7 research outputs found

    Extending a perfect matching to a Hamiltonian cycle

    Get PDF
    Graph TheoryInternational audienceRuskey and Savage conjectured that in the d-dimensional hypercube, every matching M can be extended to a Hamiltonian cycle. Fink verified this for every perfect matching M, remarkably even if M contains external edges. We prove that this property also holds for sparse spanning regular subgraphs of the cubes: for every d ≥7 and every k, where 7 ≤k ≤d, the d-dimensional hypercube contains a k-regular spanning subgraph such that every perfect matching (possibly with external edges) can be extended to a Hamiltonian cycle. We do not know if this result can be extended to k=4,5,6. It cannot be extended to k=3. Indeed, there are only three 3-regular graphs such that every perfect matching (possibly with external edges) can be extended to a Hamiltonian cycle, namely the complete graph on 4 vertices, the complete bipartite 3-regular graph on 6 vertices and the 3-cube on 8 vertices. Also, we do not know if there are graphs of girth at least 5 with this matching-extendability property

    Extending perfect matchings to Hamiltonian cycles in line graphs

    Full text link
    A graph admitting a perfect matching has the Perfect-Matching-Hamiltonian property (for short the PMH-property) if each of its perfect matchings can be extended to a Hamiltonian cycle. In this paper we establish some sufficient conditions for a graph GG in order to guarantee that its line graph L(G)L(G) has the PMH-property. In particular, we prove that this happens when GG is (i) a Hamiltonian graph with maximum degree at most 33, (ii) a complete graph, or (iii) an arbitrarily traceable graph. Further related questions and open problems are proposed along the paper.Comment: 12 pages, 4 figure

    On a family of quartic graphs: Hamiltonicity, matchings and isomorphism with circulants

    Full text link
    A pairing of a graph GG is a perfect matching of the underlying complete graph KGK_{G}. A graph GG has the PH-property if for each one of its pairings, there exists a perfect matching of GG such that the union of the two gives rise to a Hamiltonian cycle of KGK_G. In 2015, Alahmadi et al. proved that the only three cubic graphs having the PH-property are the complete graph K4K_{4}, the complete bipartite graph K3,3K_{3,3}, and the 33-dimensional cube Q3\mathcal{Q}_{3}. Most naturally, the next step is to characterise the quartic graphs that have the PH-property, and the same authors mention that there exists an infinite family of quartic graphs (which are also circulant graphs) having the PH-property. In this work we propose a class of quartic graphs on two parameters, nn and kk, which we call the class of accordion graphs A[n,k]A[n,k], and show that the quartic graphs having the PH-property mentioned by Alahmadi et al. are in fact members of this general class of accordion graphs. We also study the PH-property of this class of accordion graphs, at times considering the pairings of GG which are also perfect matchings of GG. Furthermore, there is a close relationship between accordion graphs and the Cartesian product of two cycles. Motivated by a recent work by Bogdanowicz (2015), we give a complete characterisation of those accordion graphs that are circulant graphs. In fact, we show that A[n,k]A[n,k] is not circulant if and only if both nn and kk are even, such that k4k\geq 4.Comment: 17 pages, 9 figure

    Betwixt and between 2-factor Hamiltonian and perfect-matching-Hamiltonian graphs

    Get PDF
    A Hamiltonian graph is 2-factor Hamiltonian (2FH) if each of its 2-factors is a Hamiltonian cycle. A similar, but weaker, property is the Perfect-Matching Hamiltonian property (PMH-property): a graph admitting a perfect matching is said to have this property if each one of its perfect matchings (1-factors) can be extended to a Hamiltonian cycle. It was shown that the star product operation between two bipartite 2FH-graphs is necessary and sufficient for a bipartite graph admitting a 3-edge-cut to be 2FH. The same cannot be said when dealing with the PMH-property, and in this work we discuss how one can use star products to obtain graphs (which are not necessarily bipartite, regular and 2FH) admitting the PMH property with the help of malleable vertices, which we introduce here. We show that the presence of a malleable vertex in a graph implies that the graph has the PMH-property, but does not necessarily imply that it is 2FH. It was also conjectured that if a graph is a bipartite cubic 2FH-graph, then it can only be obtained from the complete bipartite graph K3,3 and the Heawood graph by using star products. Here, we show that a cubic graph (not necessarily bipartite) is 2FH if and only if all of its vertices are malleable. We also prove that the above conjecture is equivalent to saying that, apart from the Heawood graph, every bipartite cyclically 4-edge connected cubic graph with girth at least 6 having the PMH-property admits a perfect matching which can be extended to a Hamiltonian cycle in exactly one way. Finally, we also give two necessary and sufficient conditions for a graph admitting a 2-edge-cut to be: (i) 2FH, and (ii) PMH.peer-reviewe

    Extending a perfect matching to a Hamiltonian cycle

    No full text
    Graph Theor

    Extending a perfect matching to a Hamiltonian cycle

    No full text
    Graph TheoryRuskey and Savage conjectured that in the d-dimensional hypercube, every matching M can be extended to a Hamiltonian cycle. Fink verified this for every perfect matching M, remarkably even if M contains external edges. We prove that this property also holds for sparse spanning regular subgraphs of the cubes: for every d ≥7 and every k, where 7 ≤k ≤d, the d-dimensional hypercube contains a k-regular spanning subgraph such that every perfect matching (possibly with external edges) can be extended to a Hamiltonian cycle. We do not know if this result can be extended to k=4,5,6. It cannot be extended to k=3. Indeed, there are only three 3-regular graphs such that every perfect matching (possibly with external edges) can be extended to a Hamiltonian cycle, namely the complete graph on 4 vertices, the complete bipartite 3-regular graph on 6 vertices and the 3-cube on 8 vertices. Also, we do not know if there are graphs of girth at least 5 with this matching-extendability property
    corecore