t for a given k. As a consequence, the function

F (k, ρ) = −1 + k

k
H(k, ρ) (3.44)

is decreasing in ρ.
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Chapter 4

Polarization for E0

Arıkan’s polar codes [2] are constructed by the repeated application of the polar
transform. From two independent copies of a given binary input channel W : F2 →
Y, this transform synthesizes two new binary input channels W− : F2 → Y2 and
W+ : F2 → Y2 × F2. The transition probabilities of these channels are given by [2]

W−(y1y2|u1) :=
∑
u2∈F2

1

2
W (y1|u1 ⊕ u2)W (y2|u2), (4.1)

W+(y1y2u1|u2) :=
1

2
W (y1|u1 ⊕ u2)W (y2|u2). (4.2)

Being binary input channels themselves, W− and W+ are in turn candidates for
the polar transform. One may thus apply the polar transform to these new channels
to obtain the channels W−− := (W−)−, W−+ := (W−)+, W+− := (W+)−, and
W++ := (W+)+. More generally, the repeated application will yield at stage n, a
set of 2n channels {

W sn : sn ∈ {+,−}n
}
. (4.3)

In analyzing the properties of these channels, it is useful to introduce an auxiliary
stochastic process. Let (Ω,F , P ) denote a probability space. Assume the random
sequence B1, . . . , Bn defined on this space is drawn i.i.d. according to a Bernoulli
distribution with probabilities equal to 1/2. Let Fn be the σ-algebra generated by
this Bernoulli sequence. The channel polarization process Wn is defined in [24] by
W0 = W and

Wn+1 :=

{
W−
n if Bn+1 = 1

W+
n if Bn+1 = 0

, for n ≥ 0. (4.4)

In this way, Wn is uniformly distributed over the set of 2n channels. Each path
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Chapter 4. Polarization for E0

realization W sn of this process corresponds exactly to one of the synthetic channels
W

(i)
N , for i = 1, . . . , N , introduced earlier in the Introduction.

Due to the exponential growth of the output alphabets of the synthetic channels,
tracking the evolution of the channel polarization process directly is not so easy.
As a result, the properties of polar codes are analyzed by examining additional
random processes that follow the evolution of information measures as the underlying
communication channel undergoes the sequence of polar transformations. One such
measure of information is the symmetric capacity process In(W ) := I(Wn).

Let us now retell the famous polarization ‘tale’ of this most famous information
theoretical quantity: Arıkan proves in [2, Propositions 8 and 10] that the process
In(W ) is a bounded martingale on the interval [0, 1], converges almost surely (a.s.)
to a random variable I∞ such that E[I∞] = I0, where I∞ takes values a.s. in {0, 1}.
These prove that the recursive application of the polar transform leads to channel
polarization, see Definition 1.1.

Due to the recursive construction procedure, the properties of the single step
polar transform are essential in proving the convergence result related to In and
furthermore in shaping the theory of channel polarization and polar codes. Below is
a list of three fundamental properties of the mapping (W,W )→ (W−,W+) which
will help us understand better how the polar transform works and how polarization
happens.

P1. Polarization Property: By [2, Proposition 4],

I(W−) ≤ I(W ) ≤ I(W+). (4.5)

P2. Conservation Property: By the same proposition,

I(W−) + I(W+) = 2I(W ). (4.6)

P3. Extremality Property: It is well known that (proved as a corollary to extremes
of information combining [25]) among all channels W with a given symmetric
capacity I(W ), the BEC and the BSC polarize most and least in the sense of
having the largest and the smallest differences between I(W+) and I(W−).
So,

I(BSC+)−I(BSC−) ≤ I(W+)−I(W−) ≤ I(BEC+)−I(BEC−). (4.7)

Now, let us quickly retrace the proof of the polarization of In.
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I(W+)− I(W−)

I(W )
0 1

1
2

Figure 4.1: I(W+)− I(W−) < ξ implies that I(W ) 6∈ (γ, 1− γ).

L1. ‘Conservation Law’: The process is a bounded martingale on the interval
[0, 1] as In ∈ [0, 1] and

E[In | Fn−1]

=E[In | B1, . . . , Bn−1] = E[In | Wn−1]

=
1

2
I(W−

n−1) +
1

2
I(W+

n−1)

=I(Wn−1) = In−1

holds by (4.6). By general results on bounded martingales, In converges a.s.
to I∞ such that E[I∞] = I0. It remains to identify the convergence points.

L2. ‘Convergence Law’: We plotted in Figure 4.1, the range of feasible I(W )

versus I(W+)− I(W−) pairs using (4.7). From the figure, we see that polar-
ization does strictly happen, i.e., we have strict inequalities in (4.5), as long as
the value of I(W ) is not at the extremes of its boundaries. So, the synthesized
channels keep getting polarized until they become either perfect or completely
noisy. Thus, I∞ = {0, 1} a.s.

As a consequence, the fraction of the perfect channels must tend to I(W ) with the
recursive application of the polar transform. By Definition 1.1, channel polarization
is attained.

The proof is recollected, but there is more to the story; these nice properties of
the transform are not just limited to the symmetric capacity parameter. It was shown
in [2, Proposition 5] that the channel Bhattacharyya distance,

Z(W ) :=
∑
y∈Y

√
W (y|0)W (y|1), (4.8)

likewise satisfies Z(W+) ≤ Z(W ) ≤ Z(W−) and

Z(W+) =Z(BEC+) = Z(W )2, (4.9)

Z(W ) ≤ Z(W−) ≤Z(BEC−) = 2Z(W )− Z(W )2, (4.10)

57



Chapter 4. Polarization for E0

among all the channels W with a given Bhattacharyya parameter Z(W ). Via the
cutoff rate relationship

R0(W ) = − log

(
1 + Z(W )

2

)
, (4.11)

it can thus also be inferred that R0(W−) ≤ R0(W ) ≤ R0(W+) and the BEC is
extremal among all the channels W with a given symmetric cutoff rate R0(W ).
Even earlier, in a paper that predates polar coding [4], Arıkan had already shown
that the method of channel combining and splitting via this transform improves the
symmetric cutoff rate R0(W ), that is1,

R0(W−) +R0(W+) ≥ 2R0(W ). (4.12)

Very well, could these be just a coincidence? Recall from Section 2.2 that both the
symmetric capacity and the symmetric cutoff rate are quantities that can be obtained
as special cases of the information measure E0(ρ,W )/ρ by

R0(W ) = E0(1,W ),

and
I(W ) = lim

ρ→0
E0(ρ,W )/ρ,

where ‘Gallager’s E0’ [5, p. 138] evaluated for the uniform input distribution is
given by (2.11). Thus, a natural question to ask is if the polar transform improves
E0, which would make (4.12) a special case (and also show that the left hand side
of (4.6) is at least as large as the right hand side). Likewise, it is natural to ask
whether extremality results similar to (4.7) and the pair (4.9) and (4.10) also hold
for this more general channel parameter.

What’s Coming, Doc?

In view of the above observations, we will inquire in this chapter how E0(ρ,W )

and consequently E0(ρ,W )/ρ is affected by the polar transform and its recursive
application. During this inquiry, derivations will lead to slightly more general results
pertaining to a more general polar transform denoted by 〈W1,W2〉± that synthesizes
two channels from two independent (but not necessarily identical) binary input
channels W1 : F2 → Y1 and W2 : F2 → Y2. Given two such channels, W−

1,2 :=

〈W1,W2〉− : F2 → Y1 × Y2 and W+
1,2 := 〈W1,W2〉+ : F2 → Y1 × Y2 × F2 denote

1This conclusion may be derived as a consequence of (4.9) and (4.10), via the relationship (4.11),
and the concavity and monotonicity of log.
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4.1. Polarization Property of E0

the synthetic channels with transition probabilities given by

W−
1,2(y1y2|u1) :=

∑
u2∈F2

1

2
W1(y1|u1 ⊕ u2)W2(y2|u2), (4.13)

W+
1,2(y1y2u1|u2) :=

1

2
W1(y1|u1 ⊕ u2)W2(y2|u2). (4.14)

In this chapter, we will prove that the three properties we have just mentioned
can be extended to E0, and we will discuss a number of implications that follows.
More specifically, we will report the following conclusions:

• In Theorem 4.6 and Theorem 4.7, we will prove that channel combining and
splitting via Arıkan’s polar transform improves Gallager’s reliability function
E0 for binary input channels. In addition, we will show that the improvement in
E0 translates to an improvement in the complexity–error probability trade-off
and also to a particular chain rule for Rényi’s entropies [16].

• In Theorem 4.8, we will prove that amongst all B-DMCs W1 and W2 (not
necessarily symmetric) with given values of E0(ρ,W1) and E0(ρ,W2) at a
given ρ ≥ 0, the BECs and the BSCs polarize most and least in the sense
of having the largest and the smallest differences between E0(ρ, 〈W1,W2〉+)

and E0(ρ, 〈W1,W2〉−), for any ρ ∈ [0, 1] ∪ [2,∞]. On the other hand, for any
ρ ∈ [1, 2], we will show that the BSCs maximize and the BECs minimize
the E0 values obtained after applying either 〈W1,W2〉+ or 〈W1,W2〉−. The
theorem will also reveal that besides the special values ρ = 0, 1, the value
ρ = 2 further exhibits an interesting property.

• Using the theorems, Proposition 4.11 will show that the process E0(ρ,Wn)/ρ

is a bounded submartingale converging a.s. to the extremes of the bounded
interval [0, 1].

4.1 Polarization Property of E0

The next two lemmas derive suitable expressions for the E0 parameters of W−
1,2 and

W+
1,2. The expressions will be similar to the representation given in (2.12).

Lemma 4.1. Given W1 : F2 → Y1 and W2 : F2 → Y2, let Z1 and Z2 be indepen-
dent random variables taking values in the interval [0, 1] such that E0(ρ,W1) =

− logE [g(ρ, Z1)] and E0(ρ,W2) = − logE [g(ρ, Z2)] hold for a fixed ρ ≥ 0 as
defined in (2.12). Then,

E0(ρ,W−
1,2) = − logE [g(ρ, Z1Z2)], (4.15)

where g(ρ, z) given by (2.13).
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Chapter 4. Polarization for E0

Proof. Let y1 ∈ Y1 and y2 ∈ Y2. Using (4.13) and the definitions in (2.14) and
(2.15), we can write

E0(ρ,W−
1,2) = − log

∑
y1,y2

[
1

2
W−

1,2(y1, y2 | 0)
1

1+ρ +
1

2
W−

1,2(y1, y2 | 1)
1

1+ρ

]1+ρ

= − log
∑
y1y2

1

2
qW1 (y1) qW2 (y2)×[

1

2

(
(1 + ∆W1 (y1)) (1 + ∆W2 (y2))

+ (1−∆W1 (y1)) (1−∆W2 (y2))

) 1
1+ρ

+
1

2

(
(1−∆W1 (y1)) (1 + ∆W2 (y2))

+ (1 + ∆W1 (y1)) (1−∆W2 (y2))

) 1
1+ρ
]1+ρ

= − log
∑
y1y2

qW1(y1)qW2(y2)g(ρ,∆W1(y1)∆W2(y2)), (4.16)

We define Z1 = |∆W1(Y1)| and Z2 = |∆W2(Y2)|, where Y1 and Y2 are independent
random variables with distributions qW1 and qW2 , respectively. From this construction,
the lemma follows.

Lemma 4.2. Given B-DMCs W1 and W2, let Z1 and Z2 be as in Lemma 4.1. Then,

E0(ρ,W+
1,2) = − logE[h(ρ, Z1, Z2)], (4.17)

where

h(ρ, z1, z2) :=
1 + z1z2

2
g
(
ρ,

z1 + z2

1 + z1z2

)
+

1− z1z2

2
g
(
ρ,

z1 − z2

1− z1z2

)
(4.18)

is defined for ρ ≥ 0, z1, z2 ∈ [−1, 1].

Proof. Let y1 ∈ Y1, y2 ∈ Y2, and u ∈ F2. Using (4.14), we can write

E0(ρ,W+
1,2)

=− log
∑
y1,y2,u

[
1

2
W+

1,2(y1, y2, u | 0)
1

1+ρ +
1

2
W+

1,2(y1, y2, u | 1)
1

1+ρ

]1+ρ

=− log
∑
y1,y2,u

[
1

2

(
1

2
W1(y1 | u)W2(y2 | 0)

) 1
1+ρ

+
1

2

(
1

2
W1(y1 | u⊕ 1)W2(y2 | 1)

) 1
1+ρ
]1+ρ

.
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Using (2.14) and (2.15), we get

E0(ρ,W+
1,2)

=− log
∑
y1y2

1

2
qW1(y1)qW2(y2)×([

1

2

(
(1 + ∆W1(y1)) (1 + ∆W2(y2))

) 1
1+ρ

+
1

2

(
(1−∆W1(y1)) (1−∆W2(y2))

) 1
1+ρ

]1+ρ

+

[
1

2

(
(1−∆W1(y1)) (1 + ∆W2(y2))

) 1
1+ρ

+
1

2

(
(1 + ∆W1(y1)) (1−∆W2(y2))

) 1
1+ρ

]1+ρ
)

=− log

(∑
y1y2

1

2
qW1(y1)qW2(y2)

(
1 + ∆W1(y1)∆W2(y2)

)
×

[
1

2

(
1 +

∆W1(y1) + ∆W2(y2)

1 + ∆W1(y1)∆W2(y2)

) 1
1+ρ

+
1

2

(
1− ∆W1(y1) + ∆W2(y2)

1 + ∆W1(y1)∆W2(y2)

) 1
1+ρ
]1+ρ

+
∑
y1y2

1

2
qW1(y1)qW2(y2)

(
1−∆W1(y1)∆W2(y2)

)
×

[
1

2

(
1− ∆W1(y1)−∆W2(y2)

1−∆W1(y1)∆W2(y2)

) 1
1+ρ

+
1

2

(
1 +

∆W1(y1)−∆W2(y2)

1−∆W1(y1)∆W2(y2)

) 1
1+ρ
]1+ρ

)
=− log

∑
y1y2

1

2
qW1(y1)qW2(y2)h(ρ,∆W1(y1),∆W2(y2)) (4.19)

where h(ρ, z1, z2) is given by (4.18).

Now, we define Z1 = |∆W1(Y1)| and Z2 = |∆W2(Y2)|, where Y1 and Y2 are
independent random variables with distributions qW1 and qW2 , respectively. We
should check whether with this construction the right hand side of (4.17) is equivalent
to the equation in (4.19). For that purpose, we note that ∆ ∈ [−1, 1] and the function
g(ρ, z) is symmetric about z = 0. So, when ∆W1(y1) and ∆W2(y2) are of the same
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sign, we have

(
1 + Z1Z2

)
g
(
ρ,

Z1 + Z2

1 + Z1Z2

)
=
(
1 + ∆W1(y1)∆W2(y2)

)
g
(
ρ,

∆W1(y1) + ∆W2(y2)

1 + ∆W1(y1)∆W2(y2)

)
,(

1− Z1Z2

)
g
(
ρ,

Z1 − Z2

1− Z1Z2

)
=
(
1−∆W1(y1)∆W2(y2)

)
g
(
ρ,

∆W1(y1)−∆W2(y2)

1−∆W1(y1)∆W2(y2)

)
.

On the other hand, when ∆W (y1) and ∆W (y2) are of opposite signs, we have

(
1− Z1Z2

)
g
(
ρ,

Z1 − Z2

1− Z1Z2

)
=
(
1 + ∆W1(y1)∆W2(y2)

)
g
(
ρ,

∆W1(y1) + ∆W2(y2)

1 + ∆W1(y1)∆W2(y2)

)
,(

1 + Z1Z2

)
g
(
ρ,

Z1 + Z2

1 + Z1Z2

)
=
(
1−∆W1(y1)∆W2(y2)

)
g
(
ρ,

∆W1(y1)−∆W2(y2)

1−∆W1(y1)∆W2(y2)

)
.

Since we are interested in the sum of these two parts, we can see that the construction
we propose is still equivalent to (4.19). This concludes the proof.

Remark 4.3. The equations (4.16) and (4.19) derived in the proofs of Lemma 4.1
and Lemma 4.2, respectively, can also be derived by using the results given in [26]
for the evolution of ∆W (y) under check and variable node operations. The current
proofs are kept in the presentation for being self contained.

Remark 4.4. It may be of interest to note that in general W±
1,2 is not the same as

W±
2,1, so the order of W1 and W2 does matter. However the two channels have the

same E0, (and consequently the same symmetric cutoff rate, same symmetric mutual
information, same Bhattacharyya parameter, etc.) as interchanging the random
variables Z1 and Z2 does not change the values in (4.15) and (4.17). So, we have
E0(ρ,W±

1,2) = E0(ρ,W±
2,1).

The following lemma puts in order the E0 parameters of the channels W1, W2,
W−

1,2, and W+
1,2

Lemma 4.5 (Polarization Property). The channels W1, W2, W−
1,2, and W+

1,2 satisfy
for any ρ ≥ 0 the following ordering:

E0(ρ,W−
1,2) ≤ E0(ρ,W1) ≤ E0(ρ,W+

1,2), (4.20)

E0(ρ,W−
1,2) ≤ E0(ρ,W2) ≤ E0(ρ,W+

1,2).
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Proof of Lemma 4.5. We only show the inequalities in (4.20) for the channel W1.
The proof for the channel W2 follows by Remark 4.4. By (2.12), Lemma 4.1, and
Lemma 4.2, the inequalities in (4.20) are equivalent to

E
[

1 + Z1Z2

2
g
(
ρ,

Z1 + Z2

1 + Z1Z2

)
+

1− Z1Z2

2
g
(
ρ,

Z1 − Z2

1− Z1Z2

)]
≤ E [g(ρ, Z1)] , (4.21)

E [g(ρ, Z1)] ≤ E [g(ρ, Z1Z2)] . (4.22)

By Lemma 2.2, the function g(ρ, z) is non-increasing in the variable z ∈ [0, 1] when
ρ ≥ 0. Hence, the inequality in (4.22) holds. On the other side, note that for any
realizations z1 and z2, the factors (1 + z1z2)/2 and (1− z1z2)/2 form a distribution.
As we also know by Lemma 2.2 that the function g(ρ, z) is concave in z ∈ [−1, 1],
we can apply Jensen’s inequality to obtain

1 + z1z2

2
g
(
ρ,

z1 + z2

1 + z1z2

)
+

1− z1z2

2
g
(
ρ,

z1 − z2

1− z1z2

)
≤ g
(
ρ,
z1 + z2

2
+
z1 − z2

2

)
= g(ρ, z1). (4.23)

Taking the expectations of both sides, we get the inequality in (4.21).

The previous lemma shows that our information measure evolves as expected
under the polar transform and proves that the polarization property extends to E0.

4.2 Polar Transform Improves E0

In this section, we will show the following theorem.

Theorem 4.6. For any binary input channel W and any ρ ≥ 0,

E0(ρ,W−) + E0(ρ,W+) ≥ 2E0(ρ,W ).

The inequality in Theorem 4.6 holds with equality if and only if the channel W is
perfect, or the channel W is completely noisy, or ρ = 0.

Theorem 4.6 will be obtained as a corollary to a slightly more general result
pertaining to the more general polar transform that synthesizes the channels W−

1,2

and W+
1,2 defined in (4.13) and (4.14), respectively.

Theorem 4.7 (Gain Property). For any two binary input channels W1 and W2 and
any ρ ≥ 0,

E0(ρ,W−
1,2) + E0(ρ,W+

1,2) ≥ E0(ρ,W1) + E0(ρ,W2). (4.24)
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Theorem 4.6 trivially follows from Theorem 4.7 by setting W1 = W2 = W .

The apparent ‘creation’ of E0 by the polar transform does not violate any ‘conser-
vation’ theorem. While mutual information cannot be improved by processing of the
input or output of the channel, E0 is not a conserved quantity and may be created
out of thin air by processing. Indeed, any good coding method implicitly relies on
the possibility to create E0 by processing.

4.2.1 Proof of Theorem 4.7

Proof of Theorem 4.7. By the observations we made in (2.12), Lemma 4.1, and
Lemma 4.2, we know that

E0(ρ,W1) = − logE
[
g(ρ, Z1)

]
,

E0(ρ,W2) = − logE
[
g(ρ, Z2)

]
,

E0(ρ,W−
1,2) = − logE

[
g(ρ, Z1Z2)

]
,

E0(ρ,W+
1,2) = − logE

[
h(ρ, Z1, Z2)

]
,

where Z1, Z2 are independent random variables taking values in the interval [0, 1].
By these identities, showing (4.24) is equivalent to showing

E
[
g(ρ, Z1)

]
E
[
g(ρ, Z2)

]
≥ E

[
g(ρ, Z1Z2)

]
E
[
h(ρ, Z1, Z2)

]
.

The proof is carried in two steps. We first claim that the following inequality is
satisfied:

g(ρ, z1)g(ρ, z2) ≥ g(ρ, z1z2)h(ρ, z1, z2), (4.25)

for any z1, z2 ∈ [0, 1] and ρ ≥ 0. From (4.25) and noting the independence of Z1

and Z2 we see that

E
[
g(ρ, Z1)

]
E
[
g(ρ, Z2)

]
= E

[
g(ρ, Z1)g(ρ, Z2)

]
≥ E

[
g(ρ, Z1Z2)h(ρ, Z1, Z2)

]
.

Lemma 4.14 in Appendix 4.A shows that the function g(ρ, z1z2) is non-increasing in
z1 and z2 separately for any ρ ≥ 0. Similarly, Lemma 4.15 in Appendix 4.A shows
that the function h(ρ, z1, z2) is also non-increasing in z1 and z2 separately for any
ρ ≥ 0. These monotonicity properties are useful as they imply, via Lemma 4.16 in
Appendix 4.A, that the random variables g(ρ, Z1Z2) and h(ρ, Z1, Z2) are positively
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correlated. As a result

E
[
g(ρ, Z1)

]
E
[
g(ρ, Z2)

]
≥ E

[
g(ρ, Z1Z2)h(ρ, Z1, Z2)

]
≥ E

[
g(ρ, Z1Z2)

]
E
[
h(ρ, Z1, Z2)

]
,

concluding the proof of the relation in (4.24).

Now, we prove the inequality claimed in (4.25). For that purpose, we first apply
the following changes of variables

t = arctanh z1, w = arctanh z2,

k = arctanh(z1z2), s =
1

1 + ρ
,

where s ∈ (0, 1] and t, w, k ∈ [0,∞). Using these, we obtain

g(ρ, z1) = g
(1− s

s
, tanh(t)

)
=

cosh(st)1/s

cosh(t)
, (4.26)

g(ρ, z2) = g
(1− s

s
, tanh(w)

)
=

cosh(sw)1/s

cosh(w)
, (4.27)

g(ρ, z1z2) = g
(1− s

s
, tanh(k)

)
=

cosh(sk)1/s

cosh(k)
, (4.28)

and

h(ρ, z1, z2) = h
(1− s

s
, tanh(t), tanh(w)

)
=

cosh(s(t+ w))1/s + cosh(s(t− w))1/s

2 cosh(t) cosh(w)
. (4.29)

We further define
a = t+ w, b = t− w,

so that t = (a+ b)/2, w = (a− b)/2, and a ≥ |b|. Then, the variable k is given by

k =
1

2
ln

(
cosh(a)

cosh(b)

)
,

and the expression in (4.28) becomes

g(ρ, z1z2) =

(
cosh(a)s + cosh(b)s

2

)1/s

cosh(a) + cosh(b)

2

. (4.30)

With (4.26) and (4.27) at hand, a bit of algebra reveals that the left hand side of
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(4.25) is given by (
cosh(sa) + cosh(sb)

2

)1/s

cosh(t) cosh(w)
.

Similarly, using equations (4.29) and (4.30), the right hand side of (4.25) is given by(
cosh(a)s + cosh(b)s

2

)1/s

cosh(a) + cosh(b)

2

× cosh(sa)1/s + cosh(sb)1/s

2 cosh(t) cosh(w)
.

Therefore, we see that the inequality (4.25) is equivalent to(
1 +

(
cosh(sb)

cosh(sa)

))1/s

1 +
cosh(sb)1/s

cosh(sa)1/s

≥

(
1 +

(
cosh(b)

cosh(a)

)s)1/s

1 +
cosh(b)

cosh(a)

.

Let u =

(
cosh(sb)

cosh(sa)

)1/s

and v =
cosh(b)

cosh(a)
. Then, by Lemma 4.14 in Appendix 4.A,

whenever a ≥ |b|, we have 1 ≥ u ≥ v ≥ 0 since

fs(b) =
cosh(s|b|)1/s

cosh(|b|)
≥ cosh(sa)1/s

cosh(a)
= fs(a).

As a result, we have reduced the inequality (4.25) to the following form:

Fs(u) ≥ Fs(v) when 1 ≥ u ≥ v ≥ 0,

where

Fs(u) =
(1 + us)1/s

1 + u
.

But, we know this is true by Lemma 4.13 in Appendix 4.A. Hence, inequality (4.25)
holds as claimed.

4.3 Extremal Channels ofE0 for the Polar Transform
In this section, we study the extremality of the BEC and the BSC for Gallager’s
reliability function E0 of binary input discrete memoryless channels evaluated under
the uniform input distribution from the aspect of channel polarization. The next
theorem shows that amongst all binary discrete memoryless channels of a given
E0(ρ) value, for a fixed ρ ≥ 0, the BEC and the BSC are extremal in the evolution
of E0 under the polar transform.
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Theorem 4.8 (Extremality Property). Given two B-DMCs W1 and W2, and given
any fixed value of ρ ≥ 0, we define two BSCs BSC1 and BSC2, and two BECs
BEC1 and BEC2 through the equalities

E0(ρ,W1) = E0(ρ,BEC1) = E0(ρ,BSC1), (4.31)

E0(ρ,W2) = E0(ρ,BEC2) = E0(ρ,BSC2). (4.32)

Then, for the W−
1,2 polar transformation

E0(ρ,BEC−1,2) ≤ E0(ρ,W−
1,2) ≤ E0(ρ,BSC−1,2) (4.33)

holds for any ρ ≥ 0. For the W+
1,2 polar transformation

E0(ρ,BSC+
1,2) ≤ E0(ρ,W+

1,2) ≤ E0(ρ,BEC+
1,2) (4.34)

holds for any ρ ∈ [0, 1] ∪ [2,∞], and

E0(ρ,BEC+
1,2) ≤ E0(ρ,W+

1,2) ≤ E0(ρ,BSC+
1,2) (4.35)

holds for any ρ ∈ [1, 2].

The difficulty in finding minimal and maximal values to the E0 parameters
obtained after applying the polar transform arises from the infinite size of the search
space of channels W1 and W2 of a given E0 value. The Lemmas 4.1 and 4.2 will be
used to simplify our task.

4.3.1 Proof of Theorem 4.8

The next two lemmas study the first and second order properties for two functions
related to the alternative representations of the E0 parameters of the channels W−

1,2

and W+
1,2 given in (4.15) and (4.17), respectively.

Lemma 4.9. For any z ∈ [0, 1] and ρ ≥ 0, the function Fz,ρ(t) : [2−ρ, 1] →
[g(ρ, z), 1] defined as

Fz,ρ(t) := g(ρ, zg−1(ρ, t)), (4.36)

where g−1(ρ, t) denotes the inverse of the function g with respect to its second
argument, is convex with respect to t.

Lemma 4.10. For any z ∈ [0, 1] and ρ ≥ 0, the function Hz,ρ(t) : [2−ρ, 1] →
[2−ρ, g(ρ, z)] defined as

Hz,ρ(t) := h(ρ, g−1(ρ, t), z) (4.37)

is concave with respect to t when ρ ∈ [0, 1] ∪ [2,∞], and convex when ρ ∈ [1, 2].
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The proof of Lemma 4.9 and Lemma 4.10 are carried out in Appendix 4.B and
Appendix 4.C, respectively. The convexity results stated in Lemma 4.9 and Lemma
4.10 shall constitute key steps in the subsequent proof of Theorem 4.8.

Proof. We start proving the result given in (4.33) for the minus transformation. This
proof relies on Lemma 4.1 and the convexity result stated in Lemma 4.9.

From the representation given in (2.12) and Lemma 4.1, we know that

exp2{−E0(ρ,W1)} = E[g(ρ, Z1)],

exp2{−E0(ρ,W2)} = E[g(ρ, Z2)],

exp2{−E0(ρ,W−
1,2)} = E[g(ρ, Z1Z2)],

where Z1 and Z2 are independent random variables taking values in [0, 1]. We also
know that for BSCs ZBSC1 = zBSC1 , ZBSC2 = zBSC2 . Hence,

exp2{−E0(ρ,BSC1)} = g(ρ, zBSC1),

exp2{−E0(ρ,BSC2)} = g(ρ, zBSC2),

exp2{−E0(ρ,BSC−1,2)} = g(ρ, zBSC1zBSC2).

By E0(ρ,W1) = E0(ρ,BSC1), E0(ρ,W2) = E0(ρ,BSC2), we have

E [g(ρ, Z1)] = g(ρ, zBSC1),

E [g(ρ, Z2)] = g(ρ, zBSC2).

Therefore, we obtain

exp2{−E0(ρ,W−
1,2)} = EZ1 [EZ2 [Fz1,ρ (g(ρ, Z2)) | Z1 = z1]]

≥ EZ1 [FZ1,ρ (EZ2 [g(ρ, Z2)])]

= EZ1 [FZ1,ρ (g(ρ, zBSC2))]

(1)
= EZ1

[
FzBSC2

,ρ (g(ρ, Z1))
]

≥ FzBSC2
,ρ (EZ1 [g(ρ, Z1)])

= FzBSC2
,ρ (g(ρ, zBSC1))

= exp2{−E0(ρ,BSC−1,2)},

where we used Jensen’s inequality twice, and where
(1)
= follows by the fact that

FZ1,ρ (g(ρ, zBSC2)) = FzBSC2
,ρ (g(ρ, Z1)) holds. This proves the upper bound in

(4.33).

Let ε1 and ε2 be the erasure probabilities of the channelsBEC1 andBEC2, respec-
tively. Then, we know that both ZBEC1 and ZBEC2 are {0, 1} valued, P (ZBEC1 =
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0) = ε1, and P (ZBEC2 = 0) = ε2. Therefore,

exp2{−E0(ρ,BEC1)} = ε1(1− 2−ρ) + 2−ρ, (4.38)

exp2{−E0(ρ,BEC2)} = ε2(1− 2−ρ) + 2−ρ.

Moreover, the channel BEC−1,2 is a BEC with erasure probability ε1 + ε2 − ε1ε2.
Hence we get

exp2{−E0(ρ,BEC−1,2)} = [ε1 + ε2 − ε1ε2] (1− 2−ρ) + 2−ρ.

By E0(ρ,W1) = E0(ρ,BEC1), E0(ρ,W2) = E0(ρ,BEC2), we have

E [g(ρ, Z1)] = E [g(ρ, ZBEC1)] = ε1(1− 2−ρ) + 2−ρ,

E [g(ρ, Z2)] = E [g(ρ, ZBEC2)] = ε2(1− 2−ρ) + 2−ρ.

Due to convexity, we also know the following inequality holds:

Fz,ρ(t) ≤ 1 +
g(ρ, z)− 1

2−ρ − 1
(t− 1),

for 2−ρ ≤ t ≤ 1. As a result,

exp2{−E0(ρ,W−
1,2)} = EZ1 [EZ2 [Fz1,ρ (g(ρ, Z2)) | Z1 = z1]]

≤ EZ1

[
1 +

g(ρ, Z1)− 1

2−ρ − 1
(EZ2 [g(ρ, Z2)]− 1)

]
= 1 +

EZ1 [g(ρ, Z1)]− 1

2−ρ − 1
(EZ2 [g(ρ, Z2)]− 1)

= 1 +
[ε1(1− 2−ρ) + 2−ρ − 1] [ε2(1− 2−ρ) + 2−ρ − 1]

2−ρ − 1

= 1− ε1ε2(1− 2−ρ) + (ε1 + ε2) (1− 2−ρ) + 2−ρ − 1

= [ε1 + ε2 − ε1ε2] (1− 2−ρ) + 2−ρ

= exp2{−E0(ρ,BEC−1,2)}.

This proves the lower bound in (4.33) and concludes the proof for the minus trans-
formation.

The proof of the theorem for the plus transformation can be completed following
steps similar to the minus case. The proof relies on Lemma 4.2 and the convexity
result stated in Lemma 4.10. Here, we briefly sketch the proof. By Lemma 4.2, we
have

E [h(ρ, Z1, Z2)] = exp2{−E0(ρ,W+
1,2)}.

Observe that the function h(ρ, z1, z2) defined in (4.18) is symmetric in the variables
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z1 and z2, i.e., h(ρ, z1, z2) = h(ρ, z2, z1). We define the random variables

A1 = g(ρ, Z1) and A2 = g(ρ, Z2).

Using the concavity of the function Hz,ρ(t) with respect to t for fixed values of
ρ ∈ [0, 1] ∪ [2,∞] and z ∈ [0, 1], we obtain the inequalities in (4.34)

exp2{−E0(ρ,W+
1,2)} = E

[
Hg−1(ρ,A2),ρ(A1)

]
≤ h(ρ, zBSC1 , zBSC2) = exp2{−E0(ρ,BSC+

1,2)},

exp2{−E0(ρ,W+
1.2)} = E

[
Hg−1(ρ,A2),ρ(A1)

]
≥ ε1ε2

(
1− 2−ρ

)
+ 2−ρ = exp2{−E0(ρ,BEC+

1,2)},

as the channel BEC+
1,2 is a BEC with erasure probability ε1ε2. Similarly, the con-

vexity of the function Hz,ρ(t) with respect to t for ρ ∈ [1, 2] leads to the reverse
inequalities in (4.35).

4.4 Discussion
In the following four subsections, we state a number of corollaries to the results of
the previous sections. The first is a restatement of Theorem 4.6 and a consequence
of Theorem 4.8 in the language of martingales. The second is an implication of
Theorem 4.6 on complexity, and the third a special case of Rényi chain rules we get
via 4.7. The final subsection discusses some special values of the parameter ρ.

4.4.1 Gain & Convergence Law for E0

In Theorem 4.6, we showed that the polar transform improves E0. This implies
that the process E0(ρ,Wn) associated to the channel polarization process Wn, for
n ≥ 0, is a submartingale. After a normalization by the value of ρ ≥ 0, one can
easily see that the process E0(ρ,Wn)/ρ is as well a submartingale and takes values
from the bounded interval [0, 1]. By general results on bounded martingales, the
process converges a.s., see for instance [27]. Now, applying the extremality results
of Theorem 4.8 reveals the convergence points of this process are the extremes of
the bounded interval.

Proposition 4.11 (Gain & Convergence Law). The process E0(ρ,Wn)/ρ, for any
ρ ≥ 0 and for n ≥ 0, is a bounded submartingale which converges a.s. to {0, 1}.

The formal proof for identifying the convergence points of the process can be
carried by bounding, for any ρ ≥ 0, the difference between the E0 parameters of
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the channel W+ and the channel W , and the one between the channel W and the
channel W− using the inequalities given in Theorem 4.8.

4.4.2 Improving the Reliability–Complexity Trade-off

Beside its usefulness as an argument in channel polarization related proofs, an inter-
esting interpretation of the inequality in Theorem 4.6 is given in [4]. Arıkan discusses
the concept of the reliability–complexity exponent under maximum likelihood decod-
ing of a code drawn from a random code ensemble. This concept was introduced in
[28] and in [29, Section 6.6]. He suggests the general method of channel combining
and splitting can be used to improve this trade-off. Here we explore this idea.

A maximum likelihood decoder for a randomly constructed code needs to compute
the likelihoods for all codewords, and this incurs a complexity of χ ' 2NR. At the
same time such a code has error probability Pe, avg ' 2−NEr(R,W ), where Er(R,W )

is the random coding exponent [5]. Consequently, the complexity χ and the error
probability Pe, avg are algebraically related, Pe, avg ' χ−Er(R,W )/R, and the quantity
Er(R,W )/R is defined as the ‘reliability–complexity exponent’.

For a given rate R and B-DMC W , consider the particular ρ value, say ρ∗, which
maximizes the random coding exponent [5, p. 139]

Er(R,W ) = max
ρ∈[0,1]

[E0(ρ,W )− ρR] .

For that particular ρ∗, we have

2Er(R,W ) = 2E0(ρ∗,W )− 2ρ∗R

≤ E0(ρ∗,W+) + E0(ρ∗,W−)− ρ∗2R.

Now, if the rate 2R is split into two parts R+ and R− proportional to E0(ρ∗,W+)

and E0(ρ∗,W−), respectively, i.e., they satisfy 2R = R+ +R− and

R+

E0(ρ∗,W+)
=

R−

E0(ρ∗,W−)
,

then the reliability–complexity trade-off Er(R,W )/R of random codes will satisfy

Er(R,W )

R
=
E0(ρ∗,W )

R
− ρ∗ ≤ E0(ρ∗,W−) + E0(ρ∗,W+)

2R
− ρ∗

=
E0(ρ∗,W−) + E0(ρ∗,W+)

R− +R+
− ρ∗

=
E0(ρ∗,W−)

R−
− ρ∗ ≤ Er(R

−,W−)

R−
,
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and similarly,
Er(R,W )

R
≤ Er(R

+,W+)

R+
.

Therefore, both of the synthesized channels will have a better reliability–complexity
exponent function than the original channel. In that respect, the inequality in Theorem
4.6 implies the particular polar transform combined with a successive cancellation
decoder does improve the reliability–complexity exponent of random codes.

4.4.3 Chain Rule for Rényi’s Entropies

If P is the uniform input distribution on the set F2, then Pα
tilt is also the uniform

distribution on F2. Therefore, E0(ρ,W )/ρ can be defined in terms of Rényi’s entropy
functions as:

E0(ρ,W )

ρ
= H 1

1+ρ
(X)−H 1

1+ρ
(X | Y ).

Moreover, we get

H 1
1+ρ

(X) =
1

ρ
log

(∑
x∈F2

P (x)
1

1+ρ

) 1
1+ρ

= log |F2| = log 2,

Using the definitions in (4.13) and (4.14), E0(ρ,W−
1,2) and E0(ρ,W+

1,2) can be
expressed by

E0(ρ,W−
1,2)

ρ
= log 2−H 1

1+ρ
(U1 | Y1Y2),

E0(ρ,W+
1,2)

ρ
= log 2−H 1

1+ρ
(U2 | Y1Y2U1),

where Y1 is the output of the channel W1 with input X1 = U1 ⊕ U2, and Y2 is the
output of the channel W2 with input X2 = U2. In addition,

E0(ρ,W1)

ρ
+
E0(ρ,W2)

ρ
= 2 log 2−H 1

1+ρ
(X1X2 | Y1Y2).

Since the mapping between (X1, X2) and (U1, U2) is one-to-one, we have

H 1
1+ρ

(X1X2 | Y1Y2) = H 1
1+ρ

(U1U2 | Y1Y2).

From these expressions, we deduce that the relationship between the E0 parame-
ters of the channels W1, W2, W−

1,2, and W+
1,2 derived in Theorem 4.7 implies a certain
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‘chain rule inequality’ holds for the polar transform, i.e.,

H 1
1+ρ

(U1U2 | Y1Y2) ≥ H 1
1+ρ

(U1 | Y1Y2) +H 1
1+ρ

(U2 | Y1Y2U1),

for ρ ≥ 0 whenever U1, U2 are i.i.d. uniform on F2. Equivalently, we can conclude
that whenever (i) (X1, Y1) and (X2, Y2) are independent, and (ii) X1 and X2 are
uniformly distributed on F2, then, with U1 = X1 ⊕X2 and U2 = X2,

Hα(U1U2|Y1Y2) ≥ Hα(U1|Y1Y2) +Hα(U2|Y1Y2U1),

for any α ≤ 1.

4.4.4 Special Cases

In Theorem 4.8, we showed that amongst all B-DMCsW1 andW2 of fixedE0(ρ,W1)

and E0(ρ,W2) values for a given value of ρ ≥ 0, the channel BEC−1,2 results in a
lower bound to the value of E0(ρ,W−

1,2) and the channel BSC−1,2 in an upper bound
to the value of E0(ρ,W−

1,2). A similar extremal property holds for the plus transfor-
mation except for the difference that the result breaks into two parts depending on the
value of the parameter ρ: While the channel BEC+

1,2 upper bounds and the channel
BSC+

1,2 lower bounds the value of E0(ρ,W+
1,2) when ρ ∈ [0, 1] ∪ [2,∞], these roles

are reversed when ρ ∈ [1, 2]. Using these results, we identify in this section some
special cases of the ρ values in order to recover known and discover new results.

Symmetric Capacity

We know that the symmetric capacity process In(W ), for n ≥ 0, is a bounded
martingale which converges a.s. to {0, 1}. Here, we show that Theorem 4.8 can be
used to identify these convergence points.

Corollary 4.12. Under the assumptions of Theorem 4.8 for W1 = W2 = W , we
have for ρ ∈ [0, 1] the following inequalities:

E0(ρ,BSC+)− E0(ρ,BSC−) ≤ E0(ρ,W+)− E0(ρ,W−)

≤ E0(ρ,BEC+)− E0(ρ,BEC−).

Corollary 4.12 shows that among channels W with a given value of E0(ρ,W ) for
a given ρ ∈ [0, 1], the BEC and the BSC are the most and the least polarizing under
Arıkan’s polar transformations in the sense that their polar transforms W+ and W−

have the largest and the smallest differences in their E0 values. Dividing all sides
of the inequality above by ρ and taking the limit as ρ→ 0, we recover via (2.4) the
extremality property stated in (4.7)
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Chapter 4. Polarization for E0

Note that the preservation property of the symmetric capacities holds regardless
of whether the combined channels are identical or not, as it is a consequence of the
chain rule for mutual information. Namely, the channels satisfy

I(W1) + I(W2) = I(W−
1,2) + I(W+

1,2).

We will also make this observation in Chapter 9 where we will extend the idea of
channel polarization over non-stationary B-DMCs.

Cutoff Rate, Bhatthacharyya Parameter

In this case, Theorem 4.8 implies the channels having their cutoff rates equal to
E0(1,W1) and E0(1,W2) satisfy

E0(1, BEC−1,2) ≤ E0(1,W−
1,2) ≤ E0(1, BSC−1,2),

E0(1, BSC+
1,2) = E0(1,W+

1,2) = E0(1, BEC+
1,2).

Hence, by (4.11), the extremalities for the Bhattacharyya parameter are also obtained.
Indeed, one can show that Z(W+

1,2) = Z(W1)Z(W2) holds. So, another result of [2,
Proposition 5] is recovered by letting W1 = W2 = W , i.e., Z(W+) = Z(W )2.

Parameter at ρ = 2

A previously unknown result is found by taking ρ = 2 in the theorem. As in the
case ρ = 1, we observe that the E0 parameters of the channels W+

1,2, BEC+
1,2, and

BSC+
1,2 are equal to each other. Moreover, if we define

Z(ρ,W ) :=
2ρ exp2{−E0(ρ,W )} − 1

2ρ − 1
, (4.39)

for ρ ≥ 0, then Z(2,W+
1,2) = Z(2,W1)Z(2,W2) holds by Theorem 4.8. To see this,

simply note that for a BEC BEC with erasure probability ε, we have by (4.38) the
relation Z(ρ,BEC) = ε, for any ρ ≥ 0. So, by letting W1 = W2 = W , we get
Z(2,W+) = Z(2,W )2.

As a last comment, we observe that the ρ = 1, 2 values share a common
property: One can recover the value of the parameter E0(ρ,W+

1,2) from the val-
ues of E0(ρ,W1) and E0(ρ,W2) when ρ = 1, 2, without necessarily knowing the
particular channels W1 and W2, by using the relation in (4.39) and the fact that
Z(ρ,W+

1,2) = Z(ρ,W1)Z(ρ,W2) holds for ρ = 1, 2.
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Appendix
In the first part of this appendix, 4 lemmas will be stated and proved: Lemmas 4.13,
4.14, 4.15, and 4.16. In the second part Lemma 4.9 will be proved, and in the final
part Lemma 4.10 will be proved.

4.A Lemmas 4.13, 4.14, 4.15, and 4.16

Lemma 4.13. For s ∈ (0, 1], define the function Fs : [0, 1]→ [1, 2
1−s
s ] as

Fs(x) :=
(1 + xs)

1
s

1 + x
.

Then, Fs is a non-decreasing function.

Proof. Taking the derivative of Fs(x) with respect to x, we have

∂

∂x
Fs(x) =

(1 + xs)
1
s
−1(xs − x)

x(1 + x)2
≥ 0,

since (xs − x) ≥ 0 for x ∈ [0, 1] and s ∈ (0, 1].

Lemma 4.14. For s ∈ (0, 1], define the function fs : [0,∞)→ [2
s−1
s , 1] as

fs(k) :=
cosh(ks)

1
s

cosh(k)
.

Then, fs is a non-increasing function. Moreover, this implies the function g(ρ, z)

defined in (2.13) is non-increasing in the variable z ∈ [0, 1] for any fixed ρ ≥ 0.

Proof. We can equivalently show that log(fs(k)) is non-increasing in k. Taking the
first derivative gives

∂

∂k

(
1

s
ln(cosh(ks))− ln(cosh(k))

)
= tanh(ks)− tanh(k) ≤ 0

as tanh(·) is increasing in its argument. To prove the second monotonicity relation,
we let k = arctanh z and s = 1

1+ρ
. Then,

g(ρ, z) = f 1
1+ρ

(arctanh z).

Since arctanh is a monotone increasing function, it follows that the function g(ρ, z)

is non-increasing in z.
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Lemma 4.15. The function h(ρ, z1, z2) : [0,∞)× [0, 1]× [0, 1]→ [2−ρ, 1] defined
in (4.18), is non-increasing in the variables z1 and z2 separately for any ρ ≥ 0.

Proof. By the symmetry of h with respect to z1, z2, i.e., h(ρ, z1, z2) = h(ρ, z2, z1),
it suffices to show the claim for z1 alone. In the expression below, we will suppress

ρ in all function arguments, and denote g′(u) =
∂

∂u
g(ρ, u). Taking the derivative of

h with respect to z1, we get

∂

∂z1

h(z1, z2) =
1

2
z2 g
( z1 + z2

1 + z1z2

)
+

1− z2
2

2(1 + z1z2)
g′
( z1 + z2

1 + z1z2

)
− 1

2
z2 g
( z1 − z2

1− z1z2

)
+

1− z2
2

2(1− z1z2)
g′
( z1 − z2

1− z1z2

)
=

1

2
z2

[
g

(
z1 + z2

1 + z1z2

)
− g

(
z1 − z2

1− z1z2

)]
+

1− z2
2

2(1 + z1z2)
g′
( z1 + z2

1 + z1z2

)
+

1− z2
2

2(1− z1z2)
g′
( z1 − z2

1− z1z2

)
.

The last two terms with g′(·) are negative by Lemma 4.14, so it suffices to show that

g

(
z1 + z2

1 + z1z2

)
≤ g

(
z1 − z2

1− z1z2

)
.

To that end, observe that, for any z1, z2 ∈ [0, 1] we have

z1 + z2

1 + z1z2

≥ |z1 − z2|
1− z1z2

,

and by Lemma 4.14 and the symmetry of g around z = 0, the inequality required
follows.

Lemma 4.16. Suppose f : X× Y → R and g : X× Y → R are two functions that
satisfy [

f(x, y)− f(x′, y)
][
g(x, y′)− g(x′, y′)

]
≥ 0,

and [
f(x, y)− f(x, y′)

][
g(x, y)− g(x, y′)

]
≥ 0,

for every x, x′, y, y′. Then, for any independent random variables X, Y the random
variables f(X, Y ) and g(X, Y ) are positively correlated.

Note that if X and Y are ordered sets and f and g are monotone (in the same
sense) in their arguments then they satisfy the requirements of the lemma.

Proof. Let (X ′, Y ′) be an independent copy of (X, Y ). By the first premise of the
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lemma [
f(X, Y )− f(X ′, Y )

][
g(X, Y ′)− g(X ′, Y ′)] ≥ 0.

Taking expectations, we get

E[f(X, Y )g(X, Y ′)] + E[f(X ′, Y )g(X ′, Y ′)]

≥ E[f(X, Y )g(X ′, Y ′)] + E[f(X ′, Y )g(X, Y ′)],

equivalently (as (X, Y, Y ′) ∼ (X ′, Y, Y ′) and (X, Y,X ′, Y ′) ∼ (X ′, Y,X, Y ′)),

E[f(X, Y )g(X, Y ′)] ≥ E[f(X, Y )]E[g(X, Y )]. (4.40)

By the second premise of the lemma[
f(X, Y )− f(X, Y ′)

][
g(X, Y )− g(X, Y ′)

]
≥ 0.

Taking expectations, we get

E[f(X, Y )g(X, Y )] + E[f(X, Y ′)g(X, Y ′)]

≥ E[f(X, Y )g(X, Y ′)] + E[f(X, Y ′)g(X, Y )],

which is equivalent to (as (X, Y ) ∼ (X, Y ′) and (X, Y, Y ′) ∼ (X, Y ′, Y ))

E[f(X, Y )g(X, Y )] ≥ E[f(X, Y )g(X, Y ′)]. (4.41)

Putting together (4.40) and (4.41) concludes the proof.

4.B Proof of Lemma 4.9

Proof. We prove that the function Fz,ρ(t) = g(ρ, zg−1(ρ, t)) defined in (4.36) is
convex with respect to the variable t for fixed values of ρ ≥ 0 and z ∈ [0, 1]. Taking
the first derivative with respect to t, we obtain

∂Fz,ρ(t)

∂t
=

∂

∂t
g(ρ, zg−1(ρ, t)) =

g′(ρ, zg−1(ρ1, t))

g′(ρ1, g−1(ρ1, t))
z.

We define u = g−1(ρ, t). As, by Lemma 2.2, g(ρ, u) is a non-increasing function in
u ∈ [0, 1] for ρ ≥ 0, so is g−1(ρ, t) in t. So, we can check the convexity of Fz,ρ(t)
with respect to t, from the monotonicity with respect to u of the following expression:

z
g′(ρ, zu)

g′(ρ, u)
. (4.42)

77



Appendix

To simplify notation, we use

λ(u) :=
1− u
1 + u

,

α(ρ, u) := (1 + λ(u)
1

1+ρ )ρ ≥ 0,

β(ρ, u) := (1− λ(u)
−ρ
1+ρ ) ≤ 0.

Then, by equation (2.26), we have

∂g(ρ, u)

∂u
=

(
1

2

)1+ρ

α(ρ, u)β(ρ, u),

∂g(ρ, zu)

∂u
=

(
1

2

)1+ρ

zα(ρ, zu)β(ρ, zu),

and (4.42) is given by

z
g′(ρ2, zu)

g′(ρ1, u)
= z

α(ρ, zu)β(ρ, zu)

α(ρ, u)β(ρ, u)
. (4.43)

Now taking the derivative of (4.43) with respect to u, we get

∂

∂u

(
z
α(ρ, zu)β(ρ, zu)

α(ρ, u)β(ρ, u)

)
= z

α(ρ, zu)β(ρ, zu)

α(ρ, u)β(ρ, u)︸ ︷︷ ︸
≥0

×

(
∂α(ρ, zu)/∂u

α(ρ, zu)
+
∂β(ρ, zu)/∂u

β(ρ, zu)
− ∂α(ρ, u)/∂u

α(ρ, u)
− ∂β(ρ, u)/∂u

β(ρ, u)

)
. (4.44)

We can see that the sign of the expression inside the parenthesis in (4.44) will
determine the monotonicity in u of the expression in (4.43). At this point, we note
that

∂α(ρ, u)/∂u

α(ρ, u)
+
∂β(ρ, u)/∂u

β(ρ, u)
=

(
∂α(ρ, zu)/∂u

α(ρ, zu)
+
∂β(ρ, zu)/∂u

β(ρ, zu)

)∣∣∣∣∣
z=1

. (4.45)

Moreover, we claim that the expression inside the parenthesis in the right hand
side of (4.45) is non-decreasing in z ∈ [0, 1]. As a consequence, the expression in
(4.43) is non-increasing in u ∈ [0, 1], which implies Fz,ρ(t) is a concave function in
u = g−1(ρ, t). Since u is non-increasing in t, we have

∂2Fz,ρ(t)

∂t2
=

∂

∂u

(
z
g′(ρ2, zu)

g′(ρ1, u)

)
︸ ︷︷ ︸

≤0

∂u

∂t︸︷︷︸
≤0

≥ 0.

This proves that Fz,ρ(t) is a convex function in t.
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In the rest of the appendix, we prove our claim that the expression inside the
parenthesis in the right hand side of (4.45) is non-decreasing in z. We have,

∂α(ρ, zu)

∂u
=

ρ

1 + ρ
zλ′(zu)λ(zu)

−ρ
1+ρ (1 + λ(zu)

1
1+ρ )ρ−1, (4.46)

∂β(ρ, zu)

∂u
=

ρ

1 + ρ
zλ′(zu)λ(zu)

−ρ
1+ρ
−1, (4.47)

where λ′(u) =
∂λ(u)

∂u
=

−2

(1 + u)2
. Hence,

∂α(ρ, zu)/∂u

α(ρ, zu)
+
∂β(ρ, zu)/∂u

β(ρ, zu)

=
ρ

1 + ρ
λ(zu)

−ρ
1+ρ
−1zλ′(zu)

(
λ(zu)

1 + λ(zu)
1

1+ρ

+
1

1− λ(zu)
−ρ
1+ρ

)

=
ρ

1 + ρ
λ(zu)

−ρ
1+ρ
−1zλ′(zu)

(
λ(zu)− λ(zu)

1
1+ρ + 1 + λ(zu)

1
1+ρ

(1 + λ(zu)
1

1+ρ )(1− λ(zu)
−ρ
1+ρ )

)
=

ρ

1 + ρ
λ(zu)

−ρ
1+ρ
−1zλ′(zu)(1 + λ(zu))(1 + λ(zu)

1
1+ρ )−1(1− λ(zu)

−ρ
1+ρ )−1

=
ρ

1 + ρ
zλ′(zu)(1 + λ(zu)−1)(1 + λ(zu)

1
1+ρ )−1(λ(zu)

ρ
1+ρ − 1)−1

=
ρ

1 + ρ

−4z

(1 + zu)2(1− zu)

(
1 +

(
1− zu
1 + zu

) 1
1+ρ

)−1

×(
−1 +

(
1− zu
1 + zu

) ρ
1+ρ

)−1

.

By re-arranging, we get

∂α(ρ, zu)/∂u

α(ρ, zu)
+
∂β(ρ, zu)/∂u

β(ρ, zu)

=
4ρ

1 + ρ

1− z2u2

z

(
(1 + zu)

ρ
1+ρ − (1− zu)

ρ
1+ρ

)
︸ ︷︷ ︸

Part 2

×

(
(1 + zu)

1
1+ρ + (1− zu)

1
1+ρ

)
︸ ︷︷ ︸

Part 1


−1

.

We will consider the expressions labeled as Part 1 and Part 2 separately. Note that
both are positive valued. Moreover, we will show that both are non-increasing in
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z ∈ [0, 1]. Then, this will prove our claim as

∂

∂z

(
(1− z2u2)

z

(
(1 + zu)

1
1+ρ + (1− zu)

1
1+ρ

)
×

(
(1 + uz)

ρ
1+ρ − (1− uz)

ρ
1+ρ

))
≤ 0

implies
∂

∂z

(
∂α(ρ, zu)/∂u

α(ρ, zu)
+
∂β(ρ, zu)/∂u

β(ρ, zu)

)
≥ 0,

for ρ ≥ 0.

For Part 2, we have

∂

∂z

(
(1− u2z2)

z

(
(1 + uz)

ρ
1+ρ − (1− uz)

ρ
1+ρ

))

=
1

z2

ρuz (1− u2z2)
(

(1 + uz)
ρ

1+ρ
−1 + (1− uz)

ρ
1+ρ
−1
)

1 + ρ

+
1

z2

(
1 + u2z2

) (
− (1 + uz)

ρ
1+ρ + (1− uz)

ρ
1+ρ

)
=

1

z2

(
(1 + uz)

ρ
1+ρ

(
ρ

1 + ρ
uz (1− uz)− (1 + u2z2)

)

+ (1− uz)
ρ

1+ρ

(
ρ

1 + ρ
uz (1 + uz) + (1 + u2z2)

))
.

Letting r = ρ
1+ρ
∈ [0, 1) and x = uz ∈ [0, 1], Part 2 equals

=
1

z2

(
− (1 + x)r

(
(r + 1)x2 − rx+ 1

)
+ (1− x)r

(
(r + 1)x2 + rx+ 1

))
=

1

z2
(−f1(x, r) + f2(x, r)) ,

where

f1(x, r) := (1 + x)r
(
(r + 1)x2 − rx+ 1

)
,

f2(x, r) := (1− x)r
(
(r + 1)x2 + rx+ 1

)
.

We will show that f1(x, r) ≥ f2(x, r) holds for x ∈ [0, 1], and for r ∈ [0, 1).

Since f1(x, r), f2(x, r) ≥ 0, this is equivalent to showing that ln
f1(x, r)

f2(x, r)
≥ 0 holds.
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We have

ln
f1(x, r)

f2(x, r)
= r ln

1 + x

1− x
+ ln

(
(r + 1)x2 − rx+ 1

)
− ln

(
(r + 1)x2 + rx+ 1

)
.

We immediately observe that the above sum equals to 0 when r = 0. Now, we will
show that

∂

∂r
ln
f1(x, r)

f2(x, r)
≥ 0.

Hence, this will prove our claim that f1(x, r) ≥ f2(x, r) holds.

Taking the first derivative with respect to r, we have

∂

∂r
ln
f1(x, r)

f2(x, r)
= ln

1 + x

1− x
− 2x (1 + x2)

(1 + (r + 1)x2)2 − (rx)2 .

So, we will be done if

ln
1 + x

1− x
≥ 2x

(
1 + x2

)
max
r∈[0,1)

1

(1 + (r + 1)x2)2 − (rx)2 .

One can easily check that the expression in the denominator (1 + (r + 1)x2)
2−(rx)2

is non-decreasing in r ∈ [0, 1), hence the reciprocal is non-increasing in r. As a
result, the maximum is attained at r = 0. Therefore, we only have to prove that

ln
1 + x

1− x
≥ 2x (1 + x2)

(1 + x2)2 =
2x

(1 + x2)

holds. But, we have

ln
1 + x

1− x
= 2x

(
1 +

1

3
x2 +

1

5
x4 +

1

7
x6 + . . .

)
≥ 2x ≥ 2x

(1 + x2)
.

So, −f1(x, r) + f2(x, r) ≤ 0 holds for r ∈ [0, 1) and x ∈ [0, 1]. Consequently, Part
2 is decreasing in z. Now, Part 1 is also decreasing in z as

∂

∂z

(
(1 + zu)

1
1+ρ + (1− zu)

1
1+ρ

)
=
u
(

(1 + uz)
−ρ
1+ρ − (1− uz)

−ρ
1+ρ

)
1 + ρ

≤ 0.

This proves our claim that the right hand side of (4.45) is non-decreasing in z and
concludes the proof.
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4.C Proof of Lemma 4.10

Proof. We prove that the function Hz,ρ(t) = h(ρ, g−1(ρ, t), z) defined in (4.37) is
concave with respect to the variable t when ρ ∈ [0, 1]∪ [2,∞], and convex otherwise
when ρ ∈ [1, 2], for any fixed z ∈ [0, 1].

Taking the first derivative with respect to t, we get

∂

∂ t
Hz,ρ(t) =

h′(ρ, g−1(ρ, t), z)

g′(ρ, g−1(ρ, t))
.

As we did in Appendix B, we define u = g−1(ρ, t). Since g(ρ, u) is a non-increasing
function in u by Lemma 2.2, so is g−1(ρ, t) in t. Hence we can check the concavity
of Hz,ρ(t) with respect to the variable t, by verifying that h′(ρ, u, z)/g′(ρ, u) is
non-decreasing in u. So, we check that

∂

∂u

(
h′(ρ, u, z)

g′(ρ, u)

)
=
h′′(ρ, u, z)g′(ρ, u)− h′(ρ, u, z)g′′(ρ, u)

g′(ρ, u)2
≥ 0.

Since the denominator is always positive, we only need to show that

h′′(ρ, u, z)g′(ρ, u)− h′(ρ, u, z)g′′(ρ, u) ≥ 0.

Moreover, we observe that h(ρ, u, 0) = g(ρ, u). So, we can equivalently show that
the following relation holds:

h′′(ρ, u, z)

h′(ρ, u, z)
≥ h′′(ρ, u, 0)

h′(ρ, u, 0)
. (4.48)

We first apply the transformations

u = tanh(k) z = tanh(w)

where k, w ∈ [0,∞). For shorthand notation, let

h̃(ρ, k, w) := h(ρ, tanh(k), tanh(w)).

Using these, we obtain

h̃(ρ, k, w) =
cosh

(
1

1+ρ
(k + w)

)1+ρ

+ cosh
(

1
1+ρ

(k − w)
)1+ρ

2 cosh(k) cosh(w)
.
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Then, we get

∂h̃(ρ, k, w)

∂k2

∂h̃(ρ, k, w)

∂k

= −2 tanh(k) +
ρ cosh(k)

1 + ρ
×


cosh

(
1

1+ρ
(k + w)

)ρ−1

+ cosh
(

1
1+ρ

(k − w)
)ρ−1

cosh
(

1
1+ρ

(k + w)
)ρ

sinh
(

ρ
1+ρ

k − 1
1+ρ

w
)

+ cosh
(

1
1+ρ

(k − w)
)ρ

sinh
(

ρ
1+ρ

k + 1
1+ρ

w
)


.

(4.49)

We note that the additive term−2 tanh(k), and the non-negative multiplicative factor
ρ

1+ρ
cosh(k) do not depend on w. Hence, we only need to show that the term inside

the parenthesis is smallest when evaluated at w = 0. For this purpose, we define the
transformations

a =
k + w

1 + ρ
, b =

k − w
1 + ρ

such that k = (1 + ρ)
a+ b

2
, and w = (1 + ρ)

a− b
2

. The condition k, w ≥ 0 is

equivalent to a ≥ |b|. Using these transformations, the reciprocal of the term inside
parenthesis in equation (4.49) becomes

R(ρ, a, b) :=
cosh(b)1−ρ cosh(a) sinh

(
a+b

2
ρ− a−b

2

)
cosh(a)1−ρ + cosh(b)1−ρ

+
cosh(a)1−ρ cosh(b) sinh

(
a+b

2
ρ+ a−b

2

)
cosh(a)1−ρ + cosh(b)1−ρ .

Therefore, the inequality given in (4.48) will hold iff

R(ρ, a, b) ≤ R

(
ρ,
a+ b

2
,
a+ b

2

)
= cosh

(
a+ b

2

)
sinh

(
a+ b

2
ρ

)
. (4.50)

We define

f(ρ, a, b) := cosh

(
a+ b

2

)
sinh

(
ρ
a+ b

2

)(
cosh(a)1−ρ + cosh(b)1−ρ)

− cosh(a)1−ρ cosh(b) sinh

(
ρ
a+ b

2
+
a− b

2

)
− cosh(b)1−ρ cosh(a) sinh

(
ρ
a+ b

2
− a− b

2

)
.

We note that f(ρ, a, b) ≥ 0 is equivalent to the inequality in (4.50), which in turn is
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equivalent to the inequality in (4.48).

After simplifications, the function reduces to:

f(ρ, a, b) = sinh

(
a− b

2

)
J(ρ, a, b),

where

J(ρ, a, b) := cosh(b)1−ρ cosh

(
a− ρa+ b

2

)
− cosh(a)1−ρ cosh

(
b− ρa+ b

2

)
.

Since for a ≥ |b|, we have sinh
(
a−b

2

)
≥ 0, we only need to show that J(ρ, a, b) ≥ 0.

We introduce the variables κ and ω using a = κ + ω, and b = κ − ω where
κ, ω ∈ [0,∞). Then, we get

J(ρ, κ+ ω, κ− ω) = cosh(κ− ω)1−ρ cosh(κ− ρκ+ ω)

− cosh(κ− ρκ− ω) cosh(κ+ ω)1−ρ.

We note that J(ρ, κ + ω, κ − ω)
∣∣∣
κ=0

= 0. Moreover, J(ρ, κ + ω, κ − ω) is non-
decreasing in the variable κ as

∂

∂κ
J(ρ, κ+ ω, κ− ω)

= (1− ρ)
(
cosh(κ− ω)−ρ − cosh(κ+ ω)−ρ

)
sinh((2− ρ)κ) ≥ 0,

where the positivity follows from the fact that |κ−ω| ≤ |κ+ω|, thus cosh(κ−ω) ≤
cosh(κ+ω) and cosh(κ−ω)−ρ ≥ cosh(κ+ω)−ρ, and from the fact that sinh(x) ≥ 0

holds for ∀x ≥ 0. As a result, J(ρ, κ + ω, κ − ω) ≥ 0 holds as required. This
concludes the proof.
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Chapter 5

Polarization for the Expected
Distance |W (0|Y )−W (1|Y )|

It is difficult not to notice that the channel parameter ∆W (y) defined in (2.15) and its
absolute value are at the heart of the many proofs we carried in the previous chapters.
By identifying a B-DMC W : F2 → Y with the random variable ∆W (Y ), we were
able to solve complex optimization problems involving a family of information
measures by employing only elementary analysis techniques. In the following
chapters, we will continue to use this channel parameter as a driving force in a
number of proofs in order to bring different perspectives to the theory of polar coding
and extensions to it.

Note that, with Y distributed according to qW (y) given by (2.14), the random
variable |W (0|Y )−W (1|Y )| in the chapter’s title does nothing other than expressing
∆W (Y ) in an alternative way using the posterior probabilities of the channel’s inputs
given its output. Its expected value, i.e., E[|∆W (Y )|] evaluated under the distribution
qW (y), is thus the variational distance between the distributions W (y|0) and W (y|1)

over y ∈ Y. Let us denote this expectation by T (W ) and explain why we are
interested in the evolution of this channel parameter under the polar transform.

We start by relating T (W ) to the maximum likelihood decoding error probability
Pe, ML(W ) of a single bit transmission over the channel W . For shorthand notation,
we define for the likelihood ratio LW (Y ) random variable the following probabilities:

PqW [LW  1] := PqW [LW > 1] +
1

2
PqW [LW = 1] ,

PqW [LW � 1] := PqW [LW < 1] +
1

2
PqW [LW = 1] ,

such that PqW [LW  1]+PqW [LW � 1] = 1. The subscript indicates the distribution
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Chapter 5. Polarization for the Expected Distance |W (0|Y )−W (1|Y )|

with respect to which the sets are weighted. Then, we write

T (W ) := E[|∆W |] =
1

2

∑
y∈Y

|W (y|0)−W (y|1)|

=
1

2

(
PW (.|0) [LW � 1]− PW (.|0) [LW  1]

− PW (.|1) [LW � 1] + PW (.|1) [LW  1]
)

=
1

2

(
1− 2PW (.|0) [LW  1] + 1− 2PW (.|1) [LW � 1]

)
= 1− 2Pe, ML(W ). (5.1)

Suppose now that the channel is almost perfect with I(W ) > 1− γ, where γ > 0

is small. Noting that I(W ) can be written as

I(W ) =
∑
y∈Y

1

2
W (y|0) log(1 + ∆W (y)) +

1

2
W (y|1) log(1−∆W (y))

= 1− E
[
h2

(
1 + ∆W

2

)]
,

it follows from the inequality h2((1 + ∆)/2) ≥ 1 − |∆| that I(W ) ≤ T (W ).
So, we have Pe, ML(W ) < γ when I(W ) > 1 − γ. As pointed out before in the
introduction of this thesis, transmitting data uncoded over the channel does ensure
reliable communication in this situation,.

As usual, we define the processes Tn(W ) := T (Wn) and Pe, ML(Wn) associated
to the channel polarization process. The second process tracks the error probability
of the likelihood ratio based decision rule of the synthetic channels. In this chapter,
we investigate, starting with a symmetric B-DMC, the evolution and the convergence
properties of Tn(W ), Pe, ML(Wn), and various other random processes related to the
likelihood ratios of the synthetic channels.

What’s Coming, Doc?
The first result we state will be Proposition 5.1 which encompasses in its statement
the polarization, loss, and extremality properties of the polar transform for the process
Tn(W ). Subsequently, we will show in Proposition 5.2 that, for symmetric B-DMCs,
Tn(W ) and the considered probability processes are bounded sub/super martingales
converging to the extremes of their bounded intervals. In particular, we will draw the
conclusion that the decision rule using the likelihood ratios of the synthetic channels
leads to a bounded submartingale decision error process converging to the extremes
{0, 0.5}, independent of the transmitted input sequence (due to symmetry). Then,
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5.1. Properties of the Polar Transform for the Likelihood Ratios

we will apply this knowledge to quickly revisit the theory of channel polarization for
symmetric B-DMCs. In the final section, we will cast suspicion upon the audience
preparing them for the act of Chapter 7: The Mismatched Capacity of Polar Codes,
with the mismatched polar successive cancellation decoder as the leading actor.

As a side note, the extremality of the BEC given in Proposition 5.1 will be later
used in Theorem 6.15, where we show that the information sets of symmetric B-
DMCs can be squeezed between the information sets of non-trivial BECs. Some of
the derivations will also help us in Appendix 8.C when dealing with an approximation
to the computations of the likelihood ratios of the synthetic channels.

5.1 Properties of the Polar Transform for the Likeli-
hood Ratios

Recall that in Chapter 4 we defined the random sequence B1, . . . , Bn which is drawn
i.i.d. according to a Bernoulli distribution with probabilities equal to 1/2. The
process Tn(W ) can be described by the following recursion

Tn+1 :=

{
T−n , if Bn+1 = 1

T+
n , if Bn+1 = 0

,

where T−n := T (W−
n ) and T+

n := T (W+
n ). The main results of this chapter are

reported in the following two propositions. Their proofs are given in Subsection
5.1.3.

Proposition 5.1 (Polarization, Loss, and Extremality Properties). Let W be a sym-
metric B-DMC. Then,

T−n = T 2
n ,

T+
n ∈

[
Tn, 2Tn − T 2

n

]
.

Moreover, amongst all B-DMCs of the same variational distance T0 = T (W ), the
BEC is an extremal channel in the evolution of Tn.

Proposition 5.2 (Gain/Loss & Convergence Laws). For a symmetric B-DMC W ,

(i) The process Tn is a bounded supermartingale in the interval [0, 1] and con-
verges a.s. to {0, 1}.

(ii) The process Pe, ML(Wn) is a bounded submartingale in the interval [0, 0.5] and
converges a.s. to {0, 0.5}.

(iii) The process PqWn (LWn = 1) is a bounded submartingale in the interval [0, 1]

and converges a.s. to {0, 1}.
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Chapter 5. Polarization for the Expected Distance |W (0|Y )−W (1|Y )|

To prove these results, we first review the likelihood ratio recursion of the polar
transform and study the one-step properties of this recursion.

5.1.1 Likelihood Ratio Recursion of the Polar Transform

For each n ≥ 0, the likelihood ratios of theN = 2n channelsW (i)
N : F2 → YN×Fi−1

2 ,
for i = 1, . . . , N , are denoted as L

W
(i)
N

(yN1 , u
i−1
1 ). Recall that the polar successive

cancellation decoder decodes the received output in N stages. The decoder sets the
estimate ûi to its known value on the noisy synthetic channels and uses the decision
rule described in (1.8) otherwise.

For a symmetric B-DMC, [2, Corollary 1] shows that the decision error probability
of the genie-aided polar decoder is independent of the transmitted input sequence.
Hence the analysis of the error probability process and the other likelihood ratio
probability processes can be carried by assuming that the all zeros sequence is sent
through the channel. For simplicity, we let L(i)

N (yN1 ) := L
W

(i)
N

(yN1 , 0
i−1
1 ). Using

(1.10) and (1.11), these likelihood ratios can be computed in a recursive fashion as
follows:

L
(2i−1)
2N (y2N

1 ) =
L

(i)
N (yN1 ) + L

(i)
N (y2N

N+1)

1 + L
(i)
N (yN1 )L

(i)
N (y2N

N+1)
,

L
(2i)
2N (y2N

1 ) = L
(i)
N (yN1 )L

(i)
N (y2N

N+1),

for all i = 1, . . . , N = 2n. Upon these observations, for symmetric B-DMCs, it will
be sufficient for the proofs to focus on the following likelihood ratio process:

Ln+1(Y 2N
1 ) :=

{
L−n (Y 2N

1 ), if Bn+1 = 1

L+
n (Y 2N

1 ), if Bn+1 = 0
, (5.2)

where

L−n (Y 2N
1 ) =

Ln(Y N
1 ) + Ln(Y 2N

N+1)

1 + Ln(Y N
1 )Ln(Y 2N

N+1)
,

L+
n (Y 2N

1 ) = Ln(Y N
1 )Ln(Y 2N

N+1).

Note that by construction Y N
1 and Y 2N

N+1 are i.i.d. random variables observed at the
output of the channel WN(.|0N1 ).

5.1.2 One-Step Properties of the Recursion

The next two lemmas introduce useful expressions for the quantities of interest. Their
proofs are given in Appendix 5.A.
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5.1. Properties of the Polar Transform for the Likelihood Ratios

Lemma 5.3. Let L1 and L2 be independent random variables. Then,

P
[
L1 + L2

1 + L1L2

� 1

]
= P [L1 � 1]P [L2 � 1] + P [L1  1]P [L2  1] , (5.3)

P
[
L1 + L2

1 + L1L2

 1

]
= P [L1 � 1]P [L2  1] + P [L1  1]P [L2 � 1]

= P [L1  1] + P [L2  1]− 2P [L1  1]P [L2  1] , (5.4)

P
[
L1 + L2

1 + L1L2

= 1

]
= P [L1 = 1] + P [L2 = 1]− P [L1 = 1]P [L2 = 1] . (5.5)

Lemma 5.4. LetL1 andL2 be independent random variables satisfying the following
condition:

P [Li = `] =
1

`
P
[
Li =

1

`

]
, ∀`,∀i = 1, 2.

Then,

P [L1L2 � 1] = P [L1 � 1]P [L2 � 1] +
∑

`11,`21

P [L1 = `1]P [L2 = `2] max{`1, `2},

(5.6)
where we abused the notation to define (note the  sign in the summation index)∑
`11,`21

P [L = `1]P [L = `2] max{`1, `2}

:=
∑

`1>1,`2>1

P [L = `1]P [L = `2] max{`1, `2}+
1

4
P [L1 = 1]P [L2 = 1]

+
1

2
P [L1 = 1]P [L2 < 1] +

1

2
P [L1 < 1]P [L2 = 1] ,

and

P [L1L2  1] = P [L1  1]P [L2  1] +
∑

`11,`21

P [L1 = `1]P [L2 = `2] min{`1, `2},

(5.7)
where∑
`11,`21

P [L = `1]P [L = `2] min{`1, `2}

:=
∑

`1>1,`2>1

P [L = `1]P [L = `2] min{`1, `2}+
1

4
P [L1 = 1]P [L2 = 1]

+
1

2
P [L1 = 1]P [L2 > 1] +

1

2
P [L1 > 1]P [L2 = 1] .
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Using the above lemmas, we will derive the likelihood ratio versions of the
polarization and conservation properties of the polar transform.

Proposition 5.5 (Polarization Property). Let L1 and L2 be as defined in Lemma
5.4. Without loss of generality, suppose P [L1  1] ≤ P [L2  1]. Given that
P [Li  1] ≤ P [Li � 1], for i = 1, 2, the recursive likelihood ratio transformation
satisfies

P [L1L2  1] ≤ P [L1  1] ≤ P [L2  1] ≤ P
[
L1 + L2

1 + L1L2

 1

]
,

P
[
L1 + L2

1 + L1L2

� 1

]
≤ P [L2 � 1] ≤ P [L1 � 1] ≤ P [L1L2 � 1] .

Proof. We first prove the inequalities for the minus transform. By assumption
P [Li  1] ∈ [0, 0.5], for i = 1, 2. So, using the expression of Lemma 5.3, we get

P
[
L1 + L2

1 + L1L2

 1

]
= P [L1  1] + P [L2  1]− 2P [L1  1]P [L2  1]

≥ max{P [L2  1] ,P [L1  1]}.

(For f(a, b) = a + b − 2ab with a, b ∈ [0, 0.5] such that a ≤ b, we have f(a, b) ≥
max{a, b} as the function is increasing in a and f(0, b) = b). This also implies

P
[
L1 + L2

1 + L1L2

� 1

]
≤ min{P [L2 � 1] ,P [L1 � 1]}.

Next, we prove the inequalities for the plus transform. Using Lemma 5.4, we have

P [L1L2  1]

=P [L1  1]P [L2  1] +
∑

`11,`21

P [L1 = `1]P [L2 = `2] min{`1, `2}

≤P [L1 � 1]P [L2  1] +
∑

`11,`21

P [L1 = `1]P [L2 = `2] `2

=P [L1  1]P [L2  1] + P [L1  1]P [L2 � 1]

=P [L1  1] ≤ P [L2  1] .

This also implies

P [L1L2 � 1] ≥ max{P [L2 � 1] ,P [L1 � 1]},

and concludes the proof.
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5.1. Properties of the Polar Transform for the Likelihood Ratios

Proposition 5.6 (Gain/Loss Properties). Let L1 and L2 be as defined in Lemma 5.4.
Then, the following set of inequalities hold:

P
[
L1 + L2

1 + L1L2

 1

]
+ P [L1L2  1] ≥ P [L1  1] + P [L2  1] , (5.8)

P
[
L1 + L2

1 + L1L2

� 1

]
+ P [L1L2 � 1] ≤ P [L1 � 1] + P [L2 � 1] , (5.9)

P
[
L1 + L2

1 + L1L2

= 1

]
+ P [L1L2 = 1] ≥ P [L1 = 1] + P [L2 = 1] . (5.10)

Hence, we also have

P
[
L1 + L2

1 + L1L2

< 1

]
+ P [L1L2 < 1] ≤ P [L1 < 1] + P [L2 < 1] ,

P
[
L1 + L2

1 + L1L2

≥ 1

]
+ P [L1L2 ≥ 1] ≥ P [L1 ≥ 1] + P [L2 ≥ 1] .

Proof. We start by proving the inequality in (5.8). Using the expressions derived in
Lemmas 5.3 and 5.4, we get

P
[
L1 + L2

1 + L1L2

 1

]
+ P [L1L2  1]

=P [L1  1] + P [L2  1]− 2P [L1  1]P [L2  1]

+ P [L1  1]P [L2  1] +
∑

`11,`21

P [L1 = `1]P [L2 = `2] min{`1, `2}

=P [L1  1] + P [L2  1]− P [L1  1]P [L2  1]

+
∑

`11,`21

P [L1 = `1]P [L2 = `2] min{`1, `2}

≥P [L1  1] + P [L2  1]− 2P [L1  1]P [L2  1] ,

where the inequality follows from∑
`11,`21

P [L1 = `1]P [L2 = `2] min{`1, `2} ≥ P [L1  1]P [L2  1] . (5.11)

This also proves (5.9) in view of the relation P [L � 1] = 1− P [L  1]. Finally, to
prove (5.10), we write

P
[
L1 + L2

1 + L1L2

= 1

]
+ P [L1L2 = 1]

≥ P [L1 = 1] + P [L2 = 1]− P [L1 = 1]P [L2 = 1] + P [L1 = 1]P [L2 = 1] ,

where we used Lemmas 5.3, 5.4, and P [L1L2 = 1] ≥ P [L1 = 1]P [L2 = 1].

91



Chapter 5. Polarization for the Expected Distance |W (0|Y )−W (1|Y )|

The final proposition of this subsection shows that the condition in the hypothesis
of the Polarization Property Lemma 5.5 is preserved under the polar transform.

Proposition 5.7. Suppose that P [Li  1] ≤ P [Li � 1], for i = 1, 2. Then, the polar
transform preserves this inequality relation for the likelihood ratios, i.e,

P
[
L1 + L2

1 + L1L2

 1

]
≤ P

[
L1 + L2

1 + L1L2

� 1

]
and P [L1L2  1] ≤ P [L1L2 � 1] .

Proof. From Lemma 5.3, we get

P
[
L1 + L2

1 + L1L2

� 1

]
− P

[
L1 + L2

1 + L1L2

 1

]
= (P [L1 � 1]− P [L1  1]) (P [L2 � 1]− P [L2  1]) ≥ 0 (5.12)

where the non-negativity follows by the hypothesis of the proposition. The claim for
the plus transform can be obtained straightforwardly by inspecting (5.6) and (5.7)
derived in Lemma (5.4).

5.1.3 Proofs of Propositions 5.1 and 5.2

Before giving the proofs, we introduce a property of symmetric channels that will be
used. If W is a symmetric B-DMC, then by using W (y|0) = W (y|1)/LW (y), one
can derive the following property:

PW (y|0) [LW = `] =
1

`
PW (y|0)

[
LW =

1

`

]
. (5.13)

Moreover, we note that for a symmetric B-DMC W , Tn(W ) reduces to

Tn(W ) = PWn(.|0) [LWn � 1]− PWn(.|0) [LWn  1] ,

For simplicity, we drop the subscripts to denote: Tn = P [Ln � 1] − P [Ln  1].
Similarly, P [Ln  1] := Pe, ML(Wn) and P [Ln = 1] := PqWn [LWn = 1].

Proof of Proposition 5.1. First, we prove the relation T+
n ≤ 2Tn − T 2

n . By using
(5.6) and (5.7), we obtain

T+
n = P [Ln � 1]2 − P [Ln  1]2

+
∑

`11,`21

P [Ln = `1]P [Ln = `2] (max{`1, `2} −min{`1, `2})

= Tn +
∑

`11,`21

P [Ln = `1]P [Ln = `2] (max{`1, `2} −min{`1, `2}) .
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Note that

Tn − T 2
n = Tn(1− Tn) = (P [Ln � 1]− P [Ln  1]) 2P [Ln  1]

= 2P [Ln  1]P [Ln � 1]− 2P [Ln  1]2 ,

as 1− Tn = 2P [Ln  1]. Therefore,

2Tn − T 2
n − T+

n = 2P [Ln  1]P [Ln � 1]− 2P [Ln  1]2 + Tn − Tn
−
∑

`11,`21

P [Ln = `1]P [Ln = `2] (max{`1, `2} −min{`1, `2}) .

Since,

2P [Ln  1]P [Ln � 1] =
∑

`11,`21

P [Ln = `1]P [Ln = `2] (max{`1, `2}+ min{`1, `2}) ,

we get

2Tn − T 2
n − T+

n = −2P [Ln  1]2

+
∑

`11,`21

P [Ln = `1]P [Ln = `2] (max{`1, `2}+ min{`1, `2})

−
∑

`11,`21

P [Ln = `1]P [Ln = `2] (max{`1, `2} −min{`1, `2})

= 2
∑

`11,`21

P [Ln = `1]P [Ln = `2] min{`1, `2} − 2P [Ln  1]2 ≥ 0,

where the non-negativity follows by (5.11).

Now, we prove the rest of the proposition. From (5.12) (taking L1 and L2

identically distributed as Ln), we immediately get T−n = T 2
n . We also note that

Proposition 5.5 implies T+
n ≥ Tn. Upon noticing that being a BEC is preserved

under the polar transform [2] with T+
n = 2Tn − T 2

n , the final claim follows.

Proof of Proposition 5.2. The symmetry assumption on the channel W implies via
(5.13) the following inequality:

P [LW � 1] > P [LW  1] . (5.14)

So, by Proposition 5.7, we get P [Ln  1] ≤ P [Ln � 1], for all n = 1, 2, . . ., and
thus, the probabilities are constrained as follows: P [Ln  1] ∈ [0, 0.5], P [Ln � 1] ∈
[0.5, 1], and P [Ln = 1] ∈ [0, 1]. From this the boundedness statements follow.

Proposition 5.1 and the inequalities proved in Proposition 5.6 show the processes
are the claimed sub/super martingales. From general results on bounded martingales,
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it follows the processes converge a.s. The only part left is to prove the convergence is
to the extremes of the bounded intervals. For the process Tn, we know by Proposition
5.1 that T−n = T 2

n . One can complete the proof that Tn converges to the extremes
using this relation in a similar fashion as in the proof of [2, Proposition 9] of the
convergence to the extremes of the Bhattacharyya process of the synthetic channels
associated with the polar transformations: As E[|Tn+1 − Tn|] −−−→

n→∞
0 holds, we

have
E[|Tn+1 − Tn|] ≥

1

2
E[Tn (1− Tn)] −−−→

n→∞
0,

whence T∞ ∈ {0, 1}. Similarly, as by Lemma 5.3 (taking L1 and L2 identically
distributed as Ln), we have P [L−n = 1] = 2P [Ln = 1]− P [Ln = 1]2, one can show
P [L∞ = 1] ∈ {0, 1}. Once Tn and P [Ln = 1] converge to these values, the remain-
ing probabilities can only converge to the extremes claimed by the proposition.

5.2 Channel Polarization and Rate of Convergence
Revisited

Now, we revisit the theory of channel polarization for symmetric B-DMCs by looking
to the four possible combinations of the pair T∞ and Pe, ML(W∞) = P [L∞  1], two
of which we hopefully ‘never’ end up with.

1. T∞ = 1, P [L∞  1] = 0.5: As T∞ = P[L∞ � 1]− P[L∞  1] = 1, we find
P[L∞ � 1] = 1.5, which is a contradiction. So, this case is not possible.

2. T∞ = 1, P [L∞  1] = 0: We look at a perfect channel.

3. T∞ = 0, P [L∞  1] = 0.5: We look at a completely noisy channel.

4. T∞ = 0, P [L∞  1] = 0: The two constraints tell us P[L∞ � 1] = 0, and the
second one implies P[L∞ � 1] = 1− P[L∞  1] = 1. We end up again with
a contradiction. So, this case is not possible either.

Note that we still need the preservation of the sum capacities to show that the
fraction of perfect channels is I(W ). Next, we show that the results on the rate of
convergence of polar codes [30] can be stated in terms of Tn.

Proposition 5.8. For any β < 1/2,

lim
n→∞

P[Tn < 2−2nβ ] = 1− I(W ).

Proof. The conditions (z.1), (z.2), (z.3) in [30] still hold with the Bhattacharyya
process Zn replaced by Tn, and the condition P [Z∞ = 0] = I0 in (z.3) replaced by
P [T∞ = 0] = 1− I0.
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5.3 Detective, What If We Track the Wrong Process?
In this final section, we make a small digression to explore the difficulties in extending
the previous results to mismatched processes. The impatient reader may simply skip
this part and come back while reading Chapter 7 where we study the mismatched
capacity of polar codes.

So far, we have shown that the processes tracking the evolution of the synthetic
channels’ likelihood ratio probabilities exhibit martingale properties. Inspired by
these results, we define the mismatched version of those processes and investigate
their evolution under the polar transformations.

We know that for the channel processes Wn(·|u), for u ∈ {0, 1}, we can write

PqWn [·] =
1

2
PWn(·|0) [·] +

1

2
PWn(·|1) [·] .

As before, we will use the following notations

PWn(·|u) [LVn  1] := PWn(·|u) [LVn > 1] +
1

2
PWn(·|u) [LVn = 1] ,

PWn(·|u) [LVn � 1] := PWn(·|u) [LVn < 1] +
1

2
PWn(·|u) [LVn = 1] ,

such that PWn(·|u) [LVn  1] + PWn(·|u) [LVn � 1] = 1. In addition, we define two
other channel parameters:

T 0(Wn, Vn) := PWn(·|0) [LVn � 1]− PWn(·|0) [LVn  1]

= PWn(·|0) [LVn < 1]− PWn(·|0) [LVn > 1] , (5.15)

T 1(Wn, Vn) := PWn(·|1) [LVn  1]− PWn(·|1) [LVn � 1]

= PWn(·|1) [LVn > 1]− PWn(·|1) [LVn < 1] . (5.16)

Note that both T 0, T 1 ∈ [−1, 1]. The following lemma studies the evolution of these
parameters under the minus polar transform. The proof is given in Appendix 5.B.

Lemma 5.9.

T 0(W−, V −) =
1

2
T 0(W,V )2 +

1

2
T 1(W,V )2,

T 1(W−, V −) = T 0(W,V )T 1(W,V ).

Now, replacing the parameters with the mismatched versions, i.e.,

Tn(W,V ) := T (Wn, Vn) =
T 0(Wn, Vn) + T 1(Wn, Vn)

2
, (5.17)
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T−n := T (W−
n , V

−
n ), and T+

n := T (W+
n , V

+
n ), we note that the process satisfies

T−n = T 2
n by Lemma 5.9. So, if the process converges almost surely, the only

possibility is to {0, 1}. Moreover, in this case the mismatched capacities of the
synthetic channels will either be 0 or 1. The main problem here is to prove that Tn
converges almost surely as we do not have a good characterization for T+

n .

Finally, the next proposition investigates the convergence properties of the process
PWn [LVn = 1]. The proof is given in Appendix 5.B.

Proposition 5.10. PqWn [LVn = 1] is a bounded submartingale process taking values
in [0, 1] and the process converges a.s. to {0, 1}.

Proposition 5.10 gives a partial hint on the convergence points of Tn: A synthetic
channel has T (W

(i)
N , V

(i)
N ) = 0 whenever P

W
(i)
N

[
L
V

(i)
N

= 1
]

= 1 holds.

Appendix
In this Appendix, we prove Lemma 5.3 and Lemma 5.4 in the first part and Lemma
5.9 and Proposition 5.10 in the second part.

5.A Proofs of Lemmas 5.3 and 5.4

Proof of Lemma 5.3. The claim in (5.5) can be easily verified. To prove the remain-
ing ones, we first observe that

P
[
L1 + L2

1 + L1L2

> 1

]
= P [L1 < 1]P [L2 > 1] + P [L1 > 1]P [L2 < 1] . (5.18)

Using (5.5) and (5.18), we obtain

P
[
L1 + L2

1 + L1L2

 1

]
= P

[
L1 + L2

1 + L1L2

> 1

]
+

1

2
P
[
L1 + L2

1 + L1L2

= 1

]
= P [L1 � 1]P [L2  1] + P [L1  1]P [L2 � 1] ,

as

P [L1 � 1]P [L2  1]

= P [L1 < 1]P [L2 > 1] +
1

2
P [L1 = 1]− 1

4
P [L1 = 1]P [L2 = 1] .

As a result, we also get

P
[
L1 + L2

1 + L1L2

� 1

]
= P [L1 � 1]P [L2 � 1] + P [L1  1]P [L2  1] .
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Proof of Lemma 5.4. We start by proving (5.6) using the lemma’s assumption:

P [L1L2 � 1]

=
∑
`1<1

∑
`2<1

P [L1 = `1]P [L2 = `2]

+
∑
`1<1

∑
1≤`2<1/`1

P [L1 = `1]P [L2 = `2]

+
∑
`1≥1

∑
`2≤1/`1

P [L1 = `1]P [L2 = `2]

− 1

2
P [L1 = 1]P [L2 = 1] .

=P [L1 < 1]P [L2 < 1]− 1

2
P [L1 = 1]P [L2 = 1]

+
∑
`1>1

∑
1≤`2<`1

`1P [L1 = `1]P [L2 = `2]

+
∑
`1≥1

∑
`2≥`1

`2P [L1 = `1]P [L2 = `2]

=P [L1 < 1]P [L2 < 1]− 1

2
P [L1 = 1]P [L2 = 1]

+
∑
`1>1

∑
1<`2<`1

`1P [L1 = `1]P [L2 = `2]

+ P [L2 = 1]
∑
`1>1

`1P [L1 = `1]

+
∑
`1>1

∑
`2≥`1

`2P [L1 = `1]P [L2 = `2]

+ P [L1 = 1]
∑
`2>1

`2P [L1 = `2] + P [L1 = 1]P [L2 = 1]

=P [L1 < 1]P [L2 < 1] +
1

2
P [L1 = 1]P [L2 = 1]

+
∑
`1>1

∑
`2>1

P [L1 = `1]P [L2 = `2] max{`1, `2}

+ P [L1 = 1]P [L2 < 1] + P [L1 < 1]P [L2 = 1]

=P [L1 � 1]P [L2 � 1] +
∑
`11

∑
`21

P [L1 = `1]P [L2 = `2] max{`1, `2}.

To prove (5.7), we first note that∑
`11

∑
`21

P [L1 = `1]P [L2 = `2] (max{`1, `2}+ min{`1, `2})

=
∑
`11

∑
`21

P [L1 = `1]P [L2 = `2] (`1 + `2)

=P [L1 � 1]P [L2  1] + P [L1  1]P [L2 � 1] .
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Since 1 = P [L1L2 � 1] + P [L1L2  1] = (P [L � 1] + P [L  1])2, we get

P [L1L2  1] = P [L1  1]P [L2  1]

+
∑
`11

∑
`21

P [L1 = `1]P [L2 = `2] min{`1, `2}.

5.B Proofs of Lemma 5.9 and Proposition 5.10

Proof of Lemma 5.9. We let W0 := W (.|0) and W1 := W (.|1).

T 0(W−, V −) =
∑
y21 :

LV−<1

W−(y2
1|0)−

∑
y21 :

LV−>1

W−(y2
1|0)

=
1

2
PW0 [LV < 1]2 +

1

2
PW0 [LV > 1]2 +

1

2
PW1 [LV < 1]2

+
1

2
PW1 [LV > 1]2 − PW0 [LV < 1]PW0 [LV > 1]

− PW1 [LV < 1]PW1 [LV > 1]

=
1

2
T 0(W,V )2 +

1

2
T 1(W,V )2.

T 1(W−, V −) =
∑
y21 :

LV−>1

W−(y2
1|1)−

∑
y21 :

LV−<1

W−(y2
1|1)

= PW0 [LV < 1]PW1 [LV > 1] + PW0 [LV > 1]PW1 [LV < 1]

− PW0 [LV < 1]PW1 [LV < 1]− PW0 [LV > 1]PW1 [LV > 1]

= T 1(W,V )T 0(W,V ).

Proof of Proposition 5.10. For the minus transformation, we get

PqW [LV − = 1] =
∑
y21 :

LV−=1

1

2
W−(y2

1|0) +
1

2
W−(y2

1|1)

=
∑
y21 :

LV−=1

1

4
(W (y1|0)W (y2|0) +W (y1|1)W (y2|1))

+
1

4
(W (y1|1)W (y2|0) +W (y1|0)W (y2|1))

= PW0 [LV = 1] + PW1 [LV = 1]− 1

4
(PW0 [LV = 1] + PW1 [LV = 1])2

= 2PqW [LV = 1]− PqW [LV = 1]2 .

98



For the plus transformation, we get

PqW [LV + = 1] =
∑
y21u1 :
LV+=1

1

2
W+(y2

1u1|0) +
1

2
W+(y2

1u1|1)

≥
∑
y1 :
LV =1

∑
y2 :
LV =1

1

4
(W (y1|0)W (y2|0) +W (y1|1)W (y2|0))

+
∑
y1 :
LV =1

∑
y2 :
LV =1

1

4
(W (y1|1)W (y2|1) +W (y1|0)W (y2|1))

≥ 1

4
(PW0 [LV = 1] + PW1 [LV = 1])2 = PqW [LV = 1]2 .

Hence after a single step, the following inequality holds:

PqW [LV − = 1] + PqW [LV + = 1] ≥ 2PqW [LV = 1] .

By the recursive structure, the inequality holds at every step, proving the claim that
the process is a submartingale. The boundedness statement is trivial. One can com-
plete the proof that the convergence is to the extremes in a similar fashion as in the
proof of [2, Proposition 9] of the convergence to the extremes of the Bhattacharyya
process of the synthetic channels associated with the polar transformations:

E
[∣∣PqWn+1

[
LVn+1 = 1

]
− PqWn [LVn = 1]

∣∣] −−−→
n→∞

0

=⇒ E
[∣∣PqWn+1

[
LVn+1 = 1

]
− PqWn [LVn = 1]

∣∣]
≥ 1

2
E
[
PqWn [LVn = 1]

(
1− PqWn [LVn = 1]

)]
−−−→
n→∞

0.

showing PqW∞ [LV∞ = 1] ∈ {0, 1}.
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Chapter 6

Order Preserving Properties of the
Polar Transform

Three nice properties of the polar transform were emphasized in the last two chapters;
by showing these properties on different information measures, we revisited and
generalized the main lines of the original theory. The primary objective was to
better understand how the polar transform operates on a given B-DMC. This implicit
assumption behind the developed theory must, however, be questioned at the design
stage of polar codes. From next chapter onward, we will deviate from the single
point to point communication channel model to study the robustness of polar coding
under more complex communication scenarios. In this transition chapter, we embark
the investigation starting from the information sets of polar codes. Our objective is
to characterize how the polar transform operates on the set of B-DMCs in a rigorous
framework.

To set up, think about the elegant principle behind the construction of the informa-
tion set of a polar code for a given B-DMC W . Independent copies of the channel W
are combined and split by applying the polar transform in a recursive fashion. After a
long sequence of such operations, the synthesized channels cluster eventually in two
states, perfect or noisy. As the main idea behind the construction of the information
set is to ensure that the overall error probability of the decoding procedure is small,
the information set of a polar code of block-length N = 2n, with n = 1, 2, . . ., for
the channel W , denoted as AN(W ), is specified by picking from the set {+,−}n the
indices of the channels which are good for uncoded transmission, i.e.,

AN(W ) =
{
sn ∈ {+,−}n : W sn is ‘good’

}
. (6.1)

The economy of concepts used to describe this task is stunning and accomplishing
the task itself sounds quite simple. Nevertheless, a hidden difficulty arises: comput-
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ing efficiently the transition probabilities of the synthetic channels of huge output
alphabet sizes. Initially, [2] solved this problem by proposing to approximate the
computations by estimating the good channels via their Bhattacharyya distance with
the help of the Monte Carlo method. However, this approach had two limitations:
complexity and reliability of the Monte Carlo estimates. Mori and Tanaka [31]
proposed a better method based on density evolution, but implementing the method
with sufficient precision still required further investigation. Thanks to Tal and Vardy,
this problem of practical interest was thought out in [3] with an algorithm to carry
the computations approximately (but within guaranteed bounds) and efficiently. The
fact that polar codes can be explicitly constructed, and so efficiently, is certainly a
big step toward the practice of polar coding.

Another ‘not so hidden’ characteristic of (6.1) is the reliance of the definition on a
specific channel. This apparent observation led to a question of both theoretical and
practical interest after the invention of polar codes: How large is AN(W ) ∩AN(V ),
for two given channels W and V . Two partial orders have been pointed out in [2]
which order the information sets of polar codes: Any BEC provides good indices for
all other B-DMCs having smaller Bhattacharyya parameters, and any channel which
is degraded with respect to another B-DMC provides good indices for the upgraded
channel1. In this chapter, we will show that these partial orderings can be studied in
the context of stochastic orders known as convex orderings. Interestingly, it will turn
out that the solution to the efficient computation problem found in [3] is closely tied
to the notion of convex ordering.

What’s Coming, Doc?
Many channel parameters can be used to quantify “good” in (6.1); for instance, the
symmetric capacity or the Bhattacharyya parameter are among popular choices. In
fact, any channel parameter appearing in a meaningful upper bound to Pe, ML(W )

defined in (1.9) is eligible as this bound would apply individually to the synthetic
channels and would thus serve to upper bound the error probability of polar codes via
the union bound. In this chapter, we consider a family of such quantifiers generated
by the following class of functions

Fcx, s :=
{
fs : [−1, 1]→ [0, 1] : fs is symmetric2 and convex

such that fs(0) = 0 and fs(1) = 1
}
. (6.2)

The functions in Fcx, s will take as argument the channel parameter ∆W (y) we defined
in (2.15) as the normalized difference between W (y|0) and W (y|1).

1W is upgraded with respect to V if and only if V is degraded with respect to W
2A function f(δ) is called symmetric if f(δ) = f(−δ), for all δ ∈ R
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Recall from the previous chapter that T (W ) = E [|∆W |] computes the variational
distance between the two distributions W (y|0) and W (y|1) and satisfies T (W ) =

1− 2Pe, ML(W ). As T (W ) > 1− γ implies Pe, ML(W ) < γ, to have the latter small,
the channel at hand must have a large variational distance (close to 1). Equivalently,
it would be sufficient that

Tfs(W ) := E [fs (∆W )]

be large for any fs ∈ Fcx, s, since

T (W ) ≥ Tfs(W )

always holds. Upon noticing Tfs(W ) ∈ [0, 1], we conclude via T (W ) = 1 −
2Pe, ML(W ) that the parameters Tfs(W ) generate a family of upper bounds to
Pe, ML(W ). Based on these results, we refine the vague definition in (6.1) as follows.

Definition 6.1. Let fs ∈ Fcx, s and γ ∈ (0, 1) be a threshold. W is called ‘γ-good’ if
Tfs(W ) ≥ 1− γ holds. Accordingly, the information set definition is adapted as

A
fs,γ
N (W ) :=

{
sn ∈ {+,−}n : Tfs(W

sn) ≥ 1− γ
}
.

For instance, the particular choice of fs(δ) = 1−h2(1+δ
2

), where h2(.) denotes the
binary entropy function, or f(δ) = 1−

√
1− δ2 lead to information set definitions

based on the values of the symmetric capacities and the Bhattacharyya parameters of
the synthetic channels, respectively.

In this chapter, we will show that, in essence, taking ∆W (Y ) as argument, the
class of symmetric convex functions generates a partial ordering for B-DMCs which
orders the information sets of polar codes:

A
fs,γ
N (V ) ⊂ A

fs,γ
N (W ),∀N, ∀γ if Tfs(V ) ≤ Tfs(W ), for all fs ∈ Fcx, s.

This result will follow as a corollary to Theorem 6.5 which will show that the
generalized polar transform 〈W1,W2〉± described in (4.13) and (4.14) preserves
symmetric convex orderings.

Once the theorem will be proved, we will compare this ordering with the stochastic
degradation ordering already known to order the information sets of polar codes. We
will show that while for symmetric channels this ordering is equivalent to stochastic
degradation, a strictly weaker partial order is obtained when at least one of the
channels is asymmetric. In particular, we will illustrate this by an example which
studies both orderings between a Z-channel and a binary symmetric channel whose
inputs are used with equal frequency. In the process, we will also present tools which
can be useful for verifying the symmetric convex ordering: the cut criterion due to
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[32] and channel symmetrization.

In the final two sections, we will show that after the polar transform is applied,
the channels are ordered with the symmetric convex ordering and we will discuss
how the symmetric convex ordering is useful for the efficient construction of polar
codes. Finally, keep in mind as a spoiler alert that the results of Theorem 6.5 will find
applications in Chapter 8 and Chapter 9 when dealing with the problem of universal
polar coding with channel knowledge at the decoder.

6.1 A Novel Partial Ordering for B-DMCs: The Sym-
metric Convex Ordering

First and foremost, we designate the novel ordering.

Definition 6.2. We say that two B-DMCs W : F2 → Y1 and V : F2 → Y2 satisfy the
symmetric convex ordering if

E [fs(∆V )] ≤ E [fs(∆W )] ,

for all functions fs ∈ Fcx, s. The ordering is denoted by V≺cx, sW .

Next, we bridge this definition with a well known stochastic order. Let ∆1 and
∆2 be two random variables with distributions F∆1 and F∆2 , respectively.

Definition 6.3. [33] ∆1 is smaller with respect to the increasing convex ordering
(decreasing concave ordering) than ∆2, written ∆1≺icx∆2 (∆1 ≺dcv ∆2), if

E [f(∆1)] ≤ E [f(∆2)] , (6.3)

for all increasing convex (decreasing concave) functions f , for which the expectations
exist.

As any result involving the ≺icx ordering can be mapped to the ≺dcv ordering, we
will stick to the first one. Alternatively, this ordering can be described by using only
the class of symmetric functions.

Proposition 6.4. |∆1| ≺icx |∆2| if and only if

E [f(∆1)] ≤ E [f(∆2)] ,

for all convex and symmetric functions f , for which the expectations exist.

Proof. The proof follows by the fact that f(|δ|) = f(δ) holds for any symmetric
function f(δ), δ ∈ R.
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Thus, the new partial ordering introduced in Definition 6.2 is an increasing convex
ordering for the absolute value of the channels’ ∆ parameters.

Now, we are ready to state the main result.

Theorem 6.5. Let W1 : F2 → Y1, W2 : F2 → Y2, V1 : F2 → Y3, and V2 : F2 → Y4

be B-DMCs such that

|∆V1| ≺icx |∆W1 | and |∆V2| ≺icx |∆W2|

hold. Then, the polar transform preserves this ordering, i.e.,
∣∣∆V ±1,2

∣∣ ≺icx
∣∣∆W±1,2

∣∣.
Proof of Theorem 6.5. We will use the characterization given in Proposition 6.4 in
the proof. After applying the polar transform to the channels, one can derive the
following recursion

∆W−1,2
(Y1Y2) = ∆W1(Y1)∆W2(Y2), (6.4)

∆W+
1,2

(Y1Y2U1) =
∆W1(Y1) + (−1)U1∆W2(Y2)

1 + (−1)U1∆W1(Y1)∆W2(Y2)
, (6.5)

where
Y1Y2 ∼ qW1(y1)qW2(y2),

and

Y1Y2U1 ∼ qW1(y1)qW2(y2)
1 + (−1)u1∆W1(y1)∆W2(y2)

2
.

See the proofs of Lemma 4.1 and Lemma 4.2 for a proof.

Let f(δ) be a function which is convex and symmetric in δ ∈ [−1, 1]. Note that
the function must be increasing in δ ∈ [0, 1]. For the minus polar transform, we write∑

y1∈Y1

∑
y2∈Y2

qW−1,2(y1y2)f
(

∆W−1,2
(y1y2)

)
=
∑
y1∈Y1

qW1(y1)
∑
y2∈Y2

qW2(y2)f− (∆W1(y1),∆W2(y2))

where f− (δ1, δ2) = f (δ1δ2), for δ1, δ2 ∈ [−1, 1]. As we assumed f(δ) to be convex
and symmetric in its argument, so is f− in both of its arguments. Similarly for the
plus polar transform, we write∑

y1∈Y1

∑
y2∈Y2

∑
u1∈F2

qW+
1,2

(y1y2u1)f
(

∆W+
1,2

(y1y2u1)
)

=
∑
y1∈Y1

qW1(y1)
∑
y2∈Y2

qW2(y2)f+ (∆W1(y1),∆W2(y2)) ,
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where

f+ (δ1, δ2) =
1 + δ1δ2

2
f

(
δ1 + δ2

1 + δ1δ2

)
+

1− δ1δ2

2
f

(
δ1 − δ2

1− δ1δ2

)
, (6.6)

for δ1, δ2 ∈ [−1, 1]. Lemma 6.18 in Appendix 6.A shows that f+ is also a convex
and symmetric function in both of its arguments.

So, using the assumptions |∆V1 | ≺icx |∆W1 | and |∆V2| ≺icx |∆W2|, we deduce
that ∑

y3∈Y3

qV1(y3)
∑
y4∈Y4

qV2(y4)f± (∆V1(y3),∆V2(y4))

≤
∑
y3∈Y3

qV1(y3)
∑
y2∈Y2

qW2(y2)f± (∆V1(y3),∆W2(y2))

=
∑
y2∈Y2

qW2(y2)
∑
y3∈Y3

qV1(y3)f± (∆V1(y3),∆W2(y2))

≤
∑
y2∈Y2

qW2(y2)
∑
y1∈Y1

qW1(y1)f± (∆W1(y1),∆W2(y2)) .

This proves our claim that
∣∣∆V ±1,2

∣∣ ≺icx
∣∣∆W±1,2

∣∣.
Using the refined definition of the information set in (6.1), we get the following

corollary to the previous theorem.

Corollary 6.6. Let W : F2 → Y1 and V : F2 → Y2 be such that V ≺cx, s W as
defined in Definition 6.2. Then,

A
fs,γ
N (V ) ⊂ A

fs,γ
N (W ), (6.7)

holds for all fs ∈ Fcx, s, for any γ ∈ (0, 1), and for all N = 2n with n = 1, 2, . . ..

Proof. The assumption V ≺cx, s W on the channels implies via Proposition 6.4 that
|∆V | ≺icx |∆W | holds. Then, (6.7) follows by Theorem 6.5.

As we pointed out earlier, it is stated in [2] that the information sets of polar codes
are ordered for stochastically degraded channels. See [34, Lemma 4.7] for a proof of
the fact that stochastic degradation is preserved under the original polar transform
and Appendix 2.B for the fact that two stochastically degraded DMCs are ordered
in their E0 parameters. It would therefore be of interest to compare the symmetric
convex ordering we introduced with stochastic degradation.
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6.2 Exploration

6.2.1 Convex Ordering

The material up to and including Theorem 6.11 is drawn from [33, Section 1.3]. The
following definition introduces a special case of the increasing convex ordering.

Definition 6.7. [33, Theorem B] Suppose ∆1 and ∆2 have equal mean values, i.e.,
E[∆1] = E[∆2]. We say ∆1 is smaller with respect to the convex ordering than ∆2,
written ∆1≺cx∆2, if and only if

E [f(∆1)] ≤ E [f(∆2)] ,

for all convex functions f for which the expectations exist.

Definition 6.8. [33] A Markov kernel is a function KM(δ, E), δ ∈ R, E ∈ B,
such that KM(δ, .) is a probability measure on R for each fixed δ and KM(., E) is
a measurable function for each fixed E. KM is mean value preserving if the mean
value of the probability measure KM(δ, .) is equal to δ.

An alternative description of the convex ordering due to Blackwell [35] is given
in [33, Theorem C]. Below is the statement of this theorem.

Theorem 6.9. [35] ∆1 ≺cx ∆2 if and only if there exists a mean value preserving
Markov kernel KM such that F∆2 = KMF∆1 , i.e.,

F∆2(δ2) = E
[
KM
(
∆1, (−∞, δ2]

)]
.

A random variable ∆ is called symmetric if the distribution of ∆ satisfies F∆(δ) =

1−F∆(−δ), for all δ ∈ R. In the next proposition, we exploit this symmetry property.

Proposition 6.10. Let ∆1 and ∆2 be symmetric random variables, then ∆1 ≺cx ∆2

if and only if |∆1| ≺icx |∆2|.

Proof. The ‘only if part’ follows by definition. So, we only need to prove the ‘if
part’. Let f(δ) be a convex function in δ ∈ R. As ∆1 is symmetric, we can write

E [f(∆1)] = E
[
f(∆1) + f(−∆1)

2

]
= E [fs(∆1)] ,

where fs(δ) = (f(δ) + f(−δ)) /2 is a convex symmetric function. In particular,
fs(.) is increasing on R+. Hence using |∆1| ≺icx |∆2|, we get

E [f(∆1)] = E [fs(|∆1|)] ≤ E [fs(|∆2|)] = E [f(∆2)] .
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Now, we show that for symmetric channels the convex ordering is equivalent to
the stochastic degradation ordering. Let V : F2 → Y2 be stochastically degraded with
respect to W : F2 → Y1. Then, by definition 2.6, we know that there exists a channel
P : Y1 → Y2 such that (2.27) holds. In this case, one can derive the following:

∆V (z) =
V (z|0)− V (z|1)

V (z|0) + V (z|1)
=
∑
y∈Y1

P̄ (y|z)∆W (y),

for z ∈ Y2, where

P̄ (y|z) =
qW (y)P (z|y)∑

y∈Y1

qW (y)P (z|y)

corresponds to the inputs posterior probabilities given the output of the channel P .
So, for any convex function f(.), we obtain

E [f(∆V )] =
∑
z∈Y2

qV (z)f(∆V (z))

=
∑
z∈Y2

(∑
y∈Y1

qW (y)P (z|y)

)
f

(∑
y∈Y1

P̄ (y|z)∆W (y)

)
≤
∑
z∈Y2

∑
y∈Y1

qW (y)P (z|y)f(∆W (y))

=
∑
y∈Y1

qW (y)f(∆W (y)) = E [f(∆W )] , (6.8)

where the inequality follows by Jensen’s inequality. In particular, the ordering holds
with equality for the function f(δ) = δ. Hence, degradation preserves the mean
value, i.e., E[∆W ] = E[∆V ]. By Definition 6.7, we conclude the order relation
∆V ≺cx ∆W holds for stochastically degraded channels.

To show the reverse implication, suppose the channels satisfy ∆V ≺cx ∆W . By
Theorem 6.9, there exists a Markov kernel KM such that∑

y∈Y1

KM(z, y) = 1, (6.9)

∆V (z) =
∑
y∈Y1

KM(z, y)∆W (y), (6.10)

P [∆W (y) = δy] =
∑
z∈Y2

KM(z, y)P [∆V (z) = δz] , (6.11)

for all y ∈ Y1 and z ∈ Y2. Note that (6.11) is equivalent to

qW (y) =
∑
z∈Y2

KM(z, y)qV (z), (6.12)
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and from (6.10), we get

V (z|0)− V (z|1) =
∑
y∈Y1

K̃M(z, y) [W (y|0)−W (y|1)] , (6.13)

where

K̃M(z, y) =
qV (z)

qW (y)
KM(z, y). (6.14)

Now, observe that via (6.12), we have∑
z∈Y2

K̃M(z, y) = 1.

Moreover, taking the denominator qW (y) in (6.14) to the other side, summing over
y ∈ Y1, and using (6.9), we get

V (z|0) + V (z|1) =
∑
y∈Y1

K̃M(z, y) [W (y|0) +W (y|1)] . (6.15)

Combining (6.13) and (6.15) gives

V (z|x) =
∑
y∈Y1

K̃M(z, y)W (y|x),

for x ∈ F2. This proves that convex ordering implies stochastic degradation as
K̃M(z, y) is of the form P (z|y) given in Definition 2.6. The equivalence is proved.

6.2.2 Tools for Verifying the Symmetric Convex Ordering

As the symmetric convex ordering between two channels can be described via the
increasing convex ordering of their |∆| parameters, we can borrow any tool from the
literature used to verify the latter. In the next theorem, a ‘simple’ criterion, known as
the Karlin-Novikoff cut criterion [32], is given for the increasing convex ordering.

Theorem 6.11. [33, Theorem E] Suppose that for ∆1,∆2 with finite first moments
m∆1 = E[∆1] and m∆2 = E[∆2], we have m∆1 ≤ m∆2 and

F∆1(δ) ≤ F∆2(δ), for δ ≤ c, (6.16)

F∆1(δ) ≥ F∆2(δ), for δ > c, (6.17)

for some c ∈ R, then ∆1 ≺icx ∆2.

Although we will not make use of in this thesis, a more general version of the
cut criterion called Karlin-Novikoff-Stoyan-Taylor crossing conditions for stop-loss
order can be found in [36]. The theorem provides a necessary and sufficient condition
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Chapter 6. Order Preserving Properties of the Polar Transform

for the stop-loss order which is the name given to the increasing convex ordering in
the actuarial science literature.

In the comparison process, the following idea will also be useful in the process of
checking our ordering.

Definition 6.12. [34, Definition 1.3] For any B-DMC W : X→ Y, the symmetrized
B-DMC Ws : X→ Y× X is defined as

Ws(y, z|x) =
1

2
W (y|x⊕ z).

6.2.3 Novelty of the Ordering by an Example

We saw that any channel V which satisfies the relation ∆V ≺cx ∆W with any other
channel W is in fact stochastically degraded with respect to W . It is also clear by
definition that the convex ordering between the channel random variables implies
the symmetric convex ordering introduced in Definition 6.2. So, we need to study
the reverse implication to decide whether the symmetric convex ordering condition
of Theorem 6.5 gives a strictly weaker condition than convex ordering (stochastic
degradation). At this point, by recalling the equivalence stated in Proposition 6.10, we
notice that this is not the case for symmetric channels as the two orders ∆V ≺cx ∆W

and |∆V | ≺icx |∆W | are equivalent for symmetric channels. The purpose of this
subsection is to show that no equivalence exists between the symmetric convex
ordering and stochastic degradation if one of the two channels is asymmetric. If we
can find a pair of B-DMCs that does not satisfy stochastic degradation, but satisfies
the symmetric convex ordering, we will be done. Such a pair is illustrated in the next
example.

Example 6.13. Let W be a Z-channel, as shown in Figure 6.1, with crossover
probability r ∈ [0, 1] and V be a BSC with crossover probability p ∈ [0, 0.5]. In this
example, we will answer the following three questions:

(q1) Suppose V is a stochastically degraded version ofW . What is the best possible
BSC (with the smallest p) which satisfies this condition?

(q2) Suppose instead that the channels satisfy the symmetric convex ordering
|∆V | ≺icx |∆W |. What is the best possible BSC which satisfies this condition?

(q3) Suppose we first symmetrize W according to Definition 6.12 to construct Ws.
Suppose now V is a stochastically degraded version of Ws. What is the best
possible BSC which satisfies this condition?

Then, we will compare the three BSCs to decide which ordering results in a better
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1

0

1

0

1− r

r

1

Figure 6.1: Z-channel.

channel with a smaller p, and thus, leads to a larger information subset for the
Z-channel. Here are the answers.

(a1) Stochastic degradation: Let us derive the range of possible values of p in
terms of r under this assumption. For this purpose, we define the asymmetric binary
channel P degrading W to V by

V (z|x) =
∑
y∈F2

W (y|x)P (z|y). (6.18)

First we note that P (0|0) = 1 − p and P (0|1) = p are the only possibilities. Let
P (0|1) = α. Then, using (6.18), we get

V (0|1) = p = (1− r)α + r(1− p),

which implies

p =
r + (1− r)α

1 + r
. (6.19)

Noting that the right hand side of (6.19) is increasing in α ∈ [0, 1], we conclude that

r

1 + r
≤ p ≤ 1

1 + r

whenever we impose stochastic degradation on the channels. Picking the BSC having
the smallest crossover probability p = r/(1 + r) answers the first question.

(a2) |∆V | ≺icx |∆W |: Now, we will derive the range of possible values of p in
terms of r under this assumption by using the cut-criterion given in Theorem 6.11.
We start by computing the values of E[|∆V |] and E[|∆W |] in terms of the channel
parameters. For the BSC, we have E[|∆V |] = 1− 2p. For the Z-channel, we have

|∆W (y)| =


1− r
1 + r

, if y = 0

1, if y = 1
, (6.20)

qW (0) = (1 + r)/2, and qW (1) = (1− r)/2. So, we compute E[|∆W |] = 1− r. As
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Chapter 6. Order Preserving Properties of the Polar Transform

any B-DMC together with any BSC with crossover probability p will always satisfy
the conditions (6.16) and (6.17) of Theorem 6.11 with c = |1− 2p| and F being the
cumulative distribution of the BSC, we can see by the theorem’s statement that the
condition E[|∆V |]] ≤ E[|∆W |]] is necessary in our example for |∆V | ≺icx |∆W | to
hold. This in turn implies that p ≥ r/2. Hence, the best possible BSC in this case
has crossover probability p = r/2. This answers the second question.

(a3) Channel symmetrization: We first note a more general result: a given
B-DMC W ′ and its symmetrized version W ′

s always satisfy |∆W ′s(y, z)| = |∆W ′(y)|
with |∆W ′s(y, z)| distributed as qW ′(y)/2, for z ∈ F2. Therefore, for any function
f(δ) defined for δ ∈ [0, 1], we have

E [f(|∆W ′|)] = E
[
f(|∆W ′s |)

]
.

We conclude that for any two B-DMCs W ′ and V ′: |∆V ′| ≺icx |∆W ′| if and only if
|∆V ′s | ≺icx |∆W ′s|. Moreover, as the channels in this last condition are symmetric,
we know the condition holds if and only if ∆V ′s ≺cx ∆W ′s , i.e., the symmetrized
versions of the channels are ordered by stochastic degradation. So, we have the same
answer as in the previous case: the best possible BSC in this case has also crossover
probability p = r/2.

Let us compare the results. Noting that r/2 ≤ r/(1 + r) holds for any r ∈ [0, 1],
and with equality if and only if r = 0, 1, we conclude that, for r ∈ (0, 1), the BSC
with smallest crossover probability is found by the symmetric convex ordering and
this BSC is not stochastically degraded with respect to the Z-channel. For instance,
when r = 1/2, the crossover probabilities of the best BSC we found in the second
case is 1/4 compared to 1/3 in the first one. Finally, we also showed that one
can verify the symmetric convex ordering by first symmetrizing the asymmetric
channels and then checking for stochastic degradation. The example proves that for
general B-DMCs the symmetric convex ordering is strictly weaker than stochastic
degradation.

6.3 How to prepare a BEC sandwhich?
In this section, we discuss two other orderings related to BECs. First we note the
following property of the BEC.

Proposition 6.14. Amongst the set of symmetric B-DMCs with a given fixed value
of the channels’ variational distance T , the BEC U of erasure probability 1− T (U)

maximizes the symmetric capacity and minimizes the Bhattacharyya parameter.

Proof. The proof follows by noting T (U) = 1 − Z(U) for the BEC and using
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6.4. Polarization Property

the following upper bounds to the uncoded error probability over any B-DMC W :
(1− T (W ))/2 ≤ (1− I(W ))/2 and (1− T (W ))/2 ≤ Z(W )/2.

For simplicity, we define Z = |∆W |. Suppose a BEC BEC with erasure prob-
ability ε ∈ [0, 1] and a B-DMC W satisfy E[Z] ≤ E[ZBEC ]. As ZBEC is {0, 1}
valued with P (ZBEC = 0) = ε, ZBEC and any arbitrary random variable Z satisfy
the conditions (6.16) and (6.17) of Theorem 6.11 with G being the cumulative distri-
bution of ZBEC . As a result, the assumption E[Z] ≤ E[ZBEC ] implies Z ≺icx ZBEC .
By Theorem 6.5, we know that this ordering is preserved under the polar transform

Another case of increasing convex ordering slightly different than Theorem
6.5 happens when BEC and W are such that the Bhattacharyya parameters of
the channels satisfy Z(W ) ≤ Z(BEC) (beware that the random variable Z is
different than Z(W )!). Let us define the random variable B =

√
1− Z2. Then,

Z(W ) = E[BW ]. Hence, the channels satisfy E[B] ≤ E[BBEC ]. One more time,
letting G denote the cumulative distribution of BBEC in Theorem 6.11, we see
that E[B] ≤ E[BBEC ] implies B ≺icx BBEC . Finally, it is well known from [2,
Proposition 6] that this ordering is also preserved under the polar transform.

Using these two BEC orderings, the following theorem shows that the information
set of a given symmetric B-DMC can be squeezed between the information sets of
two BECs.

Theorem 6.15. For any given symmetric B-DMC W with parameter values T (W )

and Z(W ), define the BEC U such that T (U) = T (W ) and the BEC V such that
Z(V ) = Z(W ). Then, we have Z(U

(i)
N ) ≤ Z(W

(i)
N ) ≤ Z(V

(i)
N ) for any i = 1, . . .

and N = 2n with n ≥ 0. Furthermore, this implies the following ordering of the
information sets:

A
fB ,γ
N (V ) ⊂ A

fB ,γ
N (W ) ⊂ A

fB ,γ
N (U), ∀γ ∈ [0, 1].

for the function fB(δ) = 1−
√

1− δ2.

Proof. It is already known that the BEC V provides universally good indices:
A
fB ,γ
N (V ) ⊂ A

fB ,γ
N (W ) [2]. The proof that the BEC U provides ‘universally bad’

indices follows by the extremality properties stated in Propositions 5.1 and 6.14.

6.4 Polarization Property
The following lemma proves that the polarization property of the polar transform
holds for all the channel parameters Tfs(W ), where fs ∈ Fcx, s.
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Lemma 6.16 (Polarization Property). For any two B-DMCs W1 and W2,we have

Tfs(W
−
1,2) ≤ Tfs(W1) ≤ Tfs(W

+
1,2),

Tfs(W
−
1,2) ≤ Tfs(W2) ≤ Tfs(W

+
1,2),

for any fs ∈ Fcx, s.

Proof. The idea behind the proof of this lemma is exactly the same idea we used in
the proof of Lemma 4.5. First, note that the channels W±

1,2 and W±
2,1 have the same

Tfs values. Thus, it would be sufficient to show the first set of inequalities.

As for any realizations δ1 and δ2 of the random variables ∆W1(y1) and ∆W2(y2),
respectively, |δ1δ2| ≤ |δ1| holds, we have

fs(δ1δ2) ≤ fs(δ1),

for any fs ∈ Fcx, s. Taking expectations of both sides, we get Tfs(W
−
1,2) ≤ Tfs(W1).

On the other side, we have

1 + δ1δ2

2
f

(
δ1 + δ2

1 + δ1δ2

)
+

1− δ1δ2

2
fs

(
δ1 − δ2

1− δ1δ2

)
≤ fs

(
δ1 + δ2

2
+
δ1 − δ2

2

)
= fs(δ1),

by Jensen’s inequality. Taking expectations, Tfs(W1) ≤ Tfs(W
+
1,2) follows.

Using Definition 6.2, the following corollary follows to the lemma.

Corollary 6.17. The channels W−
1,2, W1, W+

1,2 satisfy the symmetric convex ordering:∣∣∆W−1,2

∣∣ ≺icx |∆W1 | ≺icx
∣∣∆W+

1,2

∣∣.
The same result holds for the channel W2.

6.5 Efficient Construction of Polar Codes
In the beginning of this chapter, we acknowledged the difficulty in computing
efficiently the exact transition probabilities of the synthetic channels when these have
very large output alphabets. In this section, we make a quick look into how, despite
this underlying difficulty, the information sets of polar codes can still be efficiently
constructed. We interpret, from the perspective of the current chapter, the idea of the
approximation algorithm used in [3]:
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• The information set construction algorithm starts by computing the exact
transition probabilities of the synthetic channels until the size of the output
alphabets violate a maximum permissible bound.

• Once this happens, the synthetic channels with large output alphabets are
replaced by channels (i) which are ‘close’ to the original channels, (ii) which
have permissible output alphabet sizes, and (iii) whose children synthesized
by the sequence of polar transformations still remain ‘close’ to their exact
versions. Thus, one of the key ingredients is to use an approximation inducing
an ordering which is preserved under the polar transform. In [3], stochastic
degradation is used for that purpose, and it is shown that the algorithm performs
well— a further analysis of the algorithm carried out in [37] bounds the
maximum approximation loss of the algorithm and shows that the algorithm
works with almost linear complexity in the block-length.

As the symmetric convex ordering is a (weaker) partial ordering also preserved
under the polar transform, it can be used as an alternative approximation
method for the synthetic channels. Although we have not implemented such
an algorithm to evaluate its performance, we claim that similar guarantees can
be obtained given the fact that both convex ordering (stochastic degradation)
and symmetric convex ordering are induced via the fusion (merging) of the
outputs.

• Let us also discuss the role of Theorem 6.15: the exact and approximate
computations can be abandoned once the gap between the information sets
of the two specific ‘squeezer’ BECs defined in the theorem’s statement is
sufficiently small. In that case, the algorithm can proceed by using the BEC
recursion for some channel parameters such as the Bhattacharyya distance,
and eventually terminate.

In addition, the results of this chapter shows that the idea of the algorithm
proposed in [3] can be applied to approximate the channels synthesized by the more
general polar transform 〈W1,W2〉±. However, the readers should wait until Chapter
9 to see that such a construction combining non-identical channels does still make
sense, and whence the algorithm remains useful.

Appendix

6.A Lemma 6.18

Lemma 6.18. Let f(δ) be a convex and symmetric function in δ ∈ [−1, 1]. Then,
the function defined in (6.6) is also a convex and symmetric function.

115



Appendix

Proof. For simplicity, we first define

f1(δ1, δ2) = (1 + δ1δ2)f

(
δ1 + δ2

1 + δ1δ2

)
,

f2(δ1, δ2) = (1− δ1δ2)f

(
δ1 − δ2

1− δ1δ2

)
,

for δ1, δ2 ∈ [−1, 1]. Hence, (6.6) equals to f+(δ1, δ2) = 1
2
f1(δ1, δ2)+ 1

2
f2(δ1, δ2). As

f+(δ1, δ2) = f+(δ2, δ1), it is sufficient to prove the lemma for one of the variables.
One can easily prove that the function is symmetric in δ1 ∈ [−1, 1], i.e, f+(δ1, δ2) =

f+(−δ1, δ2) by using the symmetry of the function f(δ) in δ ∈ [−1, 1].

We will prove the rest of the lemma for smooth functions f . As such functions
are dense, this is without loss of generality. Let f ′ and f ′′ denote the first and the
second derivatives of f(δ) with respect to the variable δ, respectively. Then, we get

∂

∂δ1

f1(δ1, δ2) = δ2f

(
δ1 + δ2

1 + δ1δ2

)
+

1− δ2
2

1 + δ1δ2

f ′
(
δ1 + δ2

1 + δ1δ2

)
,

∂2

∂δ1
2f1(δ1, δ2) =δ2f

′
(
δ1 + δ2

1 + δ1δ2

)
1− δ2

2

(1 + δ1δ2)2
− δ2

1− δ2
2

(1 + δ1δ2)2
f ′
(
δ1 + δ2

1 + δ1δ2

)
+

1− δ2
2

1 + δ1δ2

f ′′
(
δ1 + δ2

1 + δ1δ2

)
1− δ2

2

(1 + δ1δ2)2

=
(1− δ2

2)2

(1 + δ1δ2)3
f ′′
(
δ1 + δ2

1 + δ1δ2

)
.

Similarly, we get

∂

∂δ1

f2(δ1, δ2) = −δ2f

(
δ1 − δ2

1− δ1δ2

)
+

1− δ2
2

1− δ1δ2

f ′
(
δ1 − δ2

1− δ1δ2

)
,

∂2

∂δ1
2f2(δ1, δ2) =

(1− δ2
2)2

(1− δ1δ2)3
f ′′
(
δ1 − δ2

1− δ1δ2

)
.

Summing these we obtain

∂2

∂δ1
2f

+(δ1, δ2) =
1

2

(1− δ2
2)2

(1 + δ1δ2)3
f ′′
(
δ1 + δ2

1 + δ1δ2

)
+

1

2

(1− δ2
2)2

(1− δ1δ2)3
f ′′
(
δ1 − δ2

1− δ1δ2

)
≥ 0,

where the sign of f+(δ1, δ2) can be deduced from the convexity of the function f(δ)

in δ ∈ [−1, 1]. This proves that f+(δ1, δ2) is convex in δ1 ∈ [−1, 1] and completes
the proof.
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Chapter 7

The Mismatched Capacity of Polar
Codes

Consider a single use of a B-DMC W : F2 → Y to transmit a single bit. Assume
that maximum likelihood decoding with respect to a possibly mismatched B-DMC
V : F2 → Y is used as a decoding metric. Given that the symbol 0 is transmitted, the
error probability resulting from such a transmission is given by

Pe, ML(W,V |0) :=
∑
y :

LV (y)>1

W (y|0) +
1

2

∑
y :

LV (y)=1

W (y|0),

where LV (y) = V (y|1)/V (y|0). Similarly, the error probability given that the
symbol 1 is transmitted is given by

Pe, ML(W , V |1) :=
∑
y :

LV (y)<1

W (y|1) +
1

2

∑
y :

LV (y)=1

W (y|1).

Assuming both inputs are equally likely, the average error probability satisfies

Pe, ML(W,V ) :=
1

2
Pe, ML(W,V |0) +

1

2
Pe, ML(W,V |1). (7.1)

Suppose now once again (as we did in the beginning of Chapter 5) that the channel is
almost perfect with I(W ) > 1− γ, where γ > 0 is small. As there is a mismatch in
the decoding procedure, this time Pe, ML(W,V ) is not necessarily small even when
I(V ) > 1 − γ. For instance, take two BSCs of crossover probabilities ε = γ and
1− ε. Although both channels have high symmetric capacities, an error will occur
with high probability in case of mismatched decoding. For this reason, when there is
a mismatch in the decoding metric, we cannot always ensure reliable communication
by simply transmitting data uncoded over the channel as in the matched case. Nor
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Chapter 7. The Mismatched Capacity of Polar Codes

can we claim right away that: “low error probability and low complexity polar
decoding is also possible even when the good synthetic channels are not going to be
decoded with their own channel metrics during successive cancellation decoding”.
Thus, it is not obvious at all what could be achieved by polarizing the true channel
W and constructing a polar code for the channel when the polar decoder is not to
compute its decision functions using the true channel law.

In this chapter, we will study the performance of mismatched polar decoders. The
mismatched polar successive cancellation decoder can be described as the matched
decoder using a chain of estimators

ûi =

{
ui, if i ∈ Ac

N

f
(i)
M (yN1 , û

i−1
1 ), if i ∈ AN

,

for i = 1, . . . , N , where the decision functions f (i)
M (yN1 , û

i−1
1 ) still apply the max-

imum likelihood rule but with respect to mismatched channels V (i)
N synthesized

by polarizing a B-DMC V different than the true communication channel W . Let
CP (W,V ) denote the transmission capacity of the channel W when the outputs are
decoded with a mismatched polar decoder designed with respect to another channel
V . We will call CP (W,V ) as the polar mismatched capacity. The primary objective
of this chapter is to study the effects of a decoding mismatch on the transmission
capacity of polar coding. As hinted before in the final section of Chapter 5, we
will see that things do not generalize trivially when we deviate from the classical
scenario.

7.1 Reliable Communication with a Given Decision
Rule

In various communication scenarios, we encounter sub-optimal decoders due to par-
tial/missing channel information or practical implementation constraints (complexity,
feasibility requirements). To give an example of an obstacle on the way of optimal
decoding, we can consider the case where a high signal to noise ratio channel is used
with a large constellation with points indexed by k-bit symbols s(0...0), ..., s(1...1),
and the receiver is interested in recovering the 1st of these k bits. Then, the true
likelihood ratio requires the computation of the sums∑

b2,...,bk

W (y|s(0, b2, ..., bk)) and
∑
b2,...,bk

W (y|s(1, b2, ..., bk)),

each containing an exponential number of terms (in k). The receiver hardware
may not permit such computations, and consequently the decoder designer may be
forced to use a simpler metric V (y|1)/V (y|0) which approximates the true one. In
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7.1. Reliable Communication with a Given Decision Rule

such cases even when the receiver is informed of the true channel W , the decoding
operation proceeds on the basis of a mismatched channel V . Regardless of the
nature of the obstacle, sub-optimal decoders might perform worse than the optimal
decoders which minimize the average decoding error probability and possibly result
in capacity loss. Modeling such sub-optimal scenarios via ‘reliable communication
with a given decision rule’ and establishing coding theorems for them allows one to
assess the extent of any loss.

To allow their study within a unified framework, decoders can be categorized
based on generic definitions of the decision functions. Alpha (α) decoders are
such a class where the decision rules are based on the joint type of the codewords
and the received sequence. Given a codeword set {x1, . . . ,xM}, where xm ∈ XN

for all m = 1, . . . ,M , an α decoder assigns a received sequence y the message
i = 1, . . . ,M if and only if α(xi,y) < α(xj,y), for ∀j 6= i. If there is no such
i the decoder declares an erasure. The derivation of the error exponent is based
on a useful tool called the method of types [13]. For the single point-to-point
channel W : X→ Y, the random coding exponent of α decoders used with constant
composition codes of type P̂ and rate R, is given by Csiszár and Narayan [12] as

Er,α(R, P̂ ,W ) := inf
P̂1∈PN (P̂ ,W )

P̂2∈PN (P̂ ,P̂1)

α(P̂ P̂2)≤α(P̂ P̂1)

(
Div(P̂1‖W |P̂ ) + |I(P̂ ; P̂2)−R|†

)
, (7.2)

where P̂1(y|x), P̂2(y|x) are noise compositions, Div(P̂1‖W |P̂ ) is the conditional
divergence, and

PN(P̂ ,W ) := {P̂1(y|x) : P̂ P̂1(x, y) ∈ PN(X,Y), P̂ P̂1(y) = P̂W (y)}.

The input type P̂ and the channel transition probability W induce a joint distribution
P̂W (x, y) = P̂ (x)W (y|x), the corresponding output marginals are given by P̂W (y),
and PN(X,Y) denotes the set of joint N -types. See Definition 8.20 for the definition
of an N -type. We refer to [11] and [13] for more details on these notions. A
universal decoding rule for DMCs, initially proposed by Goppa [38], is given by
the MMI decoder belonging to the class of α decoders. The MMI decoder reduces
Er,α(R, P̂ ,W ) to [11], [13]

inf
P̂1∈PN (P̂ ,W )

(
Div(P̂1‖W |P̂ ) + |I(P̂ ; P̂1)−R|†

)
. (7.3)

As the exponent is positive if and only if R < I(P̂ ;W ), universally attainable trans-
mission rates are obtained for any DMC with finite input and output alphabets. The
problem of reliable communication under channel uncertainty is already solved for
DMCs, but only in theory. Typicality decoders are too complex to be implementable.
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Further downstream, Csiszár and Narayan [12] studied the performance of a
more restricted class of decoders using additive decision rules. A d-decoder is an
α-decoder whose decision function is computed using the additive extension of a
single letter metric d(x, y). Even though the MMI decoder is no longer treated within
this class, d-decoders still provide a broad enough framework to allow the study
of rules such as the optimal or mismatched maximum likelihood decoding rules,
or of difficult information-theoretical problems such as the Shannon capacity of a
graph and the zero-error capacity of a DMC [39]. The transmission capacity of the
channel W when decoded with an additive metric d is denoted by Cd(W ). When the
metric d corresponds to the maximum likelihood decoder with respect to a channel
V , the decoder is called a mismatched maximum likelihood decoder. We denote
the corresponding mismatched capacity by C(W,V ). No closed form single letter
expression is known for C(W,V ) or Cd(W ). Single-letter lower bounds have been
derived, but no converse for any of the lower bounds exists, except for some special
cases. Binary input binary output channels are such a case where Cd(W ) = C(W ) or
0 depending on whether or not the mismatch metric is in ‘harmony’ with the channel
behavior [12]. Another exception is the class of binary input discrete memoryless
channels. Balakirsky [40], [41] derived a converse and gave a computable expression
for Cd(W ) when W is a B-DMC.

Successive cancellation decoders sitting at the center of this chapter can be
considered as another large decoder family based on successive cancellation decoding
procedures. Offering a quite different decoding paradigm than additive decoders, a
successive cancellation decoder will decode the received output yN1 inN stages using
a chain of estimators from i = 1, . . . , N each possibly depending on the previous
ones. The estimators ûi can base their decisions on arbitrary single letter metrics of
the form di(ui, y

N
1 û

i−1
1 ). The polar successive cancellation decoder, however, owes

its fame not only for yielding polar coding theorems proving the ‘symmetric capacity
achievingness’ of polar codes for a large class of channels, but also for inheriting
the low complexity structure of the recursive code construction process. On the road
to low complexity universal decoding, we will see in this and the next chapter that
similar conclusions apply for the mismatched polar successive cancellation decoder
in many cases of interest: While extending the theory of channel polarization and
polar codes to mismatched processes, the mismatched polar decoder preserves the
low complexity structure of the original polar decoder.

What’s Coming, Doc?
The main purpose of this chapter is to answer the following questions:

• Is there an expression for CP (W,V )? Is it computable? Are there single-letter
lower bounds for CP (W,V )?
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To answer these questions, we introduce two mismatched channel parameters:

I(W,V ) :=
∑
x∈F2

∑
y∈Y

1

2
W (y|x) log

V (y|x)
1
2
V (y|0) + 1

2
V (y|1)

, (7.4)

and
D(W,V ) :=

∑
y∈Y

qW (y)
√
|∆V (y)|, (7.5)

where qW (y) and ∆V (y) are defined in (2.14) and (2.15), respectively. We will report
the following results related to these two parameters:

• Proposition 7.7 will show that the quantity I(W,V ) turns out to be, as the
symmetric capacity of the channel, a conserved quantity under the polar
transform. As a consequence, the process In(W,V ) := I(Wn, Vn) associated
to both polarization processes of the channels W and V will be, as its matched
counterpart, a martingale process. However, identifying the convergence points
of this process will be a challenging task. Although we will conjecture that,
whenever I(W,V ) > −∞, I∞(W,V ) ∈ {0, 1} a.s., we will not only rely on
this conjecture to characterize CP (W,V ).

• Instead, we will couple the analysis of In(W,V ) with the analysis of the pro-
cess Dn(W,V ) := D(Wn, Vn). Proposition 7.11 will show that Dn(W,V ) is
a bounded supermartingale converging a.s. to a {0, 1} valued random variable.
The coupling will also reveal that the convergence points of D∞(W,V ) have
the following operational meaning: D∞ = 0 a.s. refers to completely noisy
synthetic channels W (i)

N over which the genie aided mismatched maximum
likelihood decoding with respect to V (i)

N will fail with high probability, and
D∞ = 1 a.s. refers to almost perfect synthetic channels where uncoded
transmission will result in a vanishing error probability Pe, ML(W

(i)
N ,W

(i)
N ).

• Furthermore, we will show that the polarization of mismatched processes hap-
pens sufficiently fast: Theorem 7.4 will argue that the same rate of convergence
result derived in [30] for matched processes holds.

These results will constitute the basis of the achievability and coding theorems with
mismatched polar decoding: Theorem 7.18, Theorem 7.19, and Theorem 7.20 will
state the following results:

(i) CP (W,V ) equals to the fraction of indices for which D∞ = 1 a.s.,

(ii) I(W,V ) is a single letter lower bound to CP (W,V ),

(ii) This lower bound naturally generates a sequence of tighter lower bounds that
we conjecture to be asymptotically converging to CP (W,V ),
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(iii) The block decoding error probability of the mismatched polar decoder is in
the order of the square root of the block-length.

As a consequence, whenever I(W,V ) > 0, or any of the lower bounds are positive,
strictly positive communication rates can be achieved with mismatched polar decod-
ing. Following this, we will discuss how the definition of the information set of a
polar code can be adapted to the mismatched polar decoding scenario.

In the final section, we will compare CP (W,V ) with the classical mismatched
capacity C(W,V ). For the sake of the comparison, we will study the evolution
under the polar transform of ‘Balakirsky’s converse’ for B-DMCs: We will show that
C(W,V ) can be either created or lost, and in general it is not preserved after applying
the polar transform to W and V . Hence, we will not be able to conclude any ‘martin-
gale conservation and convergence laws’ for the process Cn(W,V ) := C(Wn, Vn),
as Arıkan did for In(W ) by using the one-step conservation property of I(W )1. In-
stead, we will conclude that no general order between the polar mismatched capacity
CP (W,V ) and the classical mismatched capacity C(W,V ) can be formulated: there
are examples for which CP (W,V ) > C(W,V ) and also examples where we expect
the reverse inequality to hold. Motivated by this, we will propose polarization as a
novel architecture to boost C(W,V ) since communication rates higher than C(W,V )

can be achieved in some cases by integrating the polarization architecture of Arıkan
into the classical mismatched communication scenarios.

7.2 Mismatched Conservation & Convergence
Let us consider again a single use of the B-DMC W : F2 → Y to transmit a 0. Given
that the symbol 0 is transmitted, one can derive the following upper bound to the
decoding error probability resulting from such a transmission:

Pe, ML(W,V |0) =
∑
y :

LV (y)≥1

W (y|0) +
1

2

∑
y :

LV (y)=1

W (y|0)

≤
∑
y :

LV (y)≥1

W (y|0) (log (1 + LV (y))− log 2 + log 2)

≤
∑
y∈Y

W (y|0)

(
1− log

(
2

1 + LV (y)

))
= 1− I(W,V |0),

where

I(W,V |0) =
∑
y∈Y

W (y|0) log

(
2V (y|0)

V (y|0) + V (y|1)

)
.

1This does not mean that the process Cn(W,V ) does not converge. In fact, the convergence of
Dn(W,V ) can be used to infer the convergence of Cn(W,V ).
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7.2. Mismatched Conservation & Convergence

Similarly, the error probability given that the symbol 1 is transmitted is bounded by

Pe, ML(W,V |1) ≤ 1− I(W,V |1),

where

I(W,V |1) =
∑
y∈Y

W (y|1) log

(
2V (y|1)

V (y|0) + V (y|1)

)
.

Assuming both inputs are equally likely, the average error probability satisfies

Pe, ML(W,V ) ≤ 1− I(W,V ), (7.6)

with I(W,V ) = (I(W,V |0) + I(W,V |1)) /2. Without any surprise, the matched
quantity I(W ) := I(W,W ), for V = W , gives the symmetric capacity of the
channel. We shall soon study the evolution of the mismatched process In(W,V )

associated to the channel polarization processes Wn and Vn. Prior to that, let us make
a couple of observations related to I(W,V ).

Proposition 7.1. I(W ) ≥ I(W,V ).

Proof. We show that I(W )− I(W,V ) ≥ 0. Let W0 := W (·|0) and W1 := W (·|1).
The difference can be written as:

1

2
Div (W0‖V0) +

1

2
Div (W1‖V1)−Div

(
W0 +W1

2

∥∥∥∥V0 + V1

2

)
≥ 0,

where the inequality follows from the convexity of the Kullback–Leibler divergence
Div(P1‖P2) in the pair (P1, P2).

Thus, the bound I(W,V ) ≤ 1 necessarily holds. Notice, however, that I(W,V )

can take on negative values and is in fact unbounded from below.

It is also worth mentioning that the definition of the mismatched parameter
I(W,V ) matches the generalized mutual information definition under the uniform
input distribution in Fischer [42]. For completeness, we included in Appendix 7.A
the derivation of I(W,V ) based on Gallager’s error exponent derivation technique
[5]2. It is shown in [42] that C(W,V ) ≥ I(W,V ) holds, see also [12, Remarks
i)]. Thus, |I(W,V )|† is an achievable rate with mismatched maximum likelihood
decoding. As a final observation, we show that I(W,V ) can be expressed in terms
of our favorite channel parameter ∆V (y) defined in (2.15).

2Kaplan and Shamai [43] derived a more general version of Fischer’s generalized mutual informa-
tion by using Gallager’s technique. See also Merhav et. al. [44] for the definition of this more general
expression.
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Lemma 7.2.

I(W,V ) =
∑
y∈Y

1

2
W (y|0) log (1 + ∆V (y)) +

1

2
W (y|1) log (1−∆V (y)) . (7.7)

Proof. The proof follows by noting that

1 + ∆V (y) =
2V (y|0)

V (y|0) + V (y|1)
and 1−∆V (y) =

2V (y|1)

V (y|0) + V (y|1)
,

and using these in (7.4).

Along with I(W,V ), we will also analyze the following mismatched channel
parameter D(W,V ). Note that when W = V , a few simple manipulations show that

D(W ) =
∑
y∈Y

qW (y)
√
|W (0|y)2 −W (1|y)2| =

∑
y∈Y

qW (y)
√
|W (0|y)−W (1|y)|,

where W (.|y) denotes the posterior probabilities of the channel inputs given its
output. Thus, D(W ) is somewhat similar to T (W ) =

∑
y∈Y qW (y)|W (0|y) −

W (1|y)|, the ‘variational distance’ we introduced in Chapter 5. In Section 5.3, we
did attempt to extend the convergence result of Proposition 5.2 about Tn(W ) to the
mismatched version Tn(W,V ) defined in (5.17). However, we closed the chapter
with empty hands. We will soon find out that the ‘convergence and conservation
laws’ we hoped to write through the polarization analysis of the process Tn(W,V )

will follow from the analysis of In(W,V ) and Dn(W,V ). Furthermore, the analysis
will help us prove the following two theorems.

Theorem 7.3. Let W and V be two B-DMCs. Then,

P[D∞(W,V )→ 1] ≥ I(W,V ). (7.8)

Theorem 7.4 (Rate of Convergence). For any β < 1/2,

lim
n→∞

P[Dn(W,V ) < 2−2nβ ] ≤ 1− I(W,V ). (7.9)

The main achievability and coding theorems with mismatched polar decoding,
which we will state in Section 7.3, will rely heavily on the above technical results.
Their proofs are given in Subsection 7.2.4. Till then, we have a long way to go.

124



7.2. Mismatched Conservation & Convergence

7.2.1 A ‘Conservation Law’

We begin by applying the useful ∆ trick to derive suitable expressions for I(W−, V −)

and I(W+, V +) in the next two lemmas.

Lemma 7.5. Let W and V be two B-DMCs. Then,

I(W−, V −) =
1

4

∑
y1y2

W (y1|0)W (y2|0) log (1 + ∆V (y1)∆V (y2))

+
1

4

∑
y1y2

W (y1|0)W (y2|1) log (1−∆V (y1)∆V (y2))

+
1

4

∑
y1y2

W (y1|1)W (y2|0) log (1−∆V (y1)∆V (y2))

+
1

4

∑
y1y2

W (y1|1)W (y2|1) log (1 + ∆V (y1)∆V (y2)) . (7.10)

Proof. Using the definition of the minus transformation in (4.1), the proof follows
upon observing

1 + ∆V (y1)∆V (y2) =
2V (y1|0)V (y2|0) + 2V (y1|1)V (y2|1)∑

u

V (y1|u)V (y2|u⊕ 1) + V (y1|u⊕ 1)V (y2|u)
,

1−∆V (y1)∆V (y2) =
2V (y1|0)V (y2|1) + 2V (y1|1)V (y2|0)∑

u

V (y1|u)V (y2|u⊕ 1) + V (y1|u⊕ 1)V (y2|u)
.

Lemma 7.6. Let W and V be two B-DMCs. Then,

I(W+, V +) =
1

4

∑
y1y2

W (y1|0)W (y2|0) log

(
1 +

∆V (y1) + ∆V (y2)

1 + ∆V (y1)∆V (y2)

)
+

1

4

∑
y1y2

W (y1|0)W (y2|1) log

(
1 +

∆V (y1)−∆V (y2)

1−∆V (y1)∆V (y2)

)
+

1

4

∑
y1y2

W (y1|1)W (y2|0) log

(
1− ∆V (y1)−∆V (y2)

1−∆V (y1)∆V (y2)

)
+

1

4

∑
y1y2

W (y1|1)W (y2|1) log

(
1− ∆V (y1) + ∆V (y2)

1 + ∆V (y1)∆V (y2)

)
. (7.11)

Proof. Using the definition of the plus transformation in (4.2), the proof follows
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upon observing

1 +
∆V (y1) + ∆V (y2)

1 + ∆V (y1)∆V (y2)
=

2V (y1|0)V (y2|0)∑
u

V (y1|u)V (y2|u)
,

1− ∆V (y1) + ∆V (y2)

1 + ∆V (y1)∆V (y2)
=

2V (y1|1)V (y2|1)∑
u

V (y1|u)V (y2|u)
,

1 +
∆V (y1)−∆V (y2)

1−∆V (y1)∆V (y2)
=

2V (y1|0)V (y2|1)∑
u

V (y1|u)V (y2|u⊕ 1)
,

1− ∆V (y1)−∆V (y2)

1−∆V (y1)∆V (y2)
=

2V (y1|1)V (y2|0)∑
u

V (y1|u)V (y2|u⊕ 1)
.

Now, using the expressions (7.7), (7.10), and (7.11) derived in Lemmas 7.2, 7.5,
and 7.6, respectively, we can readily see that the polar transform conserves the
quantity I(W,V ).

Proposition 7.7 (Conservation Property). For any two B-DMCs W and V ,

I(W−, V −) + I(W+, V +) = 2I(W,V ).

This result lays the foundation of the subsequent martingale argument.

Proposition 7.8 (Conservation Law). The process In(W,V ) is a bounded martingale
such that In(W,V ) ≤ 1, for all n ≥ 0. Furthermore, the process converges a.s. to a
limiting random variable I∞(W,V ) such that E[I∞(W,V )] ≥ I(W,V ) holds.

Proof. The martingale property follows by Proposition 7.7 and the boundedness
by Proposition 7.1. The remaining claims hold by general results on bounded
martingales upon noticing that 1 − I(W,V ) is a non-negative supermartingale,
see [27, 11.7].

Although the above proposition tells us In(W,V ) will converge a.s., we do not
know to which values the convergence will be. In Subsection 7.2.3, we will give our
conjecture regarding this point.

7.2.2 A ‘Convergence Law’

Let us put aside I(W,V ) and consider back the operation of the polar decoder
in terms of the channel parameter ∆, our savior, instead of the likelihood ratio.
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7.2. Mismatched Conservation & Convergence

The genie-aided successive cancellation decoder can as well start by computing N
numbers ∆(y1) . . .∆(yN) taking values in the interval [−1, 1], and then transform
these numbers using a Fast Fourier Transform like circuitry, see [2, Figure 10], into a
final set of N numbers corresponding to the ∆ parameters of the synthetic channels.
Due to the recursive nature of the operations, the decoder operates each time instant
on two numbers and performs either the minus operation on the two numbers, say
∆1 and ∆2, by computing

∆− = ∆1∆2,

or one of the plus operations by computing

∆+1 =
∆1 + ∆2

1 + ∆1∆2

, ∆+2 =
∆1 −∆2

1−∆1∆2

.

While the minus operation is a straightforward multiplication of two numbers, both
plus operations look more complex. The following lemma will help us to obtain a
simple upper bound on these seemingly complex operations.

Lemma 7.9. For a, b in the interval [0, 1],√
|a2 − b2|
1− a2b2

≤
√

a2 + b2

1 + a2b2
≤ a+ b− ab.

Proof. For the first inequality, we can assume without loss of generality that x =

a2 ≥ b2 = y, and we only need to check

x− y
1− xy

≤ x+ y

1 + xy
,

for x, y ∈ [0, 1], or equivalently, (x− y)(1 + xy) ≤ (x+ y)(1− xy). But this last
simplifies to x2y ≤ y, which clearly holds.

For the second inequality, squaring both sides and multiplying by (1 + a2b2) we
see that the inequality is equivalent to

(a+ b− ab)2(1 + a2b2)− a2 − b2 ≥ 0.

The left hand side factorizes as a(1− a)b(1− b)
(
2− ab(1 + a+ b− ab)

)
. Thus the

lemma will be proved once we show that

t(1 + s− t) ≤ 2,

where s = a + b and t = ab. Note that 0 ≤ s ≤ 2 and 0 ≤ t ≤ 1. Thus,
t(1 + s− t) ≤ t(3− t) ≤ 2.
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Now, if we take a =
√
|∆1| and b =

√
|∆2| in Lemma 7.9, we get√∣∣∣∣ ∆1 + ∆2

1 + ∆1∆2

∣∣∣∣ ≤√|∆1|+
√
|∆2| −

√
|∆1|

√
|∆2|, (7.12)

and √∣∣∣∣ ∆1 −∆2

1−∆1∆2

∣∣∣∣ ≤√|∆1|+
√
|∆2| −

√
|∆1|

√
|∆2|. (7.13)

This brings us to the next lemma.

Lemma 7.10. Suppose ∆1, ∆2 are independent [−1, 1] valued random variables
with E

[√
|∆i|

]
= µi. Then

E

[√∣∣∣∣ ∆1 + ∆2

1 + ∆1∆2

∣∣∣∣
]
≤ µ1 + µ2 − µ1µ2,

and

E

[√∣∣∣∣ ∆1 −∆2

1−∆1∆2

∣∣∣∣
]
≤ µ1 + µ2 − µ1µ2.

Proof. The lemma follows by taking the expectations of both sides of (7.12) and
(7.13) and noting the independence of ∆1 and ∆2.

Those familiar with the polar coding literature could by now foresee what we are
about to state. In the following proposition, we state the convergence properties of
the process Dn(W,V ).

Proposition 7.11 (Loss & Convergence Law). Let W and V be B-DMCs. Then, the
process Dn(W,V ) is a bounded supermartingale which converges a.s. to a {0, 1}
valued limiting random variable D∞(W,V ).

Proof. We will prove that

D(W+, V +) +D(W−, V −) ≤ 2D(W,V )

holds after a single step. The general result showing the process is a supermartingale
will follow by the recursive structure. From (6.4) and (6.5), we know that

∆V −(Y1Y2) = ∆V (Y1)∆V (Y2), (7.14)

∆V +(Y1Y2U1) =
∆V (Y1) + (−1)U1∆V (Y2)

1 + (−1)U1∆V (Y1)∆V (Y2)
, (7.15)
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7.2. Mismatched Conservation & Convergence

where Y1 ∼ qW (y1) and Y2 ∼ qW (y2). So, we get

D(W−, V −) = E
[√
|∆V − |

]
= E

[√
|∆V |

]2

= D(W,V )2,

and

D(W+, V +) = E
[√
|∆V +|

]
≤ 2E

[√
|∆V |

]
− E

[√
|∆V |

]2

= 2D(W,V )−D(W,V )2,

where the inequality holds by Lemma 7.10. As
√
|∆Vn| ∈ [0, 1], this proves that the

process is a bounded supermartingale, and by general results on bounded martingales,
the process converges a.s. to a limiting random variable D∞(W,V ) under the
distribution qWn . One can prove the convergence is to {0, 1} using the squaring
property of the minus transformation in a similar fashion as in the proof of [2,
Proposition 9] of the convergence points of the Bhattacharyya process of the synthetic
channels associated to the polar transformations.

We now deduce the following result on the distribution of ∆V∞ .

Corollary 7.12. The distribution of ∆V∞ measured under any (matched or mis-
matched) output distribution is supported at {−1, 0, 1}.

Proof. The corollary follows by Proposition 7.11 as the convergence points of
Dn(W,V ) are the extreme points of the interval from which the process

√
|∆Vn|

takes values.

7.2.3 Detective, Smells Like a Mystery

So far, we did analyze In(W,V ) and Dn(W,V ) independently. In the following
lemma, we first show how these two channel parameters are coupled in general.

Lemma 7.13. I(W,V ) ≤ 1

ln 2
D(W,V ).

Proof. The result follows from the inequalities

log(1 + ∆) ≤
√
|∆|
/

ln 2 and log(1−∆) ≤
√
|∆|
/

ln 2, for ∆ ∈ [−1, 1].

Next, we state a conjecture about the convergence points of In(W,V ) and about
how the recursive application of the polar transform affects the coupling between
In(W,V ) and Dn(W,V ) in the limit.
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Conjecture 7.14. Let W and V be two B-DMCs such that I(W,V ) > −∞. Then,
I∞(W,V ) is a.s. {0, 1} valued with

P[I∞(W,V )→ 1] = P[D∞(W,V )→ 1]. (7.16)

To simplify the analysis, we introduce the next definition.

Definition 7.15. When for some permutation π on the output alphabet Y satisfying
π = π−1, we simultaneously have W (y|0) = W (π(y)|1) and V (y|0) = V (π(y)|1)

for all output letters y, we say that the channels are symmetrized by the same
permutation.

Heuristic Proof. Let us discuss some ideas for proving the conjecture. In trying to
prove that the process In(W,V ) cannot converge to any point in the interval (0, 1),
a natural strategy is to follow the proof method for the matched case which shows
that In(W ) cannot converge to any point in the interval (0, 1). There, two properties
are used: (i) In(W ) is a martingale, and (ii) for any γ > 0 there is a ξ > 0 such
that |I(W−)− I(W )| < ξ implies that I(W ) 6∈ (γ, 1− γ). The martingale property
already holds in the mismatched case, so to prove the conjecture it would be sufficient
to show that the second property holds for the mismatched case too, i.e., for any
γ > 0 there is a ξ > 0 such that

|I(W,V )− I(W−, V −)| < ξ implies I(W,V ) 6∈ (γ, 1− γ). (7.17)

For simplicity, let us assume W and V are both symmetrized by the same permu-
tation. Then using this symmetry in Lemma 7.2, we get

I(W,V ) =
∑
y∈Y

W (y|0) log (1 + ∆V (y)) .

In this case, the statement in (7.17) is equivalent to showing that when ∆1 and ∆2

are i.i.d. random variables taking values in [−1, 1],

|E[log(1 + ∆1)]−E[log(1 + ∆1∆2)]| < ξ implies E[log(1 + ∆1)] 6∈ (γ, 1−γ).

(7.18)
In other words, the pair (I, I−) := E

[(
log(1 + ∆1), log(1 + ∆1∆2)

)]
avoids the

vicinity of the line segment connecting (0, 0) to (1, 1) except at the end-points. Fur-
thermore, since we want to show this result when the process Dn(W,V ) converges to
1, it is sufficient to prove this for random variables ∆1 that satisfy E[|∆1|] > 1− ξ′.

Unfortunately, this approach allows us to construct, for any γ > 0, a ∆ random
variable giving a counterexample to the statement (7.18). The example is as follows:
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7.2. Mismatched Conservation & Convergence

• The distribution of ∆ is supported on four points −(1− δ1), −(1− δ2), and
(1− δ1), (1− δ2). The probability masses p, 0, 0 and 1−p on these four points
are chosen to make I = 1/2,

p = p(δ1, δ2) =
log(2− δ2)− (1/2)

log(2− δ2)− log δ1

.

• One then sees that

I− = I−(δ1, δ2) = p2 log(1 + (1− δ1)2) + (1− p)2 log(1 + (1− δ2)2)

+ 2p(1− p) log(δ1 + δ2 − δ1δ2).

• Requiring I− = I = 1/2 constrains (δ1, δ2) to lie on a one dimensional curve;
furthermore this curve passes through the origin— this can be seen either
via a numerical plot, or approximating p and I− for small values of δ1, δ2

and observing that δ1 ≈ δ2
2/2 will yield an I− value of 1/2. Consequently,

it is possible to choose δ1 and δ2 to be arbitrarily small and thus make the
D = E[|∆|] as close to 1 as desired while keeping I = I− = 1/2.

At this point, the reader may be curious as to why we discuss this strategy to proving
the conjecture only to show that the strategy fails. The reason is two-fold: (i) the
strategy is the most direct way to the proof and so we have eliminated a false lead; (ii)
even though this ‘one-step’ reasoning fails, it is possible that a ‘two-step’ reasoning,
namely imposing the condition that not only I(W−, V −) is close to I(W,V ) but
also I(W−−, V −−) and I(W+−, V +−) are also close to I(W,V ), and finding the set
of possible values of I(W,V ) under this condition (together with the D′s all being
close to 1) may succeed.

7.2.4 Proofs of Theorem 7.3 and Theorem 7.4

We have come a long way, but at last we are ready to prove the theorems. Thanks to
the previous derivations and results, the proofs will be done at one fell swoop!

Proof of Theorem 7.3. By Proposition 7.8, we know that E[I∞(W,V )] ≥ I(W,V )

holds. By Lemma 7.13, we have D∞(W,V ) ≥ I∞(W,V ) ln 2. Since by Proposition
7.11, D∞ is a.s. {0, 1} valued, this implies D∞(W,V ) ≥ I∞(W,V ), and conse-
quently, P[D∞(W,V )→ 1] = E[D∞(W,V )] ≥ E[I∞(W,V )] ≥ I(W,V ).

Proof of Theorem 7.4. The result follows by [30, Theorem 1] as the conditions (z.1),
(z.2), and (z.3) stated in [30] hold taking I0 = P [D∞(W,V ) = 0] ≤ 1 − I(W,V )

and Zn = Dn(W,V ).
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7.3 Achievability/Coding Theorems with Mismatched
Polar Decoding

Let Pe(W,V,AN) denote the best achievable block decoding error probability over
the ensemble of all possible choices of the set Ac

N under mismatched polar successive
cancellation decoding with respect to the channel V when the true channel is W .
The following two propositions derive upper bounds to this error probability.

Proposition 7.16.

Pe(W,V,AN) ≤
∑
i∈AN

Pe, ML(W
(i)
N , V

(i)
N ),

where Pe, ML(W
(i)
N ,W

(i)
N ) is the error probability of the ‘genie-aided’ mismatched

decoder for the i-th synthetic channel. See (7.1) for the definition of Pe, ML(W,V ).

Proof. Following similar derivations to the analysis carried in [2] for the matched
counterpart, we can upper bound this error probability by:

Pe(W,V,AN) = PW

[ ⋃
i∈AN

{
Û i−1

1 = ui−1
1 , Ûi 6= ui

}]

= PW

[ ⋃
i∈AN

{
Û i−1

1 = ui−1
1 , f

(i)
M (yN1 , Û

i−1
1 ) 6= ui

}]

≤ PW

[ ⋃
i∈AN

{
f

(i)
M (yN1 , u

i−1
1 ) 6= ui

}]
≤
∑
i∈AN

Pe, ML(W
(i)
N , V

(i)
N ).

Proposition 7.17.

Pe(W,V,AN) ≤
∑
i∈AN

(
1− I(W

(i)
N , V

(i)
N )
)
. (7.19)

Proof. The upper bound in Proposition 7.16 can be further extended by invoking for
each of the synthetic channels the bound derived in (7.6), i.e.,

Pe, ML(W
(i)
N , V

(i)
N ) ≤ 1− I(W

(i)
N , V

(i)
N ).

From this, (7.19) follows.

Now, we list consecutively three theorems. Their proofs are given at the end.
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7.3. Achievability/Coding Theorems with Mismatched Polar Decoding

In the first theorem, we give an expression for the polar mismatched capacity and
provide a family of improving lower bounds to this capacity.

Theorem 7.18. Let W and V be two B-DMCs. Then, the polar mismatched capacity
is given by

CP (W,V ) = P[D∞(W,V )→ 1].

Furthermore, the following family of lower bounds

P[D∞(W,V ) = 1] ≥ 1

2n

∑
sn∈{+,−}n

∣∣I(W sn , V sn)
∣∣† (7.20)

holds for all n = 0, 1, . . ..

The next theorem complements the previous achievability theorem with a coding
theorem for B-DMCs with mismatched polar decoding.

Theorem 7.19. For anyR < CP (W,V ) withCP (W,V ) > 0, there exists a sequence
of information sets AN ⊂ {1, . . . , N}, for N = 2n with n = 0, 1, . . ., such that
|AN | ≥ bNRc and

Pe(W,V,AN) = O(2−
√
N). (7.21)

In a final theorem, we claim that the family of lower bounds in (7.20) is indeed
asymptotically tight.

Theorem 7.20. Let W and V be two B-DMCs. Under Conjecture 7.14, the polar
mismatched capacity equals

CP (W,V ) = P[I∞(W,V )→ 1] = lim
n→∞

1

2n

∑
sn∈{+,−}n

∣∣I(W sn , V sn)
∣∣†.

This last theorem should rather be interpreted as an elegant argument for the
polar mismatched capacity. Otherwise, we believe it is not crucial from a practical
point of view the moment we know that CP (W,V ) = P[D∞(W,V ) = 1]. In fact,
identifying the indices of the ‘good’ synthetic channels would require the same
type of computations whether the I parameters or D parameters of the channels are
involved in the procedure. Now, it is time to prove the theorems.

Proof of Theorem 7.18. Let P
W

(i)
N (.|ui)

denote the probability of a set weighted un-

der the distribution W (i)
N (.|ui), for ui ∈ {0, 1}. The mismatched decoding error
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probability over the i-th synthetic channel is given by

Pe, ML(W
(i)
N , V

(i)
N ) = P

W
(i)
N (.|0)

[
∆
V

(i)
N
< 0
]

+
1

2
P
W

(i)
N (.|0)

[
∆
V

(i)
N

= 0
]

+ P
W

(i)
N (.|1)

[
∆
V

(i)
N
> 0
]

+
1

2
P
W

(i)
N (.|1)

[
∆
V

(i)
N

= 0
]
.

We will first study the implication of the result about the convergence of the process
Dn on the convergence of the process Pe, ML(Wn, Vn). Recall that by Proposition
7.11, D∞ ∈ {0, 1} a.s. We will consider the cases Dn → 0 and Dn → 1 separately
and show that the two cases still correspond to a bad channel and good channel,
respectively, in the mismatched scenario:

1. First note that E[|∆n|] → 0 holds when Dn → 0 and the convergence is to
0 both when the expectation is taken under Wn(.|0) and Wn(.|1). It is clear
that Pe, ML(Wn, Vn) → 1 in this case, and thus, the corresponding synthetic
channels are bad for communication. In addition, we also notice that the value
of In(W,V ) can only converge to a non-positive value over these channels as
by Jensen’s inequality we have

EWn(.|0)[log(1 + ∆Vn)] ≤ 0 and EWn(.|1)[log(1−∆Vn)] ≤ 0.

2. To show that Dn → 1 corresponds to good channels we proceed as follows:
for each of the N = 2n channels at the n-th stage of polarization, compute
P
W

(i)
N (.|0)

[
∆

(i)
VN
∈ [−1,−1 + ξ)

]
, and for β ∈ (0, 1), let Mn(β) be the fraction

of channels for which this value is larger than β:

Mn(β) :=
1

2n
#
{
i ∈ {1, . . . , N = 2n} :

P
W

(i)
N (.|0)

[
∆
V

(i)
N
∈ [−1,−1 + ξ)

]
> β

}
.

Note that as Dn converges a.s. to a {0, 1} valued random variable,

PWn(.|0) [∆Vn ∈ (−1 + ξ,−1 + η)]→ 0;

thus, for large n, the value of Mn(β) is independent of the choice of ξ. Fur-
thermore, by the martingale property of In:

I0 := I(W,V ) =
1

2

1

2n

2n∑
i=1

E
W

(i)
N (.|0)

[
log
(

1 + ∆
V

(i)
N

)]
+

1

2

1

2n

2n∑
i=1

E
W

(i)
N (.|1)

[
log
(

1−∆
V

(i)
N

)]
︸ ︷︷ ︸

≤ 1
2

log 2

.
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Thus,

I0 ≤
1

2
Mn(β) (β log ξ + log 2) +

1

2
(1−Mn(β)) log 2 +

1

2
log 2

≤ 1

2
Mn(β)β log ξ +

3

2
log 2.

By the remark that Mn(β) is not changed by the choice of ξ, we conclude that
for any ξ > 0, Mn(β) must vanish as n gets large, for otherwise, the right
hand side will fail to be larger than I0 for small enough ξ. Consequently when
Dn → 1, PWn(.|0) [∆Vn ∈ (1− ξ, 1]]→ 1. In a similar way, the argument can
be repeated to show that PWn(.|1) [∆Vn ∈ (−1,−1 + ξ]] → 1 holds as well
in this case. Thus, the value of Pe, ML(Wn, Vn) must be vanishing over the
synthetic channels for which Dn → 1 and the channels are good.

Now, consider the sequence of information sets defined as

A
γ
N(W,V ) :=

{
i ∈ {1, . . . , N} : D(W

(i)
N , V

(i)
N ) ≥ 1− γ

}
, (7.22)

where N = 2n with n = 1, 2, . . . is the block-length and γ ∈ (0, 1) is a desired
threshold. By Proposition 7.16, the mismatched decoding error probability over the
channel W of a polar code with information set Aγ

N(W,V ), for a given N and γ, and
using a mismatched successive cancellation decoder operating with the parameters
of the channel V will be upper bounded by

Pe(W,V,A
γ
N(W,V )) ≤ 1

2N

∑
i∈AγN (W,V )

Pe, ML(W
(i)
N , V

(i)
N ),

Taking N → ∞ and γ → 0, we get Pe(W,V,A
γ
N(W,V )) → 0 via the previous

discussion. We conclude that CP (W,V ) = P[D∞(W,V )→ 1] holds as claimed.

Next, we prove that the family of lower bounds in (7.20) holds. To begin with,
we know that

P[D∞(W,V ) = 1] ≥ I(W,V ), (7.23)

by Theorem 7.3. Next, we discuss a trivial improvement of this lower bound. The
bound in (7.23) can be improved initially as

P[I∞(W,V ) = 1] ≥
∣∣I(W,V )

∣∣†,
proving (7.20) for n = 0. Going a further step, we can improve the bound to

P[I∞(W,V ) = 1] ≥ 1

2

∣∣I(W−, V −)
∣∣† +

1

2

∣∣I(W+, V +)
∣∣†,
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and more generally to

P[I∞(W,V ) = 1] ≥ 1

2n

∑
sn∈{+,−}n

∣∣I(W sn , V sn)
∣∣†,

for any n = 0, 1, . . .. This concludes the proof.

Proof of Theorem 7.19. Consider once more the sequence of information sets we
defined in (7.22) in the previous proof. The claim on the construction of Aγ

N(W,V )

follows by Theorem 7.18 and Theorem 7.4 (now, we can replace the left hand side
of (7.9) with CP (W,V )); selecting the threshold γ ' 2−

√
N ensures |AγN(W,V )| ≥

NR, for R < CP (W,V ). Taking N → ∞, we get γ → 0, and we know from
the proof of Theorem 7.18 that Pe(W,V,A

γ
N(W,V )) → 0. To prove (7.21), we

simply note that the speed of polarization of Dn(W,V ) we found to be O(2−
√
N)

also determines the speed of polarization of the resulting mismatched polar decoding
error probability process. However, to achieve a positive rate, CP (W,V ) > 0 must
hold. The family of lower bounds in (7.20) show that, in fact, I(W,V ) > 0 is a
sufficient condition for CP (W,V ) > 0.

Proof of Theorem 7.20. The result follows by Theorem 7.18 and Conjecture 7.14.
Observe that once I(W sn , V sn) ≈ 1 for a particular synthetic channel, then the mis-
matched capacity of the channel, which should be larger, satisfies C(W sn , V sn) ≈ 1.
On the other hand, as in general I(W sn , V sn) is only a lower bound to C(W sn , V sn),
we cannot conclude at first glance that whenever I(W sn , V sn) ≈ 0 holds for a partic-
ular synthetic channel, we also have C(W sn , V sn) ≈ 0. Nevertheless, we conclude
so by the conjecture.

7.3.1 Code Construction

Here, we discuss how the information sets described in (7.22) can be constructed un-
der various communication scenarios. Suppose first that the exact channel knowledge
is not available and feedback is allowed at the decoder. Assume the code designer
not knowing the actual communication channel, say W , decides to implement the
polar decoder with respect to a channel V . To handle this scenario, we propose to
use the original polar code construction idea of Arıkan [2] in an ‘online’ fashion.
The method is based on the estimation of the parameters D(W

(i)
N , V

(i)
N ) by a Monte

Carlo approach. To that end, the encoder needs to perform multiple transmissions of
an input and the decoder has to compute an estimate of the parameters by averaging.
Once the information set is constructed, the decoder shall reveal this information to
the encoder by feedback. If the encoder knows the channel W , the estimation of the
parameters D(W

(i)
N , V

(i)
N ), can be carried ‘offline’ at the encoder and feedback from
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7.3. Achievability/Coding Theorems with Mismatched Polar Decoding

the decoder will not be necessary. If besides the encoder, the decoder also knows the
true channel, the information set can be computed ‘offline’ at the decoder side as
well.

7.3.2 Channel Symmetry

So far, we only discussed the specification of the information set. However, polar
coding also relies on the specification of the values of the frozen inputs. Recall that
in the matched case, when the channel is symmetric, the frozen values can simply be
fixed to 0 as any other choice of the frozen values is as good as this one. We will now
show that the notion of channel symmetry defined in Definition 7.15 also simplifies
considerably the task when there is a decoding mismatch.

The following proposition can be proved using the symmetry properties derived
in [2, Corollary 1].

Proposition 7.21. Let W : F2 → Y and V : F2 → Y be B-DMCs symmetrized by the
same permutation. Then, for any uN1 ∈ {0, 1}N ,

Pe, ML(W
(i)
N , V

(i)
N ) =

∑
yN1 ∈YN

WN(yN1 |uN1 )1
{
L
V

(i)
N

(yN1 , u
i−1
1 ) > 1

}
+

1

2

∑
yN1 ∈YN

WN(yN1 |uN1 )1
{
L
V

(i)
N

(yN1 , u
i−1
1 ) = 1

}
.

From the last proposition, we deduce that if the true channel and the mismatched
channel used in the decision procedure are symmetrized by the same permutation,
all choices of the frozen values are equally favorable, and thus, the values can simply
be all fixed to 0.

7.3.3 Complexity

Polar codes with mismatched polar decoding use exactly the same encoding and
decoding architectures as of polar codes with matched polar decoding. Therefore,
as explained by Arıkan [2], these components of the communication system can be
implemented in O(N logN) complexity.

As for the complexity of the code construction, no general low-complexity algo-
rithm exists for the Monte Carlo approach (online or offline). The same complexity
issues which were raised in [3], [31] after Arıkan published his work [2] do ap-
ply. Nevertheless, we believe computationally more efficient alternatives can be
proposed for the offline Monte Carlo approach by extending the efficient code con-
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struction method proposed in [3] to the mismatched case. This topic requires further
investigation.

7.4 Polar vs. Classical Mismatched Capacity
Some readers might be suspicious upon reading the title of this section of whether
this will be a fair comparison or not. Let us share our opinion on this matter. By
the converse to the channel coding theorem, we know that no matter what coding
scheme (encoder and decoder) we are using, we cannot communicate at a rate higher
than the capacity of the channel. In that respect, C(W ) is the fundamental channel
parameter. On the other hand, if we initially force the decoder to follow a specific
decision rule during the decoding procedure, a new channel parameter is likely to
acquire an operational meaning. As a response to setting the decoding rule over the
channel W to mismatched maximum likelihood decoding with respect to another
channel V , the literature would ‘replace’ the capacity of the channel W with the
mismatched capacity C(W,V ), and for B-DMCs, point out a computable expression
to it due to Balakirsky [40]. In the same spirit, introducing a mismatch in the
decoding procedure of the polar decoder, we have just pointed out in the previous
section an expression for the polar mismatched capacity CP (W,V ). In addition, we
observe that the decision functions used by the mismatched polar decoder resemble
mismatched maximum likelihood decision functions. This particular resemblance
due to the nature of the mismatch introduced in both of the decoding rules justifies
our fair reflex for comparing CP (W,V ) with C(W,V ). We note, however, that the
mismatched maximum likelihood decoder and the mismatched polar decoder are
different since the decision functions of the mismatched polar decoder treat the
future frozen bits as random variables3. In this section, we will see that despite the
similitude, the behavior of both sub-optimal decoders are quite different in nature; the
mismatched polar decoder might outperform the mismatched maximum likelihood
decoder in some cases.

7.4.1 Review of Balakirsky’s Results

In this section, we revisit the results of [40] on the mismatched capacity of B-DMCs.
Let W : F2 → Y be a B-DMC. We fix an input distribution P (x) on X. Some
standard definitions follow:

H(PW ) := −
∑
y∈Y

PW (y) logPW (y),

3Note that the same comment is made in [2] regarding the similarity between the polar successive
cancellation decoding rule and the maximum likelihood decoding rule which is optimal.
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with PW (y) =
∑
x∈X

P (x)W (y|x).

H(P |W ) := −
∑
y∈Y

P (x)W (y|x) logW (y|x).

So, I(P ;W ) = H(PW )−H(W |P ).

The following result due to Balakirsky gives a closed form expression for Cd(W )

when W is a B-DMC.

Theorem 7.22. [40] For any B-DMC W : F2 → Y and any d(x, y),

Cd(W ) = max
P

Id(P ;W ),

where
Id(P ;W ) := min

W ′ :
PW ′(y)=PW (y)
d(P,W ′)≤d(P,W )

I(P ;W ′),

with d(P,W ) :=
∑
x∈F2

∑
y∈Y

P (x)W (y|x)d(x, y).

Using this closed from expression, Balakirsky studies the computation of Cd(W )

for symmetric B-DMCs when the d-decoder preserves the symmetry structure of the
communication channel. In the following two examples, we revisit his examples.

Example 7.23. [40, Examples, Statement 1] For a binary input binary output chan-
nel W and any given d-decoding rule Id(P,W ) = I(P,W )1{A} holds with

A = {sign (1−W (0|0) +W (1|1))

= sign (d(0, 0) + d(1, 1)− d(0, 1)− d(1, 0))}.

So, Cd(W ) = C(W ) or 0.

Example 7.24. [40, Examples, Statement 2] Let W : F2 → Y be a B-DMC with
Y = {0, 1, . . . , L− 1}. Suppose the transition probability matrix of the channel W
and the corresponding metrics for the additive d-decoder are given by

W =

[
w0 w1 . . . wL−1

wL−1 wL−2 . . . w0

]
,

and

d =

[
d0 d1 . . . dL−1

dL−1 dL−2 . . . d0

]
. (7.24)
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Then, the mismatched capacity is achieved for Punif on {0, 1} and is given by

Cd(W ) = H(PunifW )−H(W ′|Punif),

where W ′ is given by

W ′ =

[
w′0 w′1 . . . w′L−1

w′L−1 w′L−2 . . . w′0

]
,

with

w′y = (wy + wL−1−y)
e−α.dy

e−α.dy + e−α.dL−1−y
, (7.25)

for y ∈ Y, and the parameter α ≥ 0 is chosen to satisfy the condition:∑
y∈Y

w′ydy =
∑
y∈Y

wydy. (7.26)

7.4.2 No Conservation Property for Balakirsky’s Converse

For the rest of this section, we restrict the additive decoders to mismatched maximum
likelihood decoders. The goal of this subsection is to show that:

(g1) There are pairs of B-DMCs W : F2 → Y and V : F2 → Y for which

C(W+, V +) + C(W−, V −) > 2C(W,V ).

(g2) Furthermore, there exist cases for which

CP (W,V ) > C(W,V ).

(g3) However, there are also cases for which

C(W+, V +) + C(W−, V −) < 2C(W,V ).

To that end, we shall study the evolution of the mismatched capacity of B-DMCs
under the one-step polar transform when the communication channel and the mis-
matched channel used in the decision procedure satisfy a certain symmetry property.

Let V be a B-DMC symmetrized by the same permutation as the channel W
defined in Example 2. Recall that we introduced this notion of symmetry in Definition
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7.15. Suppose the transition probability matrix of V is given by

V =

[
v0 v1 . . . vL−1

vL−1 vL−2 . . . v0

]
.

Then, the corresponding additive decoder can be defined as in (7.24) by letting
dy = − log vy, for y = 0, . . . , L− 1. In this case, the mismatched capacity equals

C(W,V ) = I(Punif,W
′)

where the transition probabilities of W ′ can be computed by replacing the relations
in (7.25) and (7.26) with the following relations:

w′j = (wj + wL−1−j)
vαj

vαj + vαL−1−j
,∑

y∈Y

w′y log vj =
∑
y∈Y

wy log vj.

We begin with an example which will help us achieve our first two goals by
illustrating specific pairs of BSCs for which C(W,V ) = 0, but CP (W,V ) = I(W ).

Example 7.25. Let W be a BSC of crossover probability p ∈ (0, 0.5) and V be the
BSC of crossover probability 1− p. In this example, we will answer the following
three questions:

(q1) Suppose we transmit over the channel W , but do mismatched maximum
likelihood decoding with respect to the channel V as shown in Figure 7.1.
What is the mismatched capacity C(W,V )?

(q2) Suppose we first apply the polar transform to synthesize the channels W+,
W− and V +, V −, and then we communicate using the architecture given in
Figure 7.2. What is the mismatched capacity C(W−, V −) in this case?

(q3) Suppose we communicate over the channel W using polar coding, and we do
mismatched polar decoding with respect to the channel V . The communication
architecture is shown in Figure 7.3. What is the mismatched capacity of polar
coding CP (W,V )?

Here are the corresponding answers:

(a1) In this case, the crossover probabilities of the BSCs are not in harmony. By
the result given in Example 7.23, we conclude that C(W,V ) = 0.

(a2) It is known that after applying the minus polar transform to a BSC of crossover
probability α ∈ [0, 1], the synthesized channel is also a BSC, and with
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Figure 7.1: Classical mismatched decoding.

m−

m+

Y1

Y2

Enc−

Enc+

U1

U2

W

W

Y1

Y2

ML
for V −

m̂−

U1(m̂
−)

Y1

Y2

ML
for V +

m̂+

Figure 7.2: One-step polarization architecture for mismatched decoding.
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Figure 7.3: Polar mismatched decoding.

crossover probability 2α(1−α). So, both W− and V − are the same BSC with
crossover probability p− = 2p(1− p). Therefore, the mismatched capacity of
the minus channel equals its matched capacity, i.e., C(W−, V −) = I(W−) =

1− h2(p−). As a result,

C(W+, V +) + C(W−, V −) ≥ C(W−, V −) > 2C(W,V ) = 0,

and we conclude that, in this example, the polar transform strictly improves
C(W,V ). We have thus achieved our first goal (g1).

(a3) We found that V − = W−. It is easy to see that while V + 6= W+, one has
V +− = W+−, and indeed, V ++− = W++−, . . . . Consequently, for any
sequence sn ∈ {−,+}n of polar transformations, V sn = W sn , except when
sn = + · · ·+. Thus, C(W sn , V sn) = I(W sn) for all sn 6= + · · ·+ and we see
that CP (W,V ) = I(W ). Thanks to this result, we also reached our second
goal (g2).

142



7.4. Polar vs. Classical Mismatched Capacity

gain
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0.1 1
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Figure 7.4: C(W,V ) vs. gain after a one-step polar transform for |Y| = {2, 3}.

gain
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0.1 1
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Figure 7.5: C(W,V ) vs. gain after a one-step polar transform for |Y| = 4.

After such a motivating example, one is curious about whether the improvement
we illustrated for the specific pair of BSCs extend to other pairs of mismatched
B-DMCs as well: Does polarization create C(W,V )? To satisfy one’s curiosity, we
now present the results of the numerical experiments we carried for random pairs of
channels with various output alphabet sizes. Let

gain := C(W+, V +) + C(W−, V −)− 2C(W,V )

denote the amount of capacity gained after one-step. The numerical experiments
show that:

(i) When the output alphabet is binary or ternary, one-step improvement with
gain > 0 happens only when C(W,V ) = 0 and can be as large as 1/2. When
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C(W,V ) > 0, we observe that gain = 0, so one has neither improvement nor
loss. See Figure 7.4.

(ii) When the output alphabet contains four or more symbols, improvement may
happen not only when C(W,V ) = 0 but also when C(W,V ) > 0; however,
there are cases when C(W+, V +) + C(W−, V −) < 2C(W,V ), so one may
encounter a loss after a one-step transformation, i.e., gain < 0. See Figure 7.5.

(ii) Finally, the numerical experiments also suggest that∑
s∈{+,−}n

1

2n
∣∣I(W sn , V sn)

∣∣† ≤ C(W,V )

holds whenever C(W,V ) > 0, (we did experiment only for n = 1, 2, 3). Thus,
CP (W,V ) ≤ C(W,V ) is a likely conjecture for the case where C(W,V ) > 0.

The above numerical study showed thatC(W,V ) can be as well lost after applying
the polar transform, validating the claim in our third goal (g3). Therefore as opposed
to In(W ), Cn(W,V ) does not qualify for being the ‘martingale’ of the mismatched
analogy. In fact, we know from the earlier analysis that In(W,V ) qualifies for that.

7.4.3 Boosting the Mismatched Capacity via Polarization

The study by Balakirsky [40] gave the initial impulse for the study of this section.
We adapted his example [40, Examples, Statement 2] which computes Cd(W ) of
a symmetric B-DMC W when the additive decoder shares the symmetry structure
of W to mismatched decoders, and we carried numerical experiments based on this
computation to compare C(W,V ) with the sum C(W+, V +) + C(W−, V −). The
experiments revealed that, as opposed to I(W,V ), C(W,V ) is not necessarily a
conserved quantity under the polar transform. Nevertheless, as the choice of a coding
scheme is part of a design problem and using the maximum likelihood decoding rule
with the metric of a channel V for decoding a long sequence or using the same rule
for decoding two long sequences with the metrics of the channel V − first and then
the channel V + in a successive cancellation decoding configuration does not differ
so much in complexity (asymptotically), the numerical study shows that in some
cases the mismatch at the decoder can be better exploited by using the polarization
architecture of Figure 7.2. Therefore, communication rates higher than C(W,V )

can be achieved in some cases by integrating the polarization architecture of Arıkan
into the classical mismatched communication scenario. Furthermore, by studying
specific pairs of BSCs W and V such that C(W,V ) = 0, but CP (W,V ) > 0, we
showed that there exist channels for which the sequence of polar transformations
strictly improve the mismatched capacity of B-DMCs.
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Let us explore the new perspective these results brings. One main motivation
behind the study of mismatched decoders is the importance to know what can be
done in a communication system where the channel is W but the decoder is designed
with the belief that it is a different one, say V . The answer to the highest possible
transmission rate that can be achieved over the channel under such a disbelief at the
decoder side is in fact equal to the capacity of the channel and can be achieved by the
MMI decoding rule [11]. Thus, the universal MMI decoder certainly wins out over
the other options in terms of achievable rates, but requires in most cases an unpractical
amount of resources to be implementable [12]. Bringing the decoding complexity
into play, the lower complexity alternatives deserve attention. From a conceptual
point of view, the coding rates dictated by Balakirsky’s expression C(W,V ), the
polar mismatched capacity CP (W,V ), and also Balakirsky’s mismatched capacity
achieving coding schemes used successively over the plus and minus synthetic
channels (aka with the polarization architecture) can all be seen as lower bounds
to the highest achievable rate. To this effect, since we have seen that all these
non-optimal mismatched decoders might result in quite different behaviors, we
conclude that in different cases a better lower bound can be obtained, whence a
higher transmission rate be achieved, by integrating the one-step architecture to the
coding scheme or by polar coding. Moreover, designers shall take into account that
even when CP (W,V ) < C(W,V ), the O(N logN) complexity of the encoding and
decoding structures of polar coding has a practical edge over the classical codes
suitable for mismatched maximum likelihood decoding.

Appendix

7.A Mismatched E0 à la Gallager

In this Appendix, we show that Gallager’s style error exponent derivation to assess
the performance of random codes with mismatched maximum likelihood decoding
also leads to the quantity I(W,V ). For the sake of brevity, we refer to [5, Chapter 5]
for notations.

Let W : X→ Y and V : X→ Y. We fix the input distribution to Q(x). Suppose
the input xm ∈ XN , for m ∈ {1, . . . ,M =

⌈
2NR

⌉
}, is transmitted over the channel

W and the received output y ∈ YN is decoded using a mismatched maximum
likelihood decoder with respect to the channel V . We define

Pe,m :=
∑
xm

∑
y

QN(xm)WN(y|xm)P[error|m,xm,y].
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Then, the union bound gives

P[error|m,xm,y] ≤ P

[ ⋃
m′ 6=m

Am′

]
≤

(∑
m′ 6=m

P[Am′ ]

)ρ

,

for all 0 < ρ ≤ 1, where Am′ occurs when log
V N(y|xm′)
V N(y|xm)

≥ 0. Using Chernoff

bound with s > 0, we get

P[Am′ ] =P
[
log

V N(y|xm′)
V N(y|xm)

≥ 0

]
= P

[
exp2

{
s log

V N(y|xm′)
V N(y|xm)

}
≥ 1

]
≤E
[
exp2

{
s log

V N(y|xm′)
V N(y|xm)

}]
=

N∏
i=1

E
[(

V (yi|x
′
i)

V (yi|xi)

)s]
=
∑
xm′

QN(xm′)

(
V N(y|xm′)
V N(y|xm)

)s
.

Therefore, we get:

Pe,m =
∑
xm

∑
y

QN(xm)WN(y|xm)

∑
m′ 6=m

∑
xm′

QN(xm′)

(
V N(y|xm′)
V N(y|xm)

)sρ

≤ (M − 1)ρ
∑
xm

(∑
y

QN(xm)
WN(y|xm)

V N(y|xm)sρ

)
×∑

xm′

QN(xm′)V
N(y|xm′)s

ρ

≤ 2ρNR

[∑
y

(∑
x

Q(x)
W (y|x)

V (y|x)sρ

)(∑
x

Q(x)V (y|x)s

)ρ]N
.

Hence, we could define the mismatch exponent as:

Pe,m ≤ exp2 {−N (E0 [ρ, s,Q,W, V )− ρR]} ,

where

E0(ρ, s,Q,W, V ) := − log

(∑
y∈Y

(∑
x∈X

Q(x)
W (y|x)

V (y|x)sρ

)(∑
x∈X

Q(x)V (y|x)s

)ρ)
.

In the case of binary equally likely inputs X = F2 and the choice s = 1
1+ρ

, the
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expression simplifies to

E0(ρ,W, V ) := − log

(∑
y∈Y

1

2

(
W (y|0)

V (y|0)
ρ

1+ρ

+
W (y|1)

V (y|1)
ρ

1+ρ

)
×

(
1

2
V (y|0)

1
1+ρ +

1

2
V (y|1)

1
1+ρ

)ρ)
.

When W = V , E0(ρ,W, V ) reduces to E0(ρ,W ).

When ρ = 0, we get

∂E0(ρ,W, V )

∂ρ

∣∣∣∣∣
ρ=0

= −1

2

∑
y

W (y|0) log

(
1 + V (y|1)/V (y|0)

2

)
− 1

2

∑
y

W (y|1) log

(
1 + V (y|0)/V (y|1)

2

)
,

which is equal in fact to the channel parameter I(W,V ):

I(W,V ) =
1

2

∑
y∈Y

W (y|0) log

(
V (y|0)

qV (y)

)
+

1

2

∑
y∈Y

W (y|1) log

(
V (y|1)

qV (y)

)
,

where qV (y) and ∆V (y) are defined in (2.14) and (2.15), respectively.

When ρ = 1, we get

E0(1,W, V ) = − log


1 +

1

2

∑
y

W (y|0)

√
V (y|1)

V (y|0)
+

1

2

∑
y

W (y|1)

√
V (y|0)

V (y|1)

2

.

So, we can define a mismatched Bhattacharyya distance as follows:

Z(W,V ) :=
1

2

∑
y∈Y

W (y|0)
√
LV (y) +

1

2

∑
y∈Y

W (y|1)
1√
LV (y)

, (7.27)

where LV (y) = V (y|1)/V (y|0). Both parameters reduce to the ordinary ones in the
matched case, i.e., I(W,W ) = I(W ) and Z(W,W ) = Z(W ).

At last, we remark that keeping the parameter s in the derivations, Kaplan and
Shamai [43] reach a more general version of Fischer’s generalized mutual informa-
tion [42].
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Chapter 8

Designing Robust Polar Codes over
B-DMCs

The design of a polar code is a channel specific task [2]. A central stage in this
procedure is the construction of the information set selecting the synthetic chan-
nels’ indices that are good for uncoded transmission. Once the information set is
constructed, the encoder and the decoder operate with the common knowledge of
the information set, knowing over which indices to transmit and decode data and
over which to use priorly fixed bits. Besides the information set, the operation of the
successive cancellation decoder is channel dependent. The dependence of the system
components of polar coding on the communication channel makes computing the
information set a challenging problem in scenarios where the channel is unknown or
only a partial knowledge exists. An unknown quotation taken from the page 77 of
the Legendary Quotebook from 2050 [no citation is available yet] even says: “In any
coding problem, it is unrealistic to assume that the true channel W and the design
channel V are the same.” Thanks to the coding theorem we proved in the previous
chapter for the mismatched communication scenario, we know that even if the true
channel is unknown, polar codes can still be designed with respect to a mismatched
channel and positive communication rates can be achieved by polar coding. In this
chapter, we rise to a new challenge and study the robustness of polar codes over
compound B-DMCs.

8.1 Communication over a Class of Channels
In practical communication scenarios, only a partial knowledge on the communi-
cation channel might be available. For instance, we might only know the possible
range of values that the mutual information between the input and output of the
channel takes. The study of reliable communication under channel uncertainty be-
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comes relevant to tackle these situations in which a complete channel knowledge is
missing. The qualitative notion of channel uncertainty is made more concrete with
the definition of more complex channel models. The compound channel model is
one such instance where the unknown channel is restricted to belong to a given class
of channels. Both the encoder and the decoder are ignorant of which of the channels
in the class occurs, but the channel remains fixed during the communication of a
given codeword. Hence, the selected code should ensure good performance for all
the channels in the class.

Blackwell et al. [10] found the capacity of a class of DMCs W to be

Ccomp(W) = max
P (x)

inf
W∈W

I(P ;W ). (8.1)

This is the supremum of all achievable transmission rates when the code is required
to perform well in all the channels in the class. The direct part and the converse part
are proved in [10, Theorem 1]. To be more specific, a maximum error probability
criteria is used to asses performance: a sequence of (2NR, ξN , N) codes of block-
length N for the class with M = b2NRc codewords and corresponding sequence
of disjoint decoding regions Bm ⊂ YN , for m = 1, . . . ,M , is required to satisfy
for all the codewords xm ∈ XN and for every channel W ∈ W an upper bound∑

y∈Bcm
W (y|xm) ≤ ξN , where ξN → 0. The key point is that the exponential error

bound ξN given in the theorem does not depend on the actual channel that occurs
during the transmission of a codeword, but depends only on Ccomp(W), R, and the
alphabet sizes |X| and |Y|.

A more modern analysis of the compound communication problem which uses the
method of types is due to Csiszár and Körner [11]. In this analysis, the constructed
code is substituted with a constant composition code from a random type ensemble
based on the error exponent given in (7.3) and decoded with the MMI decoder.
Though both techniques result in the same expression, the MMI decoder is more
robust in the sense that it does not even need the knowledge of the compound
set which is required by Blackwell’s construction. Yet, neither of the methods is
practically implementable.

In general, Ccomp(W) is smaller than the infimum of the capacities of any channel
in W. Nevertheless, if we restrict the analysis to a symmetric class of channels Ws,
then

Ccomp(Ws) = inf
W∈Ws

I(Punif;W ), (8.2)

where Punif denotes the uniform input distribution. To show this, note that

max
P (x)

inf
W∈Ws

I(P ;W ) ≤ inf
W∈Ws

max
P (x)

I(P ;W )
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holds as a general fact. As the uniform input distribution is the capacity achieving
input distribution of all symmetric channels, for anyW ∈Ws, we have I(Punif;W ) =

maxP (x) I(P ;W ). Thus, the inequality in the opposite direction is also true:

Ccomp(Ws) = max
P (x)

inf
W∈Ws

I(P ;W ) ≥ inf
W∈Ws

I(Punif;W ).

However, even if the compound capacity expression is of the form (8.2), it is not
necessarily true that a capacity-achieving code (encoder/decoder) designed for the
‘worst’ channel in the class will also achieve the same rate if used over all of the
other channels in the class. The decoding regions given for the worst channel may
not be adequate for the other channels in the class and may not satisfy the required
error probability criteria. For instance, the typicality decoder for the worst channel
will generally fail for other channels.

In order to accommodate such a worst case design, the compound set of channels
must be well-structured. For example, it is sufficient that the class of channels W be
a convex compact set. In this case, the compound capacity is given by

Ccomp(W) = max
P

min
W∈W

I(P ;W ) = min
W∈W

I(P ∗;W ) = I(P ∗;W ∗),

where P ∗ = arg maxP (x) I(P ;W ), and this capacity can be achieved by d decoding
with respect to d(x, y) = − logW ∗(y|x) [12, Remarks ii)]. Thus, mismatched
maximum likelihood decoding with respect to the ‘worst’ channel in the class is
optimal for convex compound sets . This is a consequence of the following property.

Proposition 8.1. [11, Proof of Corollary 6.10] Given a set of channels W, its convex
closure W, and a fixed P (x), let V = arg minW∈W I(P ;W ). Then,

I(P ;αW + (1− α)V ) ≥ I(P ;V ), ∀α ∈ [0, 1],∀W ∈W.

This implies the following inequality:

I(P ;W,V ) :=
∑
x∈X

∑
y∈Y

P (x)W (y|x) log
V (y|x)∑

x′∈X

P (x′)V (y|x′)
≥ I(P ;V ), (8.3)

where I(P ;W,V ) denotes the generalized mutual information:

In the previous chapter, we mentioned that I(W,V ) is also a lower bound to
the mismatched capacity C(W,V ) of the channel W with mismatched maximum
likelihood decoding with respect to V . In fact, Fischer [42] showed that more
generally C(W,V ) ≥ I(P ;W,V ) holds, for any distribution P (x) on the inputs of
the channel. So for any channel W in a convex compound set W, we have

C(W,V ) ≥ I(P ∗;W,V ) ≥ I(P ∗;V ) = Ccomp(W),
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by Proposition 8.1. This proves the achievability claim [12, Remarks ii)].

An example of a convex set of channels is the class of binary symmetric channels
with crossover probabilities within an interval. Note that convexity is a sufficient but
not necessary condition for (8.3) to hold. One-sided sets defined by Abbe and Zheng
[45] generalize this idea. The following definition is adapted from [45, Definition 3].

Definition 8.2. [45] A set W is called one-sided with respect to the input distribution
P (x) if the following minimizer is unique:

V = arg min
W∈cl(W)

I(P ;W ),

where cl(W) is the closure of W, and if the condition in (8.3) holds. (Though this
condition is stated as a divergence inequality in [45, Equation 8], one can check that
it is equivalent to (8.3).). By [45, Lemma 4] convex sets are one-sided, but there
exist one-sided sets that are not convex.

When the analysis is restricted only to the uniform input distribution as in our
case, the symmetric compound capacity of a class of channels can be defined as

Icomp(W) = min
W∈W

I(W ), (8.4)

A quick inspection reveals that the inequality (8.3) given in Proposition 8.1 is
equivalent to the following condition:

I(W,V ) := I(Punif;W,V ) ≥ I(V ), ∀W ∈W. (8.5)

This is good news as we are already quite familiar with the parameter I(W,V ).

What’s Coming, Doc?
It is shown in the Appendix A (at the end of the thesis) that there exist linear codes
which achieve the symmetric compound capacity of a class of channels. In the light
of this information, the question we pose is: Does the class of polar codes, as a subset
of linear codes, achieve the symmetric compound capacity of a class of channels?
In [34], the compound capacity of polar codes is studied and it is shown that in
general polar codes do not achieve the symmetric compound capacity of a class of
channels even if the channels in the class are symmetric. The underlying assumption
throughout the analysis in [34] is the availability of the actual communication channel
to the decoder. This transforms the problem into finding an information set providing
suitable indices for communication over any channel in the class. As the lack of
knowledge cannot possibly reverse the end result, the assumption simplifies the
theoretical analysis for drawing the general conclusion.
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On the other hand, the following question has not been addressed so far: what
rates can be achieved in the compound setting? Both from conceptual and practical
points of view, the effect of a design mismatch on the achievable rates over a class of
channels is an important problem to be studied. We will provide a partial characteri-
zation of this problem by identifying channel conditions leading to universal polar
code designs.

The first three sections of this chapter will report the following conclusions:

• We will start by considering the problem of universal polar coding when the
decoder knows the communication channel. In this case, the order preserv-
ing property of the polar transform which we derived in Chapter 6 will be
applicable right away; we will argue that polar codes are universal over sets of
channels ordered by the symmetric convex ordering introduced in Definition
6.2.

• The subsequent section will study the complement problem: universal polar
coding with channel knowledge at the encoder. Theorem 7.18 stated in the
previous chapter will be the starting point of the study. We will show in
Theorem 8.3 that polar codes do achieve the symmetric capacity of convex
sets of channels and more generally of one-sided sets of channels introduced
by [45].

• The final section of the trilogy will consider the problem of universal polar
coding for both the encoding and the decoding procedures. The section will
illustrate that while a condition such as stochastic degradation is not enough in
general, a condition such as convexity is a better bet for this type of universality.
In particular, we will conjecture that polar codes are universal over the set of
BSCs.

These three sections will solely focus on the universality of Arıkan’s original polar
coding scheme. On the other hand, nothing prevents us from integrating different
ideas from the coding theory literature into the polar coding framework to make
polar codes more robust. In the subsequent two sections, we will propose two such
modifications which will help us reach universal polar code designs over certain
compound sets of channels:

• In Section 8.5, we will consider an approximation to the polar decoder’s
recursive computations of the likelihood ratios. Theorem 8.17 will show that
polar codes using this approximation at the decoder side are robust over BSCs.
Furthermore, we will provide simulation results that suggest the gap to capacity
of the approximation is negligible. Combining the theoretical and experimental
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analysis, we will conclude that mismatched polar codes can achieve rates very
close to the true channel capacity for the class of BSCs.

• In the final section of this chapter, Theorem 8.23 will prove that universally
attainable transmission rates can be achieved by polar coding over classes
of B-DMCs satisfying certain mild conditions imposed on their structures
by simply running the original polar decoder multiple times for the different
channels until the generalized likelihood ratio test succeeds.

8.2 Universal Polar Coding with Channel Knowledge
at the Decoder

Let W be a class of B-DMCs. In the problem of universal polar coding with channel
knowledge at the decoder, the designer needs to find a single polar encoder, i.e.,
an appropriate information set, such that the transmitted codewords can be reliably
communicated over any channel in the class when decoded at the receiver side by
using the appropriate successive cancellation decoder adapted to the communication
channel. Hence, this is equivalent to finding⋂

W∈W

AN(W ). (8.6)

If the solution to (8.6) is given by the channel V = arg minW∈W I(W ), it is usually
said that the polar code is universal over the class W for the considered communica-
tion scenario. An interesting question in that respect is to identify the conditions on
the channel class structure which would lead to this type of universality.

The reader would remember that we did somewhat consider this problem before
in Chapter 6. There, we proposed in Definition 6.2 the symmetric convex ordering as
a novel partial ordering for B-DMCs and showed that the polar transform preserves
this ordering. Thus, the symmetric convex ordering gives a structure leading to
universality. Although it turned out that for symmetric channels this ordering coin-
cides with stochastic degradation, by studying an example involving a Z-channel and
BSCs, we proved that we obtain a strictly weaker partial ordering when at least one
of the channels is asymmetric. In this example studied in Section 6.1, we saw that
the information set of the polar code designed for the ‘best’ possible BSC (with the
smallest crossover probability) which is smaller with respect to the symmetric convex
ordering than the Z channel may be significantly larger than the set designed for the
‘best’ possible BSC which is stochastically degraded with respect to the Z-channel.
The example also uncovered an advantage of the channel symmetrization operation
for asymmetric channels before polarization; we illustrated that it matters during the
design whether the channel is directly approximated by a degraded channel or the
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channel is first symmetrized and then approximated by a degraded one. Beware that
we do not try to achieve the capacity of the asymmetric channel, methods have been
proposed in the literature to address this problem. We try to identify the right way to
design polar codes over compound sets of mixed channels.

The symmetric convex ordering, despite being sufficient, is not a necessary
condition for universality. Another recent work [46] which also studied this problem
showed that polar codes are universal over sets of channels ordered in the less noisy
ordering [47].

8.3 Universal Polar Coding with Channel Knowledge
at the Encoder

The problem of universal polar decoding over a class of channels in scenarios where
the encoder knows the actual communication channel can be seen as the complement
of the problem of universal polar encoding with channel knowledge at the decoder.
Here, we remove the assumption that the decoder uses the matched decoding metric
during the decision procedure. The designer is required to design a single successive
cancellation decoder which will be used for every channel in the class while the
encoder and the decoder need to adapt the information set according to the actual
communication channel and the possibly mismatched channel used in the design of
the successive cancellation decoder. At this point, a comment is in order to avoid
confusion. Note that for polar codes, the adjective ‘universal’ has been used in
general to refer to the problem of universal polar encoding with channel knowledge
at the decoder. Yet, ‘universality’ as studied by Blackwell et. al in [10], or as studied
in [13], imposes stronger robustness than both of the described complementary
problems. Now, be ready to meet the first low complexity O(N logN) decoder
proved to be universal over one-sided sets of channels. (Hint: The answer should
sound familiar!)

Theorem 8.3. Given a class of one-sided B-DMCs W, consider the polar successive
cancellation decoder using the mismatched decoding rule for the channel

V = arg min
W∈cl(W)

I(W ),

and the class of polar codes with the information sets

A
γ
N(W,V ) =

{
i ∈ {1, . . . , N} : D(W

(i)
N , V

(i)
N ) ≥ 1− γ

}
,

where W ∈ W, N = 2n with n = 1, 2, . . . is the block-length, and γ ∈ (0, 1) is a
desired threshold. Then, for any R < I(V ), one can select γ ' 2−

√
N and construct

for all W ∈ W the information sets A
γ
N(W,V ) of size at least as large as NR.
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Moreover, the resulting decoding error probability Pe(W,V,A
γ
N(W,V )) over any

channel W ∈ W of the corresponding polar code can be made arbitrarily small
by taking N → ∞. In that sense, the polar successive cancellation decoder is
universally symmetric capacity achieving over one-sided sets of channels.

Proof. The one-sidedness of W ensures that for V chosen as in the hypothesis of the
theorem, the relationship I(W,V ) ≥ I(V ) holds for any W ∈W. By Theorem 7.3
and Theorem 7.4, the claim on the construction of Aγ

N(W,V ) follows. For a given N
and γ ∈ (0, 1), the mismatched decoding error probability over the channel W ∈W

of a polar code with a mismatched successive cancellation decoder operating with
the parameters of the channel V and with information set Aγ

N(W,V ) will be upper
bounded by

Pe(W,V,A
γ
N(W,V )) ≤

∑
i∈AγN (W,V )

Pe, ML(W
(i)
N , V

(i)
N ),

Taking N →∞, γ → 0, and we get Pe(W,V,A
γ
N(W,V ))→ 0 as discussed in the

proof of Theorem 7.18. We conclude that the described polar codes can achieve a
rate of at least I(V ) over any W ∈W.

8.4 Universal Polar Coding
So far, we did look to the problem form two opposite angles. We ‘cheated’ by
allowing the decoder to know the channel and linked polar ordering to the notion
of symmetric convex ordering. Then we allowed instead the encoder to know the
channel, and using this assumption, we extended the results of Chapter 7 on the
mismatched capacity of polar codes over the compound setting by using the notion
of one-sidedness. Now, let us formulate the problem of designing a polar code for a
compound set of channels as an optimization problem. In its most general form, the
problem would require to identify the channel V ∗ which maximizes the number of
common indices in the mismatched information sets constructed for every channel
in the class:

V ∗ = arg max
V ∈W

∣∣∣ ⋂
W∈W

AN(W,V )
∣∣∣, (8.7)

where AN(W,V ) is of the form (7.22).

In general, we know that polar codes are not universal over B-DMCs and do
not expect to find a closed form solution to (8.7). However, for moderate block-
lengths, solving this problem numerically (offline) seems plausible. Nevertheless,
we will try to identify in this section some conditions on the channels for which
this optimization problem has (or might have) a closed form solution. For instance,
if the class of channels is one-sided or convex, the following theorem quantifies a

156



8.4. Universal Polar Coding

universally attainable transmission rate over the class.

Theorem 8.4. Let W be a one-sided (convex) set of B-DMCs and

V = arg min
W∈cl(W)

I(W ).

Then, polar coding with information set
⋂
W∈W AN(W,V ) and with successive

cancellation decoding with respect to V achieves the rate 1
N

∣∣⋂
W∈W AN(W,V )

∣∣
universally over W.

To apply the preceding theorem to an arbitrary class of channels, one could extend
the set of channels to a one-sided set if possible, or otherwise find its convex closure.

Let us consider an alternative for the simplest compound set consisting of
two channels {W,V }. We would like to point a rather unexpected choice which
would lead to a universal design (for both the encoder and the decoder) over sets
of channels which satisfy the following polar ordering of the information sets:
AN(V ) ⊂ AN(W ). Instead of computing the solution in these cases, we could settle
for a sub-optimal solution providing good indices for our class of two channels by
finding the information set AN(V,W ) and decoding with the best channel and not the
other way around. We could do so since I(V sn ,W sn) ≤ I(V sn) holds by Proposition
7.1, for all sn ∈ {+,−}n, and therefore we have AN(V,W ) ⊂ AN(V ) ⊂ AN(W ).
By the results of Chapter 7, we know that with such a choice |I(V,W )|† is an achiev-
able rate. Certainly, this would be a very poor choice for most cases as the size of
the set AN(V,W ) might be very small. Nevertheless, if the channels are very close,
a universal polar code would be obtained at the price of a small rate loss from the
symmetric capacity of the worst channel. To better explain this idea, we give a more
concrete example.

Example 8.5. Suppose we have a model of the channel over which communication
will take place, we do not know the exact transition probabilities, but we have some
good estimates for their values. Say the model is a BSC with crossover probability
p = 0.1 ± 0.02. Modeling the class by W = {BSC : p ∈ [0.08, 0, 12]}, we
deduce that the polar code design with information set AN(BSC(0.08), BSC(0, 12))

achieves a rate 0.4569 over W using the polar decoder for the channel BSC(0.08).
Note that in this case I(BSC) ∈ [0.4706, 0.5978], for all BSC ∈W.

8.4.1 Degradation is Not Sufficient

In this thesis we placed a special emphasis on the following subtlety: When defining
the information set, the channel parameter used in the definition of the information
set has to be adapted carefully to the context of communication keeping in mind
that the transmitted data needs to be decoded reliably using the available decoding
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Figure 8.1: The channel W is shown on the left and the channel V on the right.

metric. In Chapter 7, this subtle requirement led to the definition of information sets
of the form AN(W,V ). Moreover, we have just used these sets in Theorem 8.3 and
Theorem 8.4. The question of practical interest we are interested in this section is to
identify the classes of channels for which the relation AN(V ) ⊂ AN(W,V ) holds,
for all W ∈W. In such cases, a single polar code (encoder and decoder) designed
for the ‘worst’ channel V can be used reliably over any channel in the class W and
universality over these classes of channels can be achieved by the design channel.

Numerous works in the polar coding literature refer and make use of the universal-
ity of polar codes over stochastically degraded channels. Yet, this universality relies
on the assumption that the decoder knows the communication channel, bypassing
the need for the analysis carried in Chapter 7. One could start by hoping that polar
codes are possibly universal over stochastically degraded channels even when the
channel information is not available at the decoder. In this subsection, we give an
(unfortunate) example of two channels W and V which are ordered by stochas-
tic degradation, yet fails to satisfy the universality we hoped for, i.e., an example
where AN(W,V ) 6⊂ AN(V ). Thus, although AN(V ) ⊂ AN(W ) always holds for
stochastically degraded channels [2], we conclude that AN(V ) ⊂ AN(W,V ) does
not necessarily hold.

Example 8.6. Let W : F2 → Y and V : F2 → Y be B-DMCs with Y : {0, 0′, 1′, 1}.
Suppose the channel transition probability matrices are of the form

W =

[
1− ε ε 0 0

0 0 ε 1− ε

]
and V =

[
ν 1− 2ν ν 0

0 ν 1− 2ν ν

]
,

for ε ∈ [0, 1] and ν ∈ [0, 1], see Figure 8.1. It is not difficult to see that the channel
V can be stochastically degraded to obtain the channel W with a degrading channel
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P . Moreover, basic derivations show that while both I(W ) = 1 and I(V ) ≈ 1 hold,
for ε = 0 and ν ≈ 0, we still have I(W,V ) ≈ 0. As a last comment, note that
the channels W and V are already ‘trapped’, i.e, the processes satisfy I∞(W ) = 1,
I∞(V ) = 1, and I∞(W,V ) = 0 a.s. As such, the polar transform will not be of use
to improve the mismatched channel parameter.

8.4.2 Convex Sets May Be

The preceding example disclosed the fact that even the relatively strong stochastic
degradation assumption on the structure of the compound class of channels do not
accommodate in general the joint encoding and decoding universality of the polar
code designed for the ‘most noisy’ member of the class. In the view of Theorem
8.3, this is not such an unexpected result; to ensure universality at the decoder, we
imposed there the quite different notion of one-sided sets. These sets generalized
the geometric properties of convex sets. This is why in this subsection we will play
around convexity in place of degradation. To reduce the overhead, we will assume
that the channels in the class satisfy the symmetry property of Definition 7.15.

In the previous chapter, we defined Pe(W,V,AN) as the best achievable block
error probability over the channel W with mismatched polar decoding with respect
to the channel V . In Proposition 7.16, we showed that

Pe(W,V,AN) ≤
∑
i∈AN

Pe, ML(W
(i)
N , V

(i)
N ),

Moreover, Proposition 7.21 simplified the computation of Pe, ML(W
(i)
N , V

(i)
N ) for chan-

nels symmetrized by the same permutation: If W and V are B-DMCs symmetrized
by the same permutation, then

Pe, ML(W
(i)
N , V

(i)
N ) =

∑
yN1

WN(yN1 |0N1 )H
(
L
V

(i)
N

(yN1 , 0
i−1
1 )
)
,

where

H
(
L
V

(i)
N

(yN1 , 0
i−1
1 )
)

:= 1
{
L
V

(i)
N

(yN1 , 0
i−1
1 ) > 1

}
+

1

2
1
{
L
V

(i)
N

(yN1 , 0
i−1
1 ) = 1

}
.

For the sake of the analysis, we can thus assume the all zero sequence is transmit-
ted over the channel. For shorthand notation, let Pe

(i)
N (W,V ) := Pe, ML(W

(i)
N , V

(i)
N )

and we use once more L
V

(i)
N

(yN1 ) := L
V

(i)
N

(yN1 , 0
i−1
1 ) (remark that, due to a possible

mismatch, we keep in the subscript the channel with respect to which the likeli-
hood ratio is computed). In this case, we know that the recursive likelihood ratio
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computations indicated in (1.10) and (1.11) reduce to

L
V

(2i−1)
2N

(y2N
1 ) =

L
V

(i)
N

(yN1 ) + L
V

(i)
N

(y2N
N+1)

1 + L
V

(i)
N

(yN1 )L
V

(i)
N

(y2N
N+1)

,

L
V

(2i)
2N

(y2N
1 ) = L

V
(i)
N

(yN1 )L
V

(i)
N

(y2N
N+1).

Note that the likelihood ratios are of the form f(L
V

(i)
N

(yN1 ), L
V

(i)
N

(y2N
N+1)), and so

they are symmetric functions of their arguments. We will also use the notation

PW
[
L
V

(i)
N

(Y N
1 ) > 1

]
:=
∑
yN1

WN(yN1 |0N1 )1
{
L
V

(i)
N

(yN1 ) > 1
}
,

and similar notations will hold for different sets within the indicator function.

The next theorem studies the one-step preservation properties for Pe
(i)
N (W,V ).

Theorem 8.7. Let W and V be B-DMCs symmetrized by the same permutation.
Suppose that the following conditions hold:

A) PV
[
L
V

(i)
N

(Y N
1 ) < 1

]
≥ PV

[
L
V

(i)
N

(Y N
1 ) > 1

]
,

B) Pe
(i)
N (W,V )− Pe

(i)
N (V ) ≤ 0,

for a given N = 2n with n = 0, 1, 2, . . . and a given i = 1, . . . , N . Then, the
minus polar transform preserves these conditions. On the other hand, while the plus
transform preserves condition A, condition B may not be preserved in general.

Before we prove the theorem, we introduce four propositions we will need in the
proof. The proof of the propositions are given in Appendix 8.A.

Proposition 8.8. For a symmetric B-DMC channel V such that the condition A
of Theorem 8.7 holds for a given i = 1, . . . , N , the polar transform preserves the
inequality, i.e., for j = 2i− 1, 2i, we have

PV
[
L
V

(j)
2N

(Y 2N
1 ) < 1

]
≥ PV

[
L
V

(j)
2N

(Y 2N
1 ) > 1

]
.

Proposition 8.9. For two B-DMCs W and V symmetrized by the same permutation,
we have

Pe
(i)
N (W,V )− Pe

(i)
N (V ) =

∑
yN1

[
WN(yN1 |0N1 )− VN(yN1 |0N1 )

]
×

∑
y2NN+1

[
WN(y2N

N+1|02N
N+1) + VN(y2N

N+1|02N
N+1)

]
H
(
L
V

(i)
2N

(y2N
1 )
)
. (8.8)
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Proposition 8.10. For two B-DMCsW and V symmetrized by the same permutation,
the quantities Pe

(i)
2N(W,V )− Pe

(i)
2N(V ) can be recursively computed as

Pe
(2i−1)
2N (W,V )− Pe

(2i−1)
2N (V )

=
∑
yN1

[
WN(yN1 |0N1 )− VN(yN1 |0N1 )

]
H
(
L
V

(i)
N

(yN1 )
)
JN , (8.9)

where

JN :=


∑
y2NN+1:

L
V
(i)
N

(y2NN+1)<1

[
WN(y2N

N+1|02N
N+1) + VN(y2N

N+1|02N
N+1)

]

−
∑
y2NN+1:

L
V
(i)
N

(y2NN+1)>1

[
WN(y2N

N+1|02N
N+1) + VN(y2N

N+1|02N
N+1)

]
 , (8.10)

and

Pe
(2i)
2N (W,V )− Pe

(2i)
2N (V ) =

∑
y2N1

[
WN(yN1 |0N1 )− VN(yN1 |0N1 )

]
×

[
WN(y2N

N+1|02N
N+1) + VN(y2N

N+1|02N
N+1)

]
H
(
L
V

(i)
N

(yN1 )L
V

(i)
N

(y2N
N+1)

)
.

Proposition 8.11. Assume W and V are B-DMCs such that the conditions A and B
of Theorem 8.7 hold for a given i = 1, . . . , N . Then,

PW
[
L
V

(i)
N

(Y N
1 ) < 1

]
≥ PW

[
L
V

(i)
N

(Y N
1 ) > 1

]
.

Proof of Theorem 8.7. We know the condition A) is preserved by Proposition 8.8.
For the condition B−), we have by Proposition 8.10:

Pe
(2i−1)
2N (W,V )− Pe

(2i−1)
2N (V ) =

[
Pe

(i)
N (W,V )− Pe

(i)
N (V )

]
JN . (8.11)

Now, we claim that JN ≥ 0. Thus, Pe
(2i−1)
2N (W,V ) − Pe

(2i−1)
2N (V ) ≤ 0 follows. To

prove the claim, note that by equation (8.10), the constant JN equals to

PW
[
L
V

(i)
N

(Y 2N
N+1) < 1

]
+ PV

[
L
V

(i)
N

(Y 2N
N+1) < 1

]
− PW

[
L
V

(i)
N

(Y 2N
N+1) > 1

]
− PV

[
L
V

(i)
N

(Y 2N
N+1) > 1

]
.
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Then, the non-negativity of JN follows by condition A and Proposition 8.11 which
shows the conditions A and B imply

PW
[
L
V

(i)
N

(Y N
1 ) < 1

]
≥ PW

[
L
V

(i)
N

(Y N
1 ) > 1

]
.

Finally, we give a counterexample for the condition B+): Let W be a BSC of
crossover probability 0.3 and V a symmetric B-DMC with Y = {0, e, 1} such
that the likelihood ratios take the values {1/4, 1, 4} with probabilities V (y|0) =

{0.4, 0.5, 0.1}, respectively. One can check that although conditions A and B are
satisfied for N = 1 and i = 1, condition B fails to hold after the plus transform
(N = 2 and i = 2).

Theorem 8.7 shows that we need to impose stronger constraints on the mis-
matched channel to be used if we want to ensure condition B is preserved un-
der both the plus and minus polar transformations. Following this observation,
we consider the mismatched Bhattacharyya distance Z(W,V ) we derived in Ap-
pendix 7.A from the ‘mismatched E0 function’ in analogy to the Bhattacharyya
distance Z(W ). For two B-DMCs W and V symmetrized by the same permuta-
tion, (7.27) reduces to Z(W,V ) =

∑
yW (y|0)

√
LV (y). Next, we observe that

Pe(W,V ) := Pe, ML(W,V ) ≤ Z(W,V ). Moreover, similar to the matched case [2],
one gets Z(2i)

2N (W,V ) = Z
(i)
N (W,V )2 after applying the plus polar transform. From

this latter, we get the following proposition.

Proposition 8.12.

Z
(i)
N (W,V )− Z(i)

N (V ) ≤ 0 if and only if Z
(2i)
2N (W,V )− Z(2i)

2N (V ) ≤ 0.

In the next theorem, we explore the possible connection of such a result with
Theorem 8.7.

Theorem 8.13. Suppose that the channels W and V described in the hypothesis of
Theorem 8.7 also satisfy the following conditions:

Pe
(i)
N (W,V )− Pe

(i)
N (V ) ≤ 0 if and only if Z

(i)
N (W,V )− Z(i)

N (V ) ≤ 0, (8.12)

Then, the condition B of Theorem 8.7 is preserved under both the plus and the minus
polar transformations.

The theorem statement simply tells that if the Bhattacharyya upper bounds follow
the same behavior as their Pe

(i)
N counterparts; which can occur if for instance they

are sufficiently tight for both the matched and mismatched error probabilities at
any level, then as long as we design the polar code for a mismatched channel V
such that Pe, ML(W,V ) ≤ Pe, ML(V ) is satisfied, we are safe to use the code over
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the channel W . Although Theorem 8.13 provides a partial solution to the design
problem, unfortunately it is non-constructive at this stage. We would need to study
which channels could satisfy these type of constraints. The next proposition is
presented as a first step in that direction.

Proposition 8.14. Let W be a convex set of channels and V = arg minW∈W I(W ).
Then,

Pe, ML(W,V ) ≤ Pe, ML(V ) and Z(W,V ) ≤ Z(V ). (8.13)

Proof. The proposition will be proved by mimicking the proof of Proposition 8.1
given in [11, Proof of Corollary 6.10] and replacing the mutual information parameter
first by Pe, ML(W ) and then by Z(W ). As the set {y ∈ Y : LW (y) > 1} is convex,
the indicator function of this set is log-concave. As a result, the convexity of the set
of channels ensures V = arg minW∈W Pe, ML(W ). Hence, for every W ∈W and for
all α ∈ [0, 1], we have Pe, ML(αW + (1− α)V ) ≤ Pe(V ). This implies

lim
α→0

∂

∂α
Pe, ML(αW + (1− α)V ) ≤ 0.

Evaluating this derivative, Pe, ML(W,V ) ≤ Pe, ML(V ) is recovered. Similarly, by
[2, Lemma 4], we know that Z(W ) is a concave function of the channel transition
probabilities. Therefore, V = arg minW∈W Z(W ) holds, and for every W ∈W and
for all α ∈ [0, 1], we have Z(αW + (1− α)V ) ≤ Z(V ). Hence,

lim
α→0

∂

∂α
Z(αW + (1− α)V ) ≤ 0.

Evaluating this derivative, Z(W,V ) ≤ Z(V ) is recovered.

8.4.3 Universal over BSCs?

Before proceeding onto the next section, let us see how the equations of the previous
subsection ‘simplify’ for the class of BSCs.

Corollary 8.15. For symmetric B-DMCs W and V , we have

Pe
(i)
N (W,V )− Pe

(i)
N (V ) =

∑
yN1

[W (y1|0)− V (y1|0)] [W (y2|0) + V (y2|0)]×

n∏
i=2

(W (y2i−1+1|0) . . .W (y2i |0) + V (y2i−1+1|0) . . . V (y2i|0))H
(
L
V

(i)
N

(yN1 )
)
.

Proof. The proof follows from the fact that WN(yN1 |0N1 ) =
∏N

i=1W (yi|0) holds by
(1.1) and (1.2) and by induction on Proposition 8.9.
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Let W and V be two BSCs with crossover probabilities pW ≤ pV ≤ 0.5. Let
LV (1) := L ≥ 1. Then, LV (0) = 1/L. Now, we define the following partial sums:

F
(i)
N (LV (y1))

:=
∑
yN2

[W (y2|0) + V (y2|0)] [W (y3|0)W (y4|0) + V (y3|0)V (y4|0)]×

n∏
i=2

(W (y2i−1+1|0) . . .W (y2i |0) + V (y2i−1+1|0) . . . V (y2i |0))H
(
L
V

(i)
N

(yN1 )
)
,

and observe by Corollary 8.15 that we have

Pe
(i)
N (W,V )− Pe

(i)
N (V ) = (pV − pW )︸ ︷︷ ︸

≥0

[
F

(i)
N (1/L)− F (i)

N (L)
]
.

Conjecture 8.16. We conjecture that for any N = 2n with n = 1, 2, . . . and for any
i ∈ AN(V ),

F
(i)
N (1/L) ≤ F

(i)
N (L).

Under this conjecture, polar codes are universal over BSCs with crossover probabili-
ties in [0, 0.5].

8.5 Practically Perfect in Every BSC

Suppose that upon reception of the channel outputs yN1 , instead of proceeding with
the exact computations using the recursive formulas described in (1.10) and (1.11),
the polar decoder uses the following min approximation to the computations:

L̃
(2i−1)
N (yN1 , û

2i−2
1 ) := exp (−sign(`1 ∗ `2) min{|`1|, |`2|}) , (8.14)

L̃
(2i)
N (yN1 , û

2i−1
1 ) :=

{
exp (`1 + `2) , if û2i−1 = 0

exp (`2 − `1) , if û2i−1 = 1
, (8.15)

where `1 := log L̃
(i)
N/2(y

N/2
1 , û2i−2

1,o ⊕ û2i−2
1,e ) and `2 := log L̃

(i)
N/2(yNN/2+1, û

2i−2
1,e ). The

root elements are, as before, the initial likelihood ratios L̃0(yi) := L(yi) computed
for i = 1, . . . , N by using the law of the design channel. Thus, instead of the
exact values L(i)

N (yN1 , û
i−1
1 ), the polar decoder bases its decisions on the values of

L̃
(i)
N (yN1 , û

i−1
1 ), for all i ∈ AN .

The above approximation to the minus polar transform, also known as the min-
sum approximation in the coding theory literature, was introduced in the context of
polar coding in [48] for its suitability in hardware implementations. In this section,
we have a completely different purpose in mind for introducing this approximation.

164



8.5. Practically Perfect in Every BSC

We take yet another approach and study the robustness of polar codes over compound
BSCs with this ‘approximate’ polar decoder. In the next theorem, we show that
replacing the minus polar transform with the min approximation, a certain ordering
of the likelihood ratios of the synthesized channels W (i)

N and V (i)
N is obtained for

each i = 1, . . . , N .

Theorem 8.17. Given a BSC of parameter p < 0.5, define L = (1 − p)/p > 1.
Assume yN1 is observed at the channel output after transmission according to the
polar encoding rule of an input. Let f̃(L, yN1 , û

i−1
1 ) denote the approximate value

obtained at the decoder for the likelihood ratio of the i-th synthetic channel by using
(8.14) and (8.15). Then,

1. f̃(L, yN1 , û
i−1
1 ) is increasing in L if and only if f̃(L, yN1 , û

i−1
1 ) > 1.

2. f̃(L, yN1 , û
i−1
1 ) is decreasing in L if and only if f̃(L, yN1 , û

i−1
1 ) < 1.

3. When f̃(L, yN1 , û
i−1
1 ) = 1, either L = 1, or f̃(L, yN1 , û

i−1
1 ) does not depend

on L.

Proof. The particular structure of f̃(L, yN1 , û
i−1
1 ) leads straightforwardly to the result:

As we assumed the minus polar transform is replaced with the min approximation,
any likelihood ratio will be of the form f̃(L, yN1 , û

i−1
1 ) = Lm for some m ∈ Z which

depends on yN1 , ûi−1
1 . This proves the claim.

Remark 8.18. Lemma 8.24 in Appendix 8.B shows that if the statements 1), 2), and
3) of the theorem hold for a certain level n, then they continue to hold when the
original minus polar transform given by (1.10) is applied to obtain a likelihood ratio
at level n+ 1. Unfortunately, the proof by induction does not work as in this case
the plus transform does not preserve properties 1), 2), and 3).

Let us now study the implications of the resulting likelihood ratio ordering on the
robustness of the ‘approximate’ polar decoder. For the rest of this section, let W and
V denote two BSCs of crossover probabilities pW and pV , respectively. We assume
that pW , pV < 0.5 for simplicity. By Theorem 8.17, we deduce that the decoder
estimate for a given output realization will be identical whether the computations
are performed with respect to the likelihood ratios of the channel W or V , as long
as pW , pV < 0.5. In particular, when pW ≤ pV , beside the information set ordering
AN(V ) ⊂ AN(W ) due to channel degradation, the approximated likelihood ratios
will also be ordered as follows:

1 ≤ f̃(LV , y
N
1 , û

i−1
1 ) ≤ f̃(LW , y

N
1 , û

i−1
1 ),

or f̃(LW , y
N
1 , û

i−1
1 ) ≤ f̃(LV , y

N
1 , û

i−1
1 ) ≤ 1,
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for any output realization yN1 . Indeed, the approximate likelihood ratios of the BSC
having a larger crossover probability will be closer to 1.

The importance of this approximation is at least two-fold. One advantage brought
is its practical relevance: it is proposed in [48] to facilitate hardware implemen-
tations from a computational standpoint. The second advantage we found is the
provided robustness: for any given output realization the decoder estimate is iden-
tical independent of the channel law, as long as pW , pV < 0.5 (or by symmetry
pW , pV > 0.5).

Similar to the exact case, we define P̃e(W,V,AN) as the resulting average error
probability with the approximation at the decoder. Then, similar to Proposition 7.16
and Proposition 7.21, one can show that

P̃e(W,V,AN) ≤
∑
i∈AN

P̃e, ML(W
(i)
N , V

(i)
N ),

where

P̃e, ML(W
(i)
N , V

(i)
N ) :=

∑
yN1

WN(yN1 |0N1 )1{f̃(L, yN1 , 0
i−1
1 ) > 1}

+
1

2

∑
yN1

WN(yN1 |0N1 )1{f̃(L, yN1 , 0
i−1
1 ) = 1}. (8.16)

Note that the exact and the approximate likelihood ratio random variables of the
synthetic channels will be ‘symmetrized by the same permutation’. The robustness
shown in Theorem 8.17 ensures the following result holds.

Corollary 8.19. By Theorem 8.17, we have the following ordering:

P̃e(W,AN) := P̃e(W,W,AN) = P̃e(W,V,AN).

Figure 8.2 illustrates the result of Corollary 8.19. As a result, we do not need
to worry about the robustness against channel parameter variations of the min-sum
variant of the polar decoder. However, the question that needs to be addressed is
whether the performance of the polar decoder implementing the approximation is
sufficiently good and close to the original one.

Simulation results show that the matched and the mismatched successive cancel-
lation decoders both using the original recursion of the polar transform can produce
different estimates of the input sequence for an observed output realization yN1 . There-
fore, counter-examples to the ordering of the likelihood ratios implied by Theorem
8.17 exist when the original polar transform is used. This is also in accordance with
Remark 8.18. Nevertheless, the performance degradation due to the approximation
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8.5. Practically Perfect in Every BSC
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Figure 8.2: Rate vs. upper bound to P̃e(W,W,A), P̃e(W,V,A).
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Figure 8.3: Rate vs. upper bound to P̃e(W,W,A), P̃e(W,W,A
′).
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Figure 8.4: Rate vs. upper bound to P̃e(W,W,A), P̃e(W,W,A
′), and P̃e(W,V,A

′′).

is claimed to be negligible in [48]. Our simulation results shown in Figure 8.3 also
confirm this statement. We expect the error process with the approximation to have
similar convergence properties as the matched process without the approximation.
In Appendix 8.C, we address this problem in a theoretical framework, and obtain
some partial results.

In addition, we carried simulations to analyze the performance degradation in-
troduced by a mismatched design when the exact recursion of the polar transform
is used. Figure 8.4 shows the results at three different block-lengths with multiple
mismatched parameters. We observe that, as opposed to the previous case, the impact
of the mismatch on the upper bounds is strongly dependent on the mismatched param-
eter. Furthermore, larger block-lengths seem to amplify this dependence. We thus
refrain from drawing conclusions on the robustness of the original polar transform
only based on simulations. (No contradiction to the achievability of I(W,V ).)

In the light of the above results, we propose for BSCs a polar coding scheme
similar to the matched scenario [2]. For N = 2n, we could design a polar code by
setting the information set as

Ã
γ
N(W ) :=

{
i ∈ {1, . . . , N} : P̃e, ML(W

(i)
N ) ≤ γ

}
,

for a desired threshold γ ∈ (0, 1), and decoding according to the channel law of any
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8.6. Generalized Likelihood Ratio Test

BSC V with crossover probability< 0.5 by using the approximation. We remark that,
by Corollary 8.19, the information set can equivalently be constructed by estimating
the parameters P̃e, ML(W

(i)
N , V

(i)
N ) using statistical methods (transmitting the all zero

sequence and estimating via the polar decoder with the approximation using the
metric of the channel V ). Finally, selecting the threshold γ exponential in the square
root of the block-length will ensure P̃e(W, Ã

γ
N(W ))→ 0 as N →∞ [30], and the

simulations suggest that the number of indices that remain in Ã
γ
N(W ) for such a

choice of γ results in negligible capacity loss.

8.6 Generalized Likelihood Ratio Test
The research conducted so far revealed that strong assumptions must be imposed on
the structure of the class of channels so that a member provides a universal polar
code design for both the encoding and the decoding procedures. Hopefully, nothing
prevents us from trying to modify and adapt the scheme in order to overcome the
encountered difficulties.

In this section, we explore how the idea of the generalized likelihood ratio
test (GRLT) can be applied for decoding polar codes over certain compound sets
of channels. We will show that non-universality can be surmounted over these
compound sets by allocating more resources to the decoding task. To begin with, we
need two definitions from the theory of types/typicality.

Definition 8.20. [49] The empirical distribution P̂ of a sequence of length N is
called the N -type of the sequence. The set of all sequences of N -type P̂ is denoted
by TN

P̂
and can be described as:

TN
P̂

:=
{
xN1 ∈ XN : P̂ (x) =

1

N
# {i : xi = x} , ∀x ∈ X

}
. (8.17)

Definition 8.21. The strongly typical set TN,εP of sequences xN1 ∈ XN with respect
to the distribution P (x) can be defined as

T
N,ε
P =


xN1 ∈ XN :

∀x ∈ X, 1
N

# {i : xi = x} =

{
0, if P (x) = 0

P (x)± ε, otherwise

 ,

where ε > 0 is an arbitrarily small number.

Note that these definitions can be directly applied to joint types. So, if P is the
input distribution of a DMC W : X→ Y, then TN,εPW is the union of all type classes
TN
Q̂

where Q̂(x, y) is in the ε-neighborhood of PW (x, y). The next lemma identifies
some mild conditions we will impose on the channels to establish the main result.
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Lemma 8.22. Let {W,V } be a class of two DMCs with uniform input distribution
Punif. Suppose the channel W is better than the channel V in the sense that∑

y∈Y

∑
x∈X

1

2
W (y|x) logW (y|x) >

∑
y∈Y

∑
x∈X

1

2
V (y|x) logW (y|x), (8.18)

∑
y∈Y

∑
x∈X

1

2
W (y|x) log V (y|x) >

∑
y∈Y

∑
x∈X

1

2
V (y|x) log V (y|x). (8.19)

Then, for small enough ε, whenever (x,y) ∈ TN,εPunifW
and (x′,y) ∈ TN,εPunifV

, we have

W (y|x) > W (y|x′) and V (y|x) > V (y|x′).

Proof. Under the conditions of the lemma

1

N
logW (y|x) =

∑
y∈Y

∑
x∈X

Q̂1(x, y) logW (y|x), (8.20)

1

N
logW (y|x′) =

∑
y∈Y

∑
x∈X

Q̂2(x, y) logW (y|x), (8.21)

for some joint types Q̂1(x, y) in the ε-neighborhood of PW (x, y) and Q̂2(x, y) in
the ε-neighborhood of PV (x, y). Note that for Q̂1 = PunifW and Q̂2 = PunifV , the
inequality in (8.18) ensures W (y|x) > W (y|x′); the continuity of (8.20) and (8.21)
in Q̂1 and Q̂2 then lets us conclude that the inequality holds for small enough ε.
Similarly (8.19) implies the claimed inequality for the channel V .

Let W and V be two B-DMCs such that (8.18) and (8.19) hold. Suppose a
polar code with information set AN(V )

⋂
AN(V ) is designed to ensure information

is transmitted through the good synthetic channels regardless of the true channel.
Assume the input message u is encoded with the polar encoding rule into the input
sequence x = uGN , which is then transmitted through the unknown channel. Upon
reception of an output y, an idea could be to run the polar successive cancellation
decoder twice using the metrics of W and V . Let the estimates of the two runs
be û[W ] and û[V ], respectively. Using these estimates, we can also estimate the
channel inputs by applying

x̂[W ] = û[W ]GN and x̂[V ] = û[V ]GN .

Now, if the true channel was W , we would have (x,y) ∈ T
N,ε
PunifW

with high proba-
bility. As we also know by [2, Theorem 3] that the polar successive cancellation
decoder would succeed with high probability in estimating the transmitted message
correctly, we would expect as well (x̂[W ],y) ∈ T

N,ε
PunifW

with high probability. As
a result, the decoder can check whether (x̂[W ],y) ∈ T

N,ε
PunifW

, and if so, declare
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8.6. Generalized Likelihood Ratio Test

û[W ] as the decoder’s estimate of the transmitted message. However, the previous
argument can also be rephrased for the channel V . Since the decoder does not
know the true channel, we need to resolve the conflict which will arise in case both
conditions (x̂[W ],y) ∈ T

N,ε
PunifW

and (x̂[V ],y) ∈ T
N,ε
PunifV

prevail or fail. Suppose first
both relations hold. Then by Lemma 8.22, we have

W (y|x̂[W ]) ≥ W (y|x̂[V ]) and V (y|x̂[W ]) ≥ V (y|x̂[V ]).

This result tells us that, regardless of the true channel, the estimate û[W ] of the
successive cancellation decoder using the metric of the channel W is always more
likely than the estimate û[V ] of the decoder using the metric of the channel V .
Therefore, to minimize the error probability, the decoder should declare that the
message û[W ] was transmitted. Finally, if both conditions fail, the decoder can
simply declare an erasure. The analysis in [2, Theorem 3] ensures this event has a
vanishing error probability.

The next theorem generalizes the idea presented above to finite classes of channels
W, where L = |W|, and defines the GRLT polar decoder.

Theorem 8.23. Let W = W1 . . .WL be a finite class of B-DMCs such that∑
y∈Y

∑
x∈F2

1

2
Wk(y|x) logWk(y|x) >

∑
y∈Y

∑
x∈F2

1

2
Wk+1(y|x) logWk(y|x), (8.22)

∑
y∈Y

∑
x∈F2

1

2
Wk(y|x) logWk+1(y|x) >

∑
y∈Y

∑
x∈F2

1

2
Wk+1(y|x) logWk+1(y|x) (8.23)

hold for all k = 1, . . . , L− 1. Then, the information set of the polar code designed
for the channel ⋂

k

AN(Wk)

achieves the rate 1
N

∣∣⋂
kAN(Wk)

∣∣ universally over W with the GRLT polar decoder
implementing the following decoding algorithm:

1. Set k = 1,

2. Decode the received output sequence y to form the estimate û[Wk] by running
the polar successive cancellation decoder using the metric of the channel Wk,

3. Construct x̂[Wk] = û[Wk]GN ,

4. If (x̂[Wk],y) ∈ T
N,ε
PunifWk

is true, declare û[Wk] and exit. If k = L, declare an
erasure and exit. Otherwise, increment k and go to step 2.

This serial implementation requires at mostO(LN logN) time complexity andO(N)

space complexity.
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Appendix

The GRLT polar decoder algorithm can also be implemented to run the successive
cancellation decoders for the different channels in parallel. Such an implementation
would require instead O(N logN) time complexity, but O(LN) space complexity.

Appendix
This Appendix consists of three parts. In the first part, we prove Propositions 8.8,
8.9, 8.10, and 8.11. Then, we prove Lemma 8.24 in the second part. Finally, in the
third part, we present an analysis addressing the gap to capacity of the min-sum
approximation of the polar transform.

8.A Proofs of Propositions 8.8, 8.9, 8.10, and 8.11

Proof of Proposition 8.8. We let L
V

(i)
N

(yN1 ) = L1, L
V

(i)
N

(y2N
N+1) = L2 and omit the

subscript in PV for simplicity. By symmetry in the construction of polar codes, we
have P [L1 < 1] = P [L2 < 1]. Then, the claim follows by Proposition 5.7.

Proof of Proposition 8.9. We develop the right hand side of (8.8):∑
y2N1

[
W (y2N

1 |02N
1 )− V (y2N

1 |02N
1 )
]
H
(
L
V

(i)
2N

(y2N
1 )
)

+
∑
y2N1

W (yN1 |0N1 )V (y2N
N+1|02N

N+1)H
(
f(L

V
(i)
N

(yN1 ), L
V

(i)
N

(y2N
N+1))

)
−
∑
y2N1

W (y2N
N+1|02N

N+1)V (yN1 |0N1 )H
(
f(L

V
(i)
N

(y2N
N+1), L

V
(i)
N

(yN1 ))
)

= Pe
(i)
N (W,V )− Pe

(i)
N (V ),

where we used the symmetry of the likelihood ratio functions in their arguments.

Proposition 8.10. First we note that for B-DMCs W and V symmetrized by the
same permutation, we have by Proposition (8.9)

Pe
(i)
2N(W,V )− Pe

(i)
2N(V ) =

∑
yN1

[
W (yN1 |0N1 )− V (yN1 |0N1 )

]
×

∑
y2NN+1

[
W (y2N

N+1|02N
N+1) + V (y2N

N+1|02N
N+1)

]
H
(
L
V

(i)
2N

(y2N
1 )
) , (8.24)

For simplicity, we let L
V

(i)
N

(yN1 ) = L1 and L
V

(i)
N

(y2N
N+1) = L2. We observe that the
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recursion for the minus polar transform is given by

H

(
L1 + L2

1 + L1L2

)
=



1

2
, if L1 = 1,

or L2 = 1

1, if L1 < 1 and L2 > 1,

or L1 > 1 and L2 < 1

0, if L1 < 1 and L2 < 1,

or L1 > 1 and L2 > 1

.

We define the function H (L1) := 1{L1 < 1}+
1

2
1{L1 = 1}. Therefore, after we

apply the minus polar transform, we have

Pe
(2i−1)
2N (W,V )− Pe

(2i−1)
2N (V )

=
∑
yN1 :
L1=1

[
W (yN1 |0N1 )− V (yN1 |0N1 )

]
× 1

+
∑
yN1 :
L1>1

[
W (yN1 |0N1 )− V (yN1 |0N1 )

]
×

∑
y2NN+1:

L2≤1

[
W (y2N

N+1|02N
N+1) + V (y2N

N+1|02N
N+1)

]
+
∑
yN1 :
L1<1

[
W (yN1 |0N1 )− V (yN1 |0N1 )

]
×

∑
y2NN+1:

L2≥1

[
W (y2N

N+1|02N
N+1) + V (y2N

N+1|02N
N+1)

]
=
∑
yN1 :
L1=1

[
W (yN1 |0N1 )− V (yN1 |0N1 )

]
× 1

+
∑
yN1 :
L1>1

[
W (yN1 |0N1 )− V (yN1 |0N1 )

]
×

∑
y2NN+1

[
W (y2N

N+1|02N
N+1) + V (y2N

N+1|02N
N+1)

]
H (L2)

+
∑
yN1 :
L1<1

[
W (yN1 |0N1 )− V (yN1 |0N1 )

]
×

∑
y2NN+1

[
W (y2N

N+1|02N
N+1) + V (y2N

N+1|02N
N+1)

]
H (L2) .
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By substituting H (L2) = 1−H (L2) and regrouping the terms, we obtain

Pe
(2i−1)
2N (W,V )− Pe

(2i−1)
2N (V )

=
∑
yN1

[
W (yN1 |0N1 )− V (yN1 |0N1 )

]
2H (L1)

+
∑
yN1

[
W (yN1 |0N1 )− V (yN1 |0N1 )

]
[1− 2H (L1)]×

∑
y2NN+1

[
W (y2N

N+1|02N
N+1) + V (y2N

N+1|02N
N+1)

]
H (L2) ,

where we used the fact that 1 − 2H (L1) = 1{L1 < 1} − 1{L1 > 1}. Now, note
that the term in the second summation with the 1 sums to 0. Hence, we get

Pe
(2i−1)
2N (W,V )− Pe

(2i−1)
2N (V )

=
∑
yN1

[
W (yN1 |0N1 )− V (yN1 |0N1 )

]
H (L1)×

2−
∑
y2NN+1

[
W (y2N

N+1|02N
N+1) + V (y2N

N+1|02N
N+1)

]
2H (L2)


=
∑
yN1

[
W (yN1 |0N1 )− V (yN1 |0N1 )

]
H (L1)×

∑
y2NN+1

[
W (y2N

N+1|02N
N+1) + V (y2N

N+1|02N
N+1)

]
[1− 2H (L2)] .

We recover (8.9) upon noticing JN defined in (8.10) equals∑
y2NN+1

[
W (y2N

N+1|02N
N+1) + V (y2N

N+1|02N
N+1)

]
[1− 2H (L2)] ,

as 1 − 2H (L2) = 1{L2 < 1} − 1{L2 > 1}. This proves the claim for the minus
transform. The claim for the plus transform can be obtained directly by the expression
given in (8.24).

Proof of Proposition 8.11. We have

PW
[
L(yN1 ) > 1

]
+

1

2
PW

[
L(yN1 ) = 1

]
− PV

[
L(yN1 ) > 1

]
− 1

2
PV
[
L(yN1 ) = 1

]
=PV

[
L(yN1 ) < 1

]
+

1

2
PV
[
L(yN1 ) = 1

]
− PW

[
L(yN1 ) < 1

]
− 1

2
PW

[
L(yN1 ) = 1

]
≤ 0,
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where the negativity follows by condition B. Therefore, adding both sides gives

PW
[
L(yN1 ) > 1

]
− PV

[
L(yN1 ) > 1

]
+ PV

[
L(yN1 ) < 1

]
− PW

[
L(yN1 ) < 1

]
≤ 0.

=⇒ PW
[
L(yN1 ) < 1

]
− PW

[
L(yN1 ) > 1

]
≥ PV

[
L(yN1 ) < 1

]
− PV

[
L(yN1 ) > 1

]
≥ 0,

where the non-negativity follows by condition A.

8.B Lemma 8.24

Lemma 8.24. Assume the statements 1), 2), and 3) of Theorem 8.17 are valid for
any L(i)

N , i = 1, . . . , N , at level n. Then, the statements of the theorem hold if the
original minus polar transform is applied to obtain a likelihood ratio at level n+ 1.

Proof.

L
(2i−1)
2N (y2N

1 , û2i−2
1 ) =

L
(i)
N (yN1 , û

2i−2
1,o ⊕ û2i−2

1,e ) + L
(i)
N (y2N

N+1, û
2i−2
1,e )

L
(i)
N (yN1 , û

2i−2
1,o ⊕ û2i−2

1,e )L
(i)
N (y2N

N+1, û
2i−2
1,e ) + 1

=
f1 + f2

1 + f1f2

,

where f1 := L
(i)
N (yN1 , û

2i−2
1,o ⊕ û2i−2

1,e ), and f2 := L
(i)
N (y2N

N+1, û
2i−2
1,e ). Then

∂

∂L
L

(2i−1)
2N

(
y2N

1 , û2i−2
1

)
=

(f ′1 + f ′2)(1 + f1f2)− (f1 + f2)(f ′1f2 + f1f
′
2)

(1 + f1f2)2

=
f ′2(1− f 2

1 ) + f ′1(1− f 2
2 )

(1 + f1f2)2
.

where f ′j :=
∂fj
∂L

for j = 1, 2. As L(2i−1)
2N (y2N

1 , û2i−2
1 ) > 1 if and only if f1 > 1 and

f2 < 1 (in which case f ′1 > 0 and f ′2 < 0 hold by assumption), or f1 < 1 and f2 > 1

(in which case f ′1 < 0 and f ′2 > 0 by assumption), we get

∂

∂L
L

(2i−1)
2N (y2N

1 , û2i−2
1 ) > 0.

Hence, L(2i−1)
2N (y2N

1 , û2i−2
1 ) is increasing in L if and only if L(2i−1)

2N (y2N
1 , û2i−2

1 ) > 1.
Similarly, one can show that L(2i−1)

2N (y2N
1 , û2i−2

1 ) is decreasing in L if and only if
L

(2i−1)
2N (y2N

1 , û2i−2
1 ) < 1. Finally, L(2i−1)

2N (y2N
1 , û2i−2

1 ) = 1 if and only if f1 = 1 or
f2 = 1, or L = 1.
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Appendix

8.C Gap to Capacity of the Min-Sum Approximation of the Po-
lar Transform

In this part, we discuss the properties of the min-sum approximation defined in
(8.14). We will argue that some of the derivations carried out in Chapter 5 for the
exact likelihood ratio process described in (5.2) extend to the following approximate
likelihood ratio process:

L̃n+1(Y 2N
1 ) =

{
L̃−n (Y 2N

1 ), if Bn+1 = 1

L̃+
n (Y 2N

1 ), if Bn+1 = 0
,

where B1, . . . , Bn denote the sequence of Bernoulli random variables as before and

L̃+
n (Y 2N

1 ) = L̃n(Y N
1 )L̃n(Y 2N

N+1),

L̃−n (Y 2N
1 ) = exp

{
−sign

(
log L̃n(Y N

1 ) ∗ log L̃n(Y 2N
N+1)

)
×

min
{∣∣ log L̃n(Y N

1 )
∣∣, ∣∣ log L̃n(Y 2N

N+1)
∣∣}} , (8.25)

where Y N
1 and Y 2N

N+1 are i.i.d. Observe that the approximate minus transform of the
likelihood ratios satisfy, as in the exact case, the following properties:

1)
{
L̃−n (Y 2N

1 ) > 1
}

⇐⇒
{
L̃n(Y N

1 ) > 1
}⋂{

L̃n(Y 2N
N+1) < 1

}⋃{
L̃n(Y N

1 ) < 1
}⋂{

L̃n(Y 2N
N+1) > 1

}
2)
{
L̃−n (Y 2N

1 ) = 1
}
,

⇐⇒
{
L̃n(Y N

1 ) = 1
}⋃{

L̃n(Y 2N
N+1) = 1

}
,

3)
{
L̃−n (Y 2N

1 ) < 1
}

⇐⇒
{
L̃n(Y N

1 ) > 1
}⋂{

L̃n(Y 2N
N+1) > 1

}⋃{
L̃n(Y N

1 ) < 1
}⋂{

L̃n(Y 2N
N+1) < 1

}
.

Hence, the below counterparts to (5.3), (5.4), and (5.5) hold:

P
[
L̃−n (Y 2N

1 ) � 1
]

= P
[
L̃n(Y N

1 ) � 1
]2

+ P
[
L̃n(Y N

1 )  1
]2

, (8.26)

P
[
L̃−n (Y 2N

1 )  1
]

= 2P
[
L̃n(Y N

1 ) � 1
]
P
[
L̃n(Y N

1 )  1
]
, (8.27)

P
[
L̃−n (Y 2N

1 ) = 1
]

= 2P
[
L̃n(Y N

1 ) = 1
]
− P

[
L̃n(Y N

1 ) = 1
]2

. (8.28)
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For the plus transform, as the symmetry in the likelihood ratios is preserved by
the approximation, one can use similar to (5.13) the fact that

∑
L̃(y)=˜̀W (y|0) =∑

L̃(y)=1/˜̀W (y|0)L(y) to derive the below counterparts to (5.6) and (5.7):

P
[
L̃+
n (Y 2N

1 ) � 1
]

= P
[
L̃n(Y N

1 ) � 1
]2

+
1

N

N∑
i=1

∑
y2N1 :

L̃
(i)
N (yN1 )1

L̃
(i)
N (y2NN+1)1

WN(y2N
1 |02N

1 ) max{L(i)
N (yN1 ), L

(i)
N (y2N

N+1)}, (8.29)

and

P
[
L̃+
n (Y 2N

1 )  1
]

= P
[
L̃n(Y N

1 )  1
]2

+
1

N

N∑
i=1

∑
y2N1 :

L̃
(i)
N (yN1 )1

L̃
(i)
N (y2NN+1)1

WN(y2N
1 |02N

1 ) min{L(i)
N (yN1 ), L

(i)
N (y2N

N+1)}. (8.30)

As a result, one can carry the proofs of Propositions 5.5 and 5.7 in exactly the same
way by replacing the uses of (5.3), (5.4),(5.5), (5.6), and (5.7) by (8.26), (8.27),
(8.28), (8.29), and (8.30), respectively. Moreover, we observe that∑

y2N1 :

L̃
(i)
N (yN1 )1

L̃
(i)
N (y2NN+1)1

WN(yN1 |0N1 )WN(y2N
N+1|02N

N+1)

[
max{L(i)

N (yN1 ), L
(i)
N (y2N

N+1)}+ min{L(i)
N (yN1 ), L

(i)
N (y2N

N+1)}
]

=
∑
y2N1 :

L̃
(i)
N (yN1 )1

L̃
(i)
N (y2NN+1)1

WN(yN1 |0N1 )WN(y2N
N+1|0N1 )

[
L

(i)
N (yN1 ) + L

(i)
N (y2N

N+1)
]

= 2P
[
L̃

(i)
N (Y N

1 )  1
] ∑

yN1 :

L̃
(i)
N (Y N1 )1

WN(yN1 |0N1 )L
(i)
N (yN1 )

= 2P
[
L̃n(Y N

1 )  1
]
P
[
L̃n(Y N

1 ) � 1
]
,

where in the last line we used the fact that Y N
1 and Y 2N

N+1 are i.i.d. and the exact and
approximated likelihood ratios are both symmetrized by the same permutation.

We also make the following observation: If we limit the analysis of Section 5.3 to
channels symmetrized by the same permutation, we get T (Wn, Vn) = T 0(Wn, Vn) =
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T 1(Wn, Vn), where T 0(Wn, Vn) is given by (5.15) and T 1(Wn, Vn) by (5.16). In this
case, the following monotonicity properties can be derived by extending the analysis
carried for Tn(W ) in the proof of Proposition 5.1 to Tn(W,V ).

Lemma 8.25. Tn(W−, V −) = Tn(W,V )2 ≤ Tn(W,V ) ≤ Tn(W+, V +).

Letting T̃n = P
[
L̃n(Y N

1 ) � 1
]
− P

[
L̃n(Y N

1 )  1
]
, one can show using the

previous derivations the following counterpart to Proposition 5.1.

Proposition 8.26. The process T̃n is a bounded supermartingale in [0, 1] and con-
verges a.s. to a {0, 1} valued random variable since it satisfies

T̃n+1 =

{
T̃−n , if Bn+1 = 1

T̃+
n , if Bn+1 = 0

,

with the successive choices taken independently, and where

T̃−n = T̃ 2
n ,

T̃+
n ∈

[
T̃n, 2T̃n − T̃ 2

n

]
.

We managed to prove the convergence of a process associated with the min

approximation of the polar transform. We note that for a given L(Y 2N
N+1) 6= 1, while

the exact minus transformation is strictly monotone (increasing or decreasing) in
L(Y N

1 ), the approximate one is no longer strictly but simply monotone. So, one
particular difference caused by the approximation to the minus polar transform
is identical likelihood ratios obtained for some outputs which would otherwise be
different from each others. Hence, following the approximation a plus transformation
at the next level will result in more outputs having likelihood ratios equal to one. In
order to characterize the gap to capacity of the approximation, one needs to analyze
the fraction of synthetic channels for which the approximation T̃n converges to 1.
This appears to be a difficult analysis. Whether ultimately the approximation would
cause loss in the performance is an open problem.

A sufficient condition for any approximation to be robust is the following:

If

{
{Ln(Y N

1 ) < 1} = {L̃n(Y N
1 ) < 1},

{Ln(Y N
1 ) > 1} = {L̃n(Y N

1 ) > 1}

}

⇒

{
{Ln+1(Y 2N

1 ) < 1} = {L̃n+1(Y 2N
1 ) < 1},

{Ln+1(Y 2N
1 ) > 1} = {L̃n+1(Y 2N

1 ) > 1}

}
. (8.31)

An idea could be to slightly perturb the identical likelihood ratios forced by the
approximation to distinct values while keeping the symmetry such that this new
version of the approximation would satisfy (8.31).
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Chapter 9

Channel Polarization over
Non-Stationary B-DMCs

In this chapter, we extend the original theory of polar coding to non-stationary
B-DMCs. In this model, the channel law is no longer assumed to be stationary
during the transmission of a codeword and is allowed to vary over each use of the
channel in a memoryless fashion. The model is quite useful to capture the effects
of time-varying noise present in real communication systems. Note, however, that
the nature of this fluctuation is benign and not malicious as in the arbitrarily varying
channel model. So, do not let your guard down if malicious opponents are around!

What’s Coming, Doc?

With (U1, U2, X1, X2, Y1, Y2) denoting the ensemble where U1, U2 are i.i.d. and uni-
form in F2, (X1, X2) = (U1 ⊕ U2, U2) and P[y1, y1|x1, x2] = W (y1|x1)W (y2|x2),
the synthetic channels W− and W+ describe U1 → Y1Y2 and U2 → Y1Y2U1, respec-
tively. Looking at this chain of channel combining and splitting operations, recall
that Arıkan [2] observes that the polar transform preserves symmetric capacity:

I(W−) + I(W+) = I(U1;Y1Y2) + I(U2;Y1Y2U1)

= I(U1U2;Y1Y2) = I(X1X2;Y1Y2) = I(W ) + I(W ). (9.1)

This may be as good a place as any to note that ‘conservation of I(·)’ does not
require the channel that connects X1 to Y1 and the channel that connects X2 to Y2

to be identical; as we remarked in Chapter 4, the same computation as in (9.1) will
yield

I(〈W1,W2〉−) + I(〈W1,W2〉+) = I(W1) + I(W2) (9.2)
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if W1 and W2 are independent channels describing these connections and 〈W1,W2〉−
and 〈W1,W2〉+ defined in (4.13) and (4.14) are the synthetic channels that link U1

to Y1Y2 and U2 to Y1Y2U1, respectively.

Arıkan proves that a phenomenon of polarization takes place when the polar
transform is repeatedly applied: the n-fold application of the polar transform to
synthesize 2n channels yields, asymptotically, only extremal channels (those with
symmetric capacity close to zero or one) and in the ‘right proportion’ of each of the
two kinds. Formally:

Theorem 9.1. For any binary input channel W , and any 0 < a < b < 1,

lim
n→∞

1

2n
#
{
s ∈ {+,−}n : I(W s) ∈ [0, a)

}
= 1− I(W ),

lim
n→∞

1

2n
#
{
s ∈ {+,−}n : I(W s) ∈ [a, b]

}
= 0,

lim
n→∞

1

2n
#
{
s ∈ {+,−}n : I(W s) ∈ (b, 1]

}
= I(W ).

Arıkan’s polar construction for a stationary memoryless channel can be trivially
generalized to the case when we need to communicate over a binary input, memory-
less, but not necessarily stationary channel. Specifically, suppose Wt, is the channel
law at time instant t ∈ N. Arıkan’s polar construction will successively transform
this collection of channels into, first, a collection {W1,t : t ∈ N} of channels where

W1,2m = 〈W2m,W2m+1〉−,
W1,2m+1 = 〈W2m,W2m+1〉+,

next, a collection {W2,t : t ∈ N} of channels where

W2,4m = 〈W1,4m,W1,4m+2〉−

W2,4m+1 = 〈W1,4m+1,W1,4m+3〉−

W2,4m+2 = 〈W1,4m,W1,4m+2〉+

W2,4m+3 = 〈W1,4m+1,W1,4m+3〉+,

and further, with n ≥ 1, N = 2n and 0 ≤ j < N/2, to successive collections
{Wn,t ; t ∈ N} given by

Wn,Nm+j = 〈Wn−1,Nm+j,Wn−1,Nm+N/2+j〉−

Wn,Nm+N/2+j = 〈Wn−1,Nm+j,Wn−1,Nm+N/2+j〉+.

(where we have defined W0,t = Wt). Figure 9.1 helps visualize the construction that
leads to this transformation.
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Figure 9.1: Arıkan construction after three stages; the dashed lines are the input
planes to the synthetic channels of successive stages.

A natural question to ask at this point is if the successive collections eventually
polarize; a possible formalization of what is meant by this could be “for every
0 < a < b < 1, limn θn(a, b) = 0,” where

θn(a, b) := lim inf
τ→∞

1

τ
#
{

0 ≤ t < τ : I(Wn,t) ∈ [a, b]
}
.

We shall abide by this particular formalism.

In Theorem 9.7, we will prove that the method of channel combining and splitting
via the polar transform polarizes as well non-stationary B-DMCs. The technique
we employ for the proof of the theorem will be far from being a trivial extension of
the proof technique we have discussed so far to prove channel polarization. This is
explained by the fact that while the standard proof that polarization does take place
over stationary B-DMCs requires one to construct an artificial stochastic process (the
random walk on the ‘tree of channels’ synthesized by the polar transform defined
in (4.4)) and the concept of martingales, this construction cannot be extended to
the above non-stationary setting we introduced. As a result, we will first give a
simpler proof of the polarization phenomenon over stationary B-DMCs that relies
only on elementary concepts. Subsequently, we will show that this simple technique

181



Chapter 9. Channel Polarization over Non-Stationary B-DMCs

allows to prove that Arıkan’s construction also polarizes non-stationary memoryless
channels.

9.1 A simple Proof of Polarization
As we just remarked, Arıkan’s proof of polarization makes use of an elegantly
constructed martingale and appealing to the martingale convergence theorem. We
will give a proof of this theorem by making use of (9.1) and the following restatement1

of Mrs. Gerber’s lemma (see e.g., [50, p. 19]).

Lemma 9.2. If I(W ) = 1 − h2(p), then I(W−) ≤ 1 − h2(p ∗ p), where h2(p)

is the binary entropy function and p ∗ q = p(1 − q) + (1 − p)q. Consequently
I(W+) ≥ 1− 2h2(p) + h2(p ∗ p) and

[
I(W+)− I(W−)

]/
2 ≥ h2(p ∗ p)− h2(p).

Observe that for p in the interval [0, 1
2
], p ∗ p is also in this interval and p ∗ p ≥ p

with equality only when p = 0 or p = 1
2
. Consequently h2(p ∗ p)− h2(p) ≥ 0 with

equality only under the same conditions. Since p→ h2(p ∗ p)− h2(p) is continuous,
it follows that for any 0 < p0 < p1 <

1
2
,

inf{h2(p ∗ p)− h2(p) : p ∈ [p0, p1]}
= min{h2(p ∗ p)− h2(p) : p ∈ [p0, p1]}, (9.3)

and the right hand side is a strictly positive quantity whose value depends on p0 and
p1. It further follows, that there exists a non-negative function κ(a, b) such that (i),
I(W ) ∈ [a, b] implies

K(W ) :=
1

2

[
I(W+)− I(W−)

]
≥ κ(a, b),

and (ii), κ(a, b) > 0 whenever 0 < a < b < 1. Indeed, κ(a, b) may be taken to be
the right hand side of (9.3) with p0 = h−1

2 (1− b) and p1 = h−1
2 (1− a).

With the above technical facts at our disposal we are now ready to prove Theo-
rem 9.1.

Proof of Theorem. Given W and 0 < a < b < 1, define

θn(a, b) :=
1

2n
#
{
s ∈ {+,−}n : I(W s) ∈ [a, b]

}
1the equivalence with the standard form is immediate upon noting that I(W ) = 1−H(X1|Y1) =

1−H(X2|Y2) and I(W−) = 1−H(X1 ⊕X2|Y1Y2) and further noting that (X1, Y1) and (X2, Y2)
are independent.
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as the fraction of synthetic channels that are not yet polarized after n-fold polar
transform. Similarly define

αn(a) :=
1

2n
#
{
s ∈ {+,−}n : I(W s) < a

}
βn(b) :=

1

2n
#
{
s ∈ {+,−}n : I(W s) > b

}
.

Our task is to show that αn, βn and θn converge to 1−I(W ), I(W ) and 0, respectively.
To that end, let

µn =
1

2n

∑
s∈{+,−}n

I(W s) and νn =
1

2n

∑
s∈{+,−}n

[
I(W s)

]2
.

Observe that both of these quantities are in [0, 1] and note that, thanks to (9.1),

µn+1 =
1

2n+1

∑
s∈{+,−}n+1

I(W s)

=
1

2n

∑
t∈{+,−}n

1

2

[
I(W t+) + I(W t−)

]
=

1

2n

∑
t∈{+,−}n

I(W t) = µn.

Owing to the identity 1
2
(u2 + v2) =

[
1
2
(u+ v)

]2
+
[

1
2
(u− v)

]2, we also have

νn+1 =
1

2n+1

∑
s∈{+,−}n+1

[
I(W s)]2

=
1

2n

∑
t∈{+,−}n

1

2

[
I(W t+)2 + I(W t−)2

]
=

1

2n

∑
t∈{+,−}n

[
I(W t)

]2
+
[
K(W t)

]2
≥ νn + θn(a, b)κ(a, b)2.

Thus we see that I(W ) = µ0 = µ1 = . . . , and I(W )2 = ν0 ≤ ν1 ≤ ν2 ≤ · · · ≤ 1.
The sequence νn is thus bounded and monotone and consequently convergent; in
particular νn+1 − νn converges to zero. As θn is sandwiched by

0 ≤ θn(a, b) ≤ νn+1 − νn
κ(a, b)2

,

i.e., between two quantities both convergent to zero, we conclude that limn θn(a, b) =
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0. Lastly, observe that

I(W ) = µn ≤ aαn(a) + bθn(a, b) + βn(b)

= a+ (b− a)θn(a, b) + (1− a)βn(b),

thus I(W ) ≤ a+ (1− a) lim infn βn(b). Since this last inequality is valid for all a
in (0, b), we see (by taking a infinitesimally small) that

lim inf
n

βn(b) ≥ I(W ).

An analogous calculation, starting with 1−µn ≤ αn(a)+(1−a)θn(a, b)+(1−b)βn(b)

yields
lim inf

n
αn(a) ≥ 1− I(W ).

But as we have αn(a) + βn(b) ≤ 1, it follows that limn αn(a) = 1 − I(W ) and
limn βn(b) = I(W ).

9.2 Extensions to Non-Stationary B-DMCs
Encouraged by the simple proof of polarization given in the previous section, we
proceed by defining

µn = lim
τ→∞

1

τ

τ−1∑
t=0

I(Wn,t),

νn = lim inf
τ→∞

1

τ

τ−1∑
t=0

[I(Wn,t)]
2,

and follow the program of showing (i) µn+1 = µn, (ii) νn+1 ≥ νn, and (iii) relate the
differences in the ν sequence to the θ sequence.

Remark 9.3. One needs to justify that the limit that defines µn exists. For this purpose
we assume that µ0 is well defined, namely, that limτ

1
τ

∑τ−1
t=0 I(Wt) exists. This is

sufficient to guarantee the existence of all µn. In the following two paragraph we
will show the existence of µ1, the general case follows by the same reasoning.

We begin with a general fact: if a sequence {sτ : τ ≥ 1} is a ‘running average’
of a bounded sequence {at : t ≥ 0}; i.e., sτ = (1/τ)

∑τ−1
t=0 at, then for any k ≥ 1,

the ‘arithmetic’ subsequence sk, s2k, s3k . . . has the same limit points as {sτ}. For
if sn1 , sn2 , . . . is a convergent subsequence of {sτ}, set mi = kdni/ke by rounding
up each ni to the nearest multiple of k, and consider the sequence smi (which is a
subsequence of the arithmetic subsequence). Note that smi and sni differ at most by
Ak/mi with A = supt |at|. Consequently {smi} and {sni} have the same limit.
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Thanks to (9.2), for even values of τ , we have

1

τ

τ−1∑
t=0

I(W1,t) =
1

τ

τ−1∑
t=0

I(Wt),

and thus, the arithmetic subsequence (with k = 2) of the sequence that defines µ1

has a single limit point, µ0. By the previous paragraph the sequence that defines µ1

then also has a single limit point, and its limit is well defined.

The first step (i) of the program, that µn+1 = µn is thus a simple consequence
of (9.2). For step (ii), we again appeal to a restatement of the general form of
Mrs. Gerber’s lemma

Lemma 9.4. If W1 and W2 are independent binary input channels with I(W1) =

1− h2(p1) and I(W2) = 1− h2(p2), then I(〈W1,W2〉−) ≤ 1− h2(p1 ∗ p2).

Upon noting that for 0 ≤ p1, p2 ≤ 1/2, one has p1 ∗ p2 ≥ max{p1, p2}, with
equality if and only if either p1 or p2 takes an extremal value, we see

I(〈W1,W2〉−) ≤ min{I(W1), I(W2)} ≤ max{I(W1), I(W2)} ≤ I(〈W1,W2〉+),

where the first and last equalities are strict unless W1 or W2 is extremal. Indeed,
the same reasoning as in the paragraph after Lemma 9.2 shows that there is a non-
negative function η(a, b) such that (i) I(W1), I(W2) ∈ [a, b] implies

I(〈W1,W2〉+)− I(〈W1,W2〉−) ≥ |I(W1)− I(W2)|+ η(a, b),

and (ii), η(a, b) > 0 whenever 0 < a < b < 1. Equivalently, there is a non-negative
function ζ(a, b) such that

K2(W1,W2) := 1
2

[
I(〈W1,W2〉−)2 + I(〈W1,W2〉+)2

]
− 1

2

[
I(W1)2 + I(W2)2

]
≥ ζ(a, b),

with ζ(a, b) > 0 whenever 0 < a < b < 1. In words “when we combine two
mediocre channels we create variance.”

The non-negativity of ζ (and an appeal to the fact on arithmetic subsequences
mentioned in Remark 9.3 above) suffices to conclude that νn+1 ≥ νn. Since νn is
bounded by 1, we see that νn is a convergent sequence. The final task is to relate
the difference νn+1 − νn to θn. One quickly realizes however, that this is in general
not possible: consider, for example that our sequence of channels Wt is such that
Wt is extremal when t is even, and is mediocre (say with I(Wt) = 1/2) when t is
odd. In this case half of our channels are unpolarized, i.e., θ = 1/2, but in the first
polarization stage all channel combinations involve one extremal channel, so no

185
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variance is created. Indeed, after the first polarization stage, half of our channels are
still mediocre, only their locations may have changed: if the original sequence of
channels were

W0,W1,W2,W4, · · · = G,M,B,M, . . .

(with G, M, B denoting good, mediocre, and bad channels), and this “GMBM” pattern
repeats ad infinitum, after the first stage, we will obtain the (repeating) sequence

M,G,B,M, . . .

In this particular case no mediocre channels are combined even at the the second
stage, which yields

B,M,M,G, . . .

It is only at the third stage that mediocre channels are combined.

The example above shows that when θn ≤ 1/2 there is no strictly positive lower
bound to νn+1 − νn, nor even to νn+2 − νn. Nevertheless it is easy to convince
oneself that starting with an arrangement where half channels are mediocre, while
no extremalization may take place in the first two stages, by the third stage mediocre
channels have to be combined and thus creating extremalization. To make use of this
insight we need to make a digression and prove a combinatorial fact.

Consider the set A = {B,M,G} with the ordering B < M < G. Given two
sequences u = (u0, . . . , uK−1), v = (v0, . . . , vK−1) in AK , let u ∨ v and u ∧ v

denote the component-wise maximum and minimum of the two sequences. Define
now, recursively, maps πk : AK → AK , with K = 2k and k ≥ 0 as follows:
π0 is the identity map from A to A. To find πk+1(u0, . . . , u2K−1) first compute
x = πk(u0, . . . , uK−1) and y = πk(uK , . . . , u2K−1), and set πk+1(u0, . . . , u2K−1) =

(x ∧ y)(x ∨ y). E.g., to compute π2(GMMB), we need to compute π1(GM) = MG and
π1(MB) = BM, and find the result as BMMG. Note that the permutation πk mimics the
rearrangement of the sequence of channelsW0, . . . ,WK (each classified as good, bad,
mediocre) after k polarization stages. For K = 2k, call a sequence u ∈ AK extremal
if in the computation of πk(u) we encounter no instance of M ∧ M or M ∨ M. For
example, the sequences GMMB and BMMG are extremal, whereas MBBM is not. Note
that extremal sequences of length K = 2k are precisely those channel sequences for
which during the first k polarization stages no two mediocre channels are combined.
The key fact about extremal sequences is that an extremal sequence may not contain
too many M’s:

Lemma 9.5. If K = 2k and u = (u0, . . . , uK−1) is extremal, then, at most
(

k
bk/2c

)
of the ui’s may be M.

Proof. See appendix.
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Corollary 9.6. If θn(a, b) >
(

k
bk/2c

)
/2k := εk, then

νn+k ≥ νn + δ

where δ > 0 is a quantity that depends only on k, θn, a, b.

Proof. For simplicity of notation take n = 0. Set K = 2k, and group the channels
W0,W1, . . . into blocks of size K: (W0, . . . ,WK−1), (WK , . . . ,W2K−1), . . . . At the
same time, designate each channel Wi to be of type B, M or G according to I(Wi)

being less than a, between a and b, or larger than b. This designation will assign to
each block a ‘pattern’ in AK .

Call a block to be extremal if its pattern is extremal. Since extremal patterns
contain at most

(
k
bk/2c

)
M’s, we have

θ0(a, b) ≤ (1− ψ)εk + ψ

where ψ is the fraction (defined as a lim inf) of non-extremal blocks. Consequently,
ψ satisfies ψ ≥ (θ0− εk)/(1− εk) > 0 and we see that a positive fraction of blocks is
non-extremal. In the first k stages of polarization, in each of the non-extremal blocks,
at least two mediocre channels will be combined, contributing at least ζ(a, b)/2K to
the variance within that block. Thus,

νk ≥ ν0 + ψζ(a, b)/2k.

Theorem 9.7. For any sequence of channels W0,W1, . . . , and any 0 < a < b < 1,

lim
n
θn(a, b) = 0.

Proof. Since νn is a convergent sequence, for any fixed k, the difference νn+k − νn
approaches zero as n gets large. By Corollary 9.6, we conclude that θn ≤ εk =(

k
bk/2c

)
/2k for sufficiently large n. Since limk εk = 0, the conclusion follows.

Corollary 9.8. For any sequence of channels W0,W1, . . . for which

µ = lim
τ

1

τ

∑
t<τ

I(Wt) (9.4)

is well defined, Arıkan’s construction polarizes the sequence and for any b < 1 the
fraction of ‘good’ synthetic channels

βn = lim sup
τ

1

τ
#{0 ≤ t < τ : I(Wn,t) > b}

approaches µ as n gets large.
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Proof. Follows from Theorem 9.7 above and the same reasoning as in the proof of
Theorem 9.1 that established βn(b) = I(W ).

9.2.1 Universal Polar Coding with Channel Knowledge at the
Decoder

To study the universality of polar codes over non-stationary B-DMCs, here we apply
the order preserving property of the polar transform that we derived in Chapter 6.

Corollary 9.9. Let W be a set of B-DMCs and V be a B-DMC such that

|∆V | ≺icx |∆W |,

for all W ∈W. Then, the polar code designed for the channel V is universal for W
in the sense that, if W0,t ∈W, for any t ∈ N, the following orderings hold:

A
fs,γ
N (V ) ⊂ A

fs,γ
N ({Wn,t : t ∈ N}) ,

for any γ ∈ (0, 1) and fs ∈ Fs,cx, where Fs,cx is defined in (6.2).

Proof. This result follows as a corollary to Theorem 6.5. Note that the order preserv-
ing property is already shown there for the more general polar transform 〈W1,W2〉±.
For notational consistency, we denote by {Vn,t : t ∈ N} the set of synthetic channels
obtained from the n-fold application of the polar transform to the copies of the
channel V , i.e, we have V0,t = V , for any t ∈ N. By the recursive construction
procedure, we conclude that ∣∣∆Vn,t

∣∣ ≺icx ∣∣∆Wn,t

∣∣,
for all i = 1, . . . , 2n.

Assuming that the decoder knows the sequence of realizations of the non-
stationary channel, the corollary reveals that the universality emerging from the
symmetric convex ordering, and hence also from channel degradation, extends form
the stationary setting to the non-stationary one.

Appendix

9.A Proof of Lemma 9.5

We prove Lemma 9.5, to wit, if K = 2k, and u ∈ AK is extremal than at most(
k
bk/2c

)
coordinates of u can be M.
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Observe that a sequence of length 2K (u0, . . . , u2K−1) is extremal if and only
if (u0, . . . , uK−1) and (uK , . . . , u2K−1) are both extremal, and the two sequences
x = πk(u0, . . . , uK−1) and y = πk(uK , . . . , u2K−1) do not have a common M, that
is, for no 0 ≤ j < K we have xj = yj = M.

For k = 0, 1, . . . , and K = 2k define

Rk = {πk(u) : u ∈ AK is extremal}.

Clearly R0 = A, and by the observation in the previous paragraph,

Rk+1 = {uv : u = x ∧ y, v = x ∨ y,x,y ∈ Rk with no common M}. (9.5)

The first few Rk’s can be readily found as:

R0 = {B,M,G}
R1 = {BB,BM,MG,GG}
R2 = {BBBB,BBBM,BBBG,BBMG,BBGG,BMBG,BMMG,

BMGG,BGBG,BGMG,BGGG,MGGG,GGGG}

As πk(u) is a permutation of u, to prove Lemma 9.5 it suffices to prove:

Lemma 9.10. If K = 2k and u = (u0, . . . , uK−1) ∈ Rk, then at most
(

k
bk/2c

)
of the

ui may be M.

To prove Lemma 9.10 we first show that the recursion (9.5) may be written in a
simpler form.

Lemma 9.11. If x,y ∈ Rk, then (i) x ∧ y ∈ Rk, (ii) x ∨ y ∈ Rk, moreover, (iii)

Rk+1 = {xy : x ≤ y, x,y ∈ Rk with no common M} (9.6)

(x ≤ y indicates component-wise inequality).

Proof. The assertions (i) and (ii) for k = 0 are trivially true. The proof follows by
induction on k: The truth of (i), (ii) for a given value of k and (9.5) establish the
truth of (iii) for k, and also the truth of (i) and (ii) for k + 1.

With K = 2k, an element u = (u0, . . . , uK−1) of AK can be viewed as a
function from the subsets of {1, . . . , k} to A by the association u(S) = uj where
j =

∑
i∈S 2i−1. E.g., u = BMMG is associated with the function u(·) with u({}) = B,
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u({1}) = u({2}) = M, u({1, 2}) = G. Now, if k ≥ 1 and u ∈ Rk, by (9.6), we see

(u0 . . . uK/2−1) ≤ (uK/2, . . . , uK−1)

or equivalently u(S) ≤ u(S ∪ {k}) (and not both equal to M) for all S not including
k. The recursive structure of (9.6) further implies that u(S) ≤ u(S ∪ {i}) (and not
both equal to M) for all S not including i, (1 ≤ i ≤ k). We thus see that u ∈ Rk if
and only if u(S) ≤ u(T ) (and not both equal to M) whenever S ( T .

Proof of Lemma 9.10. Given u ∈ Rk, by the observation in the previous paragraph,
the collection

F = {S : u(S) = M}

forms a Sperner system on {1, . . . , k}, i.e., no member of F includes any other. But
no Sperner system on {1, . . . , k}may have more than

(
k
bk/2c

)
members (see, e.g., [51,

Theorem §3.1 on p. 10]).
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Chapter 10

Conclusions

We hope you did not directly jump into this last chapter. Otherwise, it would be
wiser to continue your reading with the dialogues of ‘Mr. Minus and Mrs. Plus’
when the clock strikes.

Is This the End, Doc?
It is time to recapitulate what we accomplished in this thesis and point out possible
directions for future research.

10.1 Overview of Thesis Contributions
The overview proceeds without necessarily following the order of the presentation.

10.1.1 Variations on the Polar Transform ˇ “ ˇ “== ˇ “== ? ��� ˇ “ ˇ “
== ˇ “== ? ���

In this thesis, the original polar coding framework of Arıkan [2] was extended along
various paths. We used the polar transform 〈W1,W2〉± to combine two independent
channels that are not necessarily identical. We showed that the one-step application
of this generalized polar transform does improve general quality measures of the
system, and the improvement is bound to happen within the limits dictated by the
extremal channels— the BECs and the BSCs. In particular, Theorem 4.7 certified
that polarization ‘creates’ E0. We saw that the improvement in E0 translates to an
improvement in the complexity–error-probability trade-off. This observation gave
yet another justification as to why the polar transform yields capacity achieving and
low complexity codes.
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Chapter 9 went further ahead by combining arbitrary B-DMCs via the recursive
application of the polar transform. With this application discussed for the first time
in this thesis, we extended the polar coding framework to non-stationary channels by
proving that the polar transform polarizes non-stationary channels in the same way
as it polarizes stationary ones.

Another previously ‘untouched’ problem that we considered was: Polar coding
in the presence of a decoding mismatch. Motivated by the fact that in practice
almost all decoders are mismatched, we studied in Chapter 7 the performance
of polar coding with mismatched polar decoding. We showed that the synthetic
channels ‘seen’ by a mismatched polar decoder end up being either ‘perfect’ or
‘completely noisy’. Thus, we found that the transmission capacity with mismatched
polar decoding is equal to the fraction of the synthetic channels which are still perfect
from the mismatched decoder’s perspective. Moreover, we proved that this fraction
is lower bounded by a sequence of tighter bounds whose first element is given
by the generalized mutual information parameter, which we denoted by I(W,V )

and defined in (7.4). Furthermore, we showed that the speed of polarization of the
processes is not affected by the presence of mismatch. Polar coding is thus also
possible in mismatched communication scenarios, and the mismatched polar decoder
still operates in O(N logN) complexity in the block-length N . Surprisingly, it
turned out that it is even possible to achieve better rates than the classical mismatched
capacity with the help of the polar transform.

These contributions strongly support the view point that “polarization is a fairly
general phenomenon”. As illustrated by this thesis and by many other works, the
idea of channel polarization can be applied to different communication scenarios,
and polar coding can be welcomed with all its unique properties.

10.1.2 Extrema, Extremal, Extremality

The extremality of the BEC and the BSC was shown for the polar transform in
Chapter 4. The result can be interpreted in the context of information combining:
Theorem 4.8 shows that even if we change the measure of information from the
customary mutual information to Gallager’s E0 evaluated under the uniform input
distribution, the BEC and BSC still remain extremal. The extremal channels are of
particular importance for the theory of polarization as they provide bounds to the
evolution of information measures associated with the synthetic channels whose
output alphabets keep growing in general arbitrarily large under the sequence of
polar transformations. In fact, these bounds proved already to be useful technical
tools for the study of the channel polarization phenomenon. For instance, they can
be used to identify to which values the synthetic channels’ symmetric capacities or
E0 parameters converge. Even the derivation of the rate of polarization carried out
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in [30] uses the fact that the BEC model constitutes an extremal channel model in
the one-step evolution of the Bhattacharyya parameter while being preserved under
the polar transform [2] (so the BEC is extremal during the entire evolution).

Besides the extremality results for the polar transform, we described in Theorem
3.1 certain extremality properties for B-DMCs when the information measure is once
more Gallager’s E0 evaluated under the uniform input distribution. These properties
yielded in straightforward fashion extremal properties for the Rényi entropies and
recent results by Guillén i Fàbregas et al. [22], [23] showing that amongst all
symmetric B-DMCs of the same capacity, the BEC and the BSC are E0(ρ) extremal
for all ρ > −1. It is worth emphasizing that all the conclusions of the chapter are
valid for arbitrary binary input channels as long as one evaluates all the quantities
under the uniform input distribution.

Although it is not very often explicitly formulated, the extremal channel bounds
are powerful information-theoretic tools. It would thus be appropriate to add a couple
of words about the proof technique used in the proofs of these extremality results.
The technique is not new and the use of similar techniques in information theory can
be traced back to the proof of Mrs. Gerber’s Lemma in [52]. Similar techniques have
been used to show that the BEC and the BSC are extremal channels in the context of
information combining in [25] and [53]. The result of [22] we have just mentioned
uses as well this technique. Obtaining upper and lower bounds on E[f(A)], for
a bounded random variable A, when the function f(.) is convex or concave is a
straightforward application of Jensen’s inequalities. However, expressing the quantity
of interest in a convenient form and proving convexity may not be trivial at all.

10.1.3 Now in 3D! Performance vs. Complexity vs. Universality

In Chapter 8, we took a designer’s perspective to identify channel conditions under
which universal polar codes can be designed. Partial results were obtained for
the cases where either the encoder or the decoder know the actual channel which
occurred during the transmission of the codeword. We saw that the conditions for
the universal encoding and the universal decoding (with the original polar successive
cancellation decoder) of polar codes are different in nature: while conditions such
as stochastic degradation, symmetric convex ordering, or even less noisy ordering
enable the design of universal encoders, convexity or one-sidedness must be imposed
on the sets of channels to design universal polar decoders. Unfortunately, these
conditions are not necessarily compatible with each other, and for this reason, it was
argued that the original polar code construction would lead to universal codes for
both the encoding and the decoding operations only under strong assumptions on the
set of channels.
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Following this observation, the chapter studied the performance of two alternative
decoders which slightly modified the original polar decoding procedure in order
to obtain universal polar code designs for certain classes of channels. The first
modification introduced the min-sum approximation to the recursive computations
of the likelihood ratios of the synthetic channels. We showed that mismatched polar
codes using this approximation at the decoder are robust over the class of BSCs
whose crossover probabilities satisfy p < 0.5 (or p > 0.5). Moreover, we observed
in simulations that no significant loss is incurred by the approximation. Hence when
the encoder knows the channel, regardless of the decoding metric, we expect that
rates very close to the actual channel capacity can be achieved by polar codes which
are designed using this approximation. In scenarios where hardware implementation
dictates such an approximation must be introduced as stated by [48], unavoidably
no better rates can be achieved. In this case, polar codes designed with possibly
mismatched parameters provide at the least a ‘practical universality’ for BSCs.

The second modification that we considered incorporated the idea of the general-
ized likelihood ratio test into the decoding procedure of polar codes. In Theorem
8.23, we proved that information set designs for polar coding can be made universal
over some finite class of channels satisfying certain mild conditions by granting the
decoder more resources to summon multiple runs of the polar successive cancellation
decoder with the metrics of the different channels in the class. No surprise good
performance + low-complexity + universality comes with a price. The time complex-
ity of a serial implementation of this decoder, we called the GRLT polar decoder,
scales at most like O(LN logN), where L is the number of channels. Thus, when
the value of L is not too large, the GRLT polar decoder will still be a low complexity
decoder, and the price for universality will be affordable. What about arbitrary class
of channels? This result tells us that for classes of channels which can be represented
with, or quantized into, a rather small number of representative channels satisfying
the necessary mild conditions, information set designs for polar coding can achieve
universal rates over these compound sets by using a low complexity GRLT polar
decoder implementation.

10.1.4 Mission Ispossible: The Undergrad Experience

Arıkan’s polar codes, besides their various merits, are natural candidates to be
taught in a course in information theory. Unlike classical codes, polar codes can be
introduced without any reference to algebraic structures (no disrespect to algebra
intended); their economy of concepts allow them to play an analogous role in
teaching channel coding as Huffman codes do in teaching source coding; they also
explicitly show that affine codes achieve the symmetric capacity of binary input
channels. Indeed, polarization can be described as soon as the concept of a ‘stationary
memoryless channel’ and mutual information is explained. From a pedagogical point
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of view, the numerical study of the case of the binary erasure channel is a very useful
exercise: the students can see with their own eyes that as the number of polarization
levels increase the fraction of ‘unpolarized channels’ vanishes.

Yet, the standard proof that polarization does take place requires one to construct
an artificial stochastic process (the random walk on the ‘tree of channels’ synthesized
by the polar transform) and the concept of martingales. In a senior undergraduate
or introductory graduate level course, it is unwise to assume familiarity with mar-
tingales; consequently, any instructor wishing to teach polarization in such a course
either has to resort to hand-waving arguments, or spend time to teach a fair bit of
background. Chapter 9 described a simpler proof of the polarization phenomenon
that relies only on elementary concepts familiar to senior undergraduates.

The method described in Section 9.1 hopefully makes clear that polarization and
polar codes can be taught without requiring any particularly advanced background in
stochastic processes. The method is also versatile enough to establish polarization
in the more general context of non-stationary channels (but one probably should
not attempt the proof in an undergraduate course). We should note that the method,
just as the original method of Arıkan, is not powerful enough to conclude anything
about the speed of polarization. In particular, to show that polarization happens fast
enough to arrest error propagation, or that the error probability of polar codes decays
exponentially in the square root of the block-length still require non-elementary
techniques.

10.2 Open Problems
We close the curtain with some directions for future research.

1. Efficient construction of mismatched information sets: To put into practice
the coding theorem of Section 7.3, we proposed in the same section to construct
mismatched information sets of the form (7.22) via statistical methods. On
the other hand, we believe that low complexity algorithms as proposed in
[3] for the matched information sets can also be found for the mismatched
sets, (this would be useful in the scenario we know the true channel, but do
mismatched polar decoding due to feasibility requirements). In that respect,
the symmetric convex ordering could be a useful tool to approximate the
channels, but preserving the ordering under the polar transform in the presence
of a mismatch could be more tricky.

2. Gap to capacity of the min-sum approximation: An approach to study the
universality of polar codes over BSCs would be to analyze the performance
of the min approximation described in (8.14) in a theoretical framework. In
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Appendix 8.C, we developed some ideas in that direction, but left the topic as
an open problem.

3. À la mode, list decoding of polar codes: Another problem of practical in-
terest which was not considered in this thesis is the finite block-length per-
formance of polar codes. List decoding was proposed in [54] and shown to
significantly improve this performance. Thus, it would be interesting to study
the effects of a decoding mismatch on the finite-length performance of polar
codes with list decoding.

4. Extensions to non-binary inputs: This thesis focused on polar coding over
binary input channels. It would certainly be valuable to extend our results to
non-binary input alphabets.

5. Playing over arbitrarily varying channels: The arbitrary varying channel
model is quite similar to the non-stationary channel model in its description,
yet quite different in its nature; the channel variations might in fact be caused
by malicious attackers trying to jam the communication. As a result, the
code designer would need to figure out a polar coding strategy to protect the
communication system against these attacks. We believe the material presented
in this thesis should prove useful in the study of this setting.

196



Appendix A

A.1 Linear Codes Achieve the Symmetric Compound
Capacity: A Proof by Strong Typicality

Definition A.1. Given a field (X,+, .), we say that a code C ⊂ XN is linear if it is a
vector space. Therefore, ∀a, b ∈ X, ∀x,y ∈ C, we have ax + by ∈ C.

The channel coding theorem for linear codes states that capacity achieving linear
codes exist. The proof simply relies on Shannon’s proof of the random coding
theorem. Here, we follow a similar approach. Using a random coding argument, we
first show in Theorem A.2 that Icomp(W) = minW∈W I(W ) can be achieved in the
compound case. Then, we extend the result to linear codes in Theorem A.4.

Theorem A.2. Let W be a finite set of channels with input alphabet X, output
alphabet Y, uniform input distribution and transition probabilities W (y|x) where
x ∈ X and y ∈ Y for each W ∈W. Then, there exists a block code of block-length
N and rate R ≥ 0 such that R ≤ Icomp(W) and, for any ξ > 0, the average block
decoding error probability Pe, avg < ξ with ξ → 0 as N →∞.

The proof of the theorem will use the notion of strong typicality introduced in
Definition 8.21. Before we start the proof, we give a useful lemma related to strong
typicality.

Lemma A.3. Let ZN
1 be a sequence of random variables drawn identically inde-

pendently according to the product distribution
∏

i P (zi). Given another product
distribution

∏
iQ(zi), we have

P
[
zN1 ∈ T

N,ε
Q

]
= exp2 {−N [Div(Q‖P )±O(ε)]} ,

where Div(Q‖P ) is the Kullback-Leibler divergence.
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Proof of Lemma A.3. We denote z = zN1 . Then

P
[
z ∈ T

N,ε
Q

]
=
∑

z∈TN,εQ

P (z1) . . . P (zN)

=
∑

z∈TN,εQ

∏
z∈Z

P (z)N(Q(z)±ε)

=
∑

z∈TN,εQ

exp2

{
N

[∑
z∈Z

Q(z) logP (z)±O(ε)

]}

(1)
= exp2 {N [HQ(Z)± ε]} exp2

{
N

[∑
z∈Z

Q(z) logP (z)±O(ε)

]}
= exp2 {−N [Div(Q‖P )±O(ε)]}

where (1) follows by the strong asymptotic equipartition property and HQ(Z) is the
entropy of the random variable Z ∼ Q(z).

Proof of Theorem A.2. We assume that for each messagem = 1, . . . ,M the encoder
generates the codewords using the function Enc : {1, . . . ,M} → XN :

Enc(m) = xm = {xN1 }m,

where each element of the m-th codeword {xi}m are chosen i.i.d. from P (x). Given
the output sequence y = yN1 , the decoder makes a decision using the function
Dec : YN → {1, . . . ,M} ∪ 0:

Dec(y) =


m, if m is the unique message such that

(Enc(m),y) ∈
⋃
W

T
N,ε
PW

0, otherwise

,

where PW stands for the joint distribution P (x)W (y|x). Let the block decoding
error probability of a message m be Pe,m. We note that

Pe, avg =
M∑
m=1

1

M
E[Pe,m] = E[Pe,m],

as by symmetry E[Pe,1] = · · · = E[Pe,M ]. The decoder makes an error if and only if

• (xm,y) /∈
⋃
W

T
N,ε
PW , or

• For some m′ 6= m, (xm′ ,y) ∈
⋃
W

T
N,ε
PW .
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Hence,

E[Pe,m] ≤ P

[
(xm,y) /∈

⋃
W

T
N,ε
PW

]
+
∑
m′ 6=m

P

[
(xm′ ,y) ∈

⋃
W

T
N,ε
PW

]
.

As the codewords generated by the encoder are independent, we can deduce that, for
any m′ 6= m, the pair (xm′ ,y) has probability

∏
i P ({xi}m′)PWT (yi), where WT is

the true channel. Therefore,

P
[
(xm′ ,y) ∈ T

N,ε
PW

]
= exp2 {−N [Div (P (x)W (y|x)‖P (x)PWT (y))±O(ε)]}

= exp2

{
−N

[∑
x,y

P (x)W (y|x) log
W (y|x)

PW (y)
+
∑
y

PW (y) log
PW (y)

PWT (y)
±O(ε)

]}
≤ exp2 {−N [I(W )−O(ε)]} .

Due to the strong law of large numbers, P

[
(xm,y) /∈

⋃
W

T
N,ε
PW

]
→ 0. Hence,

Pe, avg ≤
∑
m′ 6=m

P

[
(xm′ ,y) ∈

⋃
W

T
N,ε
PW

]
≤
∑
m′ 6=m

∑
W

P
[
(xm′ ,y) ∈ T

N,ε
PW

]
≤ |W| exp2 {−N [Icomp(W)−R−O(ε)]} ,

where we assumed M = d2NRe and |W| is finite.

Theorem A.4. Let W be a finite set of channels with input alphabet X, output
alphabet Y, uniform input distribution and transition probabilities W (y|x) for each
W ∈ W. Then, for any rate R ≥ 0 such that R ≤ Icomp(W) and any ξ > 0 there
exists a linear code with block decoding error probability Pe < ξ.

Proof of Theorem A.4. An affine code with block-length N generates its codewords
as follows: x = uGN +v, where u is the message, GN is the generator matrix of the
affine code, and v is an arbitrarily fixed sequence in XN . From [5, Chapter 6], we
know that the codewords of an affine code are pairwise independent. Hence, the proof
of Theorem A.2 can be applied to random affine codes. In addition, we recognize
that the same performance as an affine code can be obtained with a communication
system using a linear code with codewords x = uGN . Hence, we also expect random
linear codes to achieve the symmetric compound capacity Icomp(W). Moreover, since
the average error probability can be made arbitrarily small, we know that there exists
at least one linear code which will have an error probability smaller than or equal to
the average error probability.
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