5,674 research outputs found

    Data mining and fusion

    No full text

    AN EFFICIENT FAULT TOLERANT SYSTEM USING IMPROVED CLUSTERING IN WIRELESS SENSOR NETWORKS

    Get PDF
    In Wireless Sensor Networks (WSNs), Efficient clustering is key for optimal use of available nodes. Fault tolerance to any failure on the network or node level is an essential requirement in this context. Hence, a novel approach towards clustering and multiple object tracking in WSNs is being explored. The Proposed method employs judicious mix of burdening all available nodes including GH (Group Head) to earn energy efficiency and fault tolerance. Initially, node with the maximum residual energy in a cluster becomes group head and node with the second maximum residual energy becomes altruist node, but not mandatory. Later on, selection of cluster head will be based on available residual energy. We use Matlab software as simulation platform to check energy consumption at cluster by evaluation of proposed algorithm. Eventually we evaluated and compare this proposed method against previous method and we demonstrate our model is better optimization than other method such as Traditional clustering in energy consumption rate

    Overview of contextual tracking approaches in information fusion

    Get PDF
    Proceedings of: Geospatial InfoFusion III. 2-3 May 2013 Baltimore, Maryland, United States.Many information fusion solutions work well in the intended scenarios; but the applications, supporting data, and capabilities change over varying contexts. One example is weather data for electro-optical target trackers of which standards have evolved over decades. The operating conditions of: technology changes, sensor/target variations, and the contextual environment can inhibit performance if not included in the initial systems design. In this paper, we seek to define and categorize different types of contextual information. We describe five contextual information categories that support target tracking: (1) domain knowledge from a user to aid the information fusion process through selection, cueing, and analysis, (2) environment-to-hardware processing for sensor management, (3) known distribution of entities for situation/threat assessment, (4) historical traffic behavior for situation awareness patterns of life (POL), and (5) road information for target tracking and identification. Appropriate characterization and representation of contextual information is needed for future high-level information fusion systems design to take advantage of the large data content available for a priori knowledge target tracking algorithm construction, implementation, and application.Publicad

    A Low Power Architectural Framework for Automated Surveillance System with Low Bit Rate Transmission

    Get PDF
    Abstract The changed security scenario of the modern time has necessitated increased and sophisticated vigilance of the countries' borders. The technological challenges involved in accomplishing such feat of automated security system are many and require research at the components-and-algorithms as well as the architectural levels.  This paper proposes an architectural framework for automated video surveillance comprising a network of sensors and closed circuit television cameras as well as proposing algorithmic/component research of software and hardware for the core functioning of the framework, such as: communication protocols, object detection, data-integration, object identification, object tracking, video compression, threat identification, and alarm generation. In this paper, we are addressing some general topological and routing features that would be adopted in our system. There are two types of data with regard to data communication – video stream and object detection. The network is broken down into several disjoint, almost equal zones. A zone have one or more one cluster. A zone manager is chosen among the cluster heads depending on their relative residual energies. There are several levels of control that could be implemented with this arrangement with localized decision made, to get distributed effect at all levels. A cell tracks each target in its zone. If the target moves out of the range of a cell, the cell manager will send the target description to estimated next cell. The next cell starts tracking the target. If the estimated cell is wrongly chosen, corrections will be made by the cluster heads to get the new target-tracking. We also propose bitrate reduction algorithms to accommodate the limited bandwidth. One of the main feature of this paper is introducing a Low-Power Low-Bit rate video compression algorithm to accommodate the low power requirements at sensor nodes, and the low bit rate requirement for the communication protocol. We proposed two algorithms the ALBR and LPHSME. ALBR is addressing low bit rate required for sensors network with limited bandwidth which achieves a reduction in Average number of bits per Iframe by approximately 60% in case of low motion video sequences and 53% in case of fast motion video sequences . LPHSME addresses low power requirements of multi sensor network that has limited power batteries. The performance of the proposed LPHSME algorithm versus full search and three step search indicates  a reduction in motion estimation time by approximately 89% in case of low motion video sequences (e.g., Claire ) and 84% in case of fast motion video sequences. The reduced complexity of  LPHSME results in low power requirements
    • …
    corecore