52 research outputs found

    Extending a Brainiac Prover to Lambda-Free Higher-Order Logic

    Get PDF
    International audienceDecades of work have gone into developing efficient proof calculi, data structures, algorithms, and heuristics for first-order automatic theorem proving. Higher-order provers lag behind in terms of efficiency. Instead of developing a new higher-order prover from the ground up, we propose to start with the state-of-the-art superposition prover E and gradually enrich it with higher-order features. We explain how to extend the prover’s data structures, algorithms, and heuristics to λ\lambda λ -free higher-order logic, a formalism that supports partial application and applied variables. Our extension outperforms the traditional encoding and appears promising as a stepping stone toward full higher-order logic

    Extending a Brainiac Prover to Lambda-Free Higher-Order Logic

    Get PDF
    International audienceDecades of work have gone into developing efficient proof calculi, data structures, algorithms, and heuristics for first-order automatic theorem proving. Higher-order provers lag behind in terms of efficiency. Instead of developing a new higher-order prover from the ground up, we propose to start with the state-of-the-art superposition-based prover E and gradually enrich it with higher-order features. We explain how to extend the prover's data structures, algorithms, and heuristics to λ-free higher-order logic, a formalism that supports partial application and applied variables. Our extension outperforms the traditional encoding and appears promising as a stepping stone towards full higher-order logic

    Extending SMT Solvers to Higher-Order Logic

    Get PDF
    International audienceSMT solvers have throughout the years been able to cope with increasingly expressive formulas, from ground logics to full first-order logic (FOL). In contrast, the extension of SMT solvers to higher-order logic (HOL) is mostly un-explored. We propose a pragmatic extension for SMT solvers to support HOL reasoning natively without compromising performance on FOL reasoning, thus leveraging the extensive research and implementation efforts dedicated to efficient SMT solving. We show how to generalize data structures and the ground decision procedure to support partial applications and extensionality, as well as how to reconcile quantifier instantiation techniques with higher-order variables. We also discuss a separate approach for redesigning an HOL SMT solver from the ground up via new data structures and algorithms. We apply our pragmatic extension to the CVC4 SMT solver and discuss a redesign of the veriT SMT solver. Our evaluation shows they are competitive with state-of-the-art HOL provers and often outperform the traditional encoding into FOL

    Extensional Higher-Order Paramodulation in Leo-III

    Get PDF
    Leo-III is an automated theorem prover for extensional type theory with Henkin semantics and choice. Reasoning with primitive equality is enabled by adapting paramodulation-based proof search to higher-order logic. The prover may cooperate with multiple external specialist reasoning systems such as first-order provers and SMT solvers. Leo-III is compatible with the TPTP/TSTP framework for input formats, reporting results and proofs, and standardized communication between reasoning systems, enabling e.g. proof reconstruction from within proof assistants such as Isabelle/HOL. Leo-III supports reasoning in polymorphic first-order and higher-order logic, in all normal quantified modal logics, as well as in different deontic logics. Its development had initiated the ongoing extension of the TPTP infrastructure to reasoning within non-classical logics.Comment: 34 pages, 7 Figures, 1 Table; submitted articl

    Superposition for Lambda-Free Higher-Order Logic

    Get PDF
    We introduce refutationally complete superposition calculi for intentional and extensional clausal λ\lambda-free higher-order logic, two formalisms that allow partial application and applied variables. The calculi are parameterized by a term order that need not be fully monotonic, making it possible to employ the λ\lambda-free higher-order lexicographic path and Knuth-Bendix orders. We implemented the calculi in the Zipperposition prover and evaluated them on Isabelle/HOL and TPTP benchmarks. They appear promising as a stepping stone towards complete, highly efficient automatic theorem provers for full higher-order logic

    Formalizing the Metatheory of Logical Calculi and Automatic Provers in Isabelle/HOL (Invited Talk)

    Get PDF
    International audienceIsaFoL (Isabelle Formalization of Logic) is an undertaking that aims at developing formal theories about logics, proof systems, and automatic provers, using Isabelle/HOL. At the heart of the project is the conviction that proof assistants have become mature enough to actually help researchers in automated reasoning when they develop new calculi and tools. In this paper, I describe and reflect on three verification subprojects to which I contributed: a first-order resolution prover, an imperative SAT solver, and generalized term orders for λ-free higher-order logic

    Superposition with Lambdas

    Get PDF
    We designed a superposition calculus for a clausal fragment of extensional polymorphic higher-order logic that includes anonymous functions but excludes Booleans. The inference rules work on βη\beta\eta-equivalence classes of λ\lambda-terms and rely on higher-order unification to achieve refutational completeness. We implemented the calculus in the Zipperposition prover and evaluated it on TPTP and Isabelle benchmarks. The results suggest that superposition is a suitable basis for higher-order reasoning
    corecore