36 research outputs found

    Revisiting acyclicity and guardedness criteria for decidability of existential rules

    Get PDF
    Abstract. Existential rules, i.e. Datalog extended with existential quantifiers in rule heads, are currently studied under a variety of names such as Datalog+/-, ∀∃-rules, and tuple-generating dependencies. The renewed interest in this formalism is fuelled by a wealth of recently discovered language fragments for which query answering is decidable. This paper extends and consolidates two of the main approaches in this field -acyclicity and guardedness -by providing (1) complexitypreserving generalisations of weakly acyclic and weakly (frontier-)guarded rules, and (2) a novel formalism of glut-(frontier-)guarded rules that subsumes both. This builds on an insight that acyclicity can be used to extend any existential rule language while retaining decidability. Besides decidability, combined query complexities are established in all cases

    Tractable Query Answering and Optimization for Extensions of Weakly-Sticky Datalog+-

    Full text link
    We consider a semantic class, weakly-chase-sticky (WChS), and a syntactic subclass, jointly-weakly-sticky (JWS), of Datalog+- programs. Both extend that of weakly-sticky (WS) programs, which appear in our applications to data quality. For WChS programs we propose a practical, polynomial-time query answering algorithm (QAA). We establish that the two classes are closed under magic-sets rewritings. As a consequence, QAA can be applied to the optimized programs. QAA takes as inputs the program (including the query) and semantic information about the "finiteness" of predicate positions. For the syntactic subclasses JWS and WS of WChS, this additional information is computable.Comment: To appear in Proc. Alberto Mendelzon WS on Foundations of Data Management (AMW15

    Bounded Implication for Existential Rules

    Get PDF
    The property of boundedness in Datalog formalizes whether a set of rules can be equivalently expressed by a non-recursive set of rules. Existential rules extend Datalog to the presence of existential variables in rule heads. In this paper, we introduce and study notions of boundedness for existential rules. We provide a notion of weak boundedness and a notion of strong boundedness for a rule set, and show that they correspond, respectively, to the notions of first-order rewritability of atomic queries and first-order rewritability of conjunctive queries over the set. While weak and strong boundedness are in general not equivalent, we show that, for some notable subclasses of existential rules, i.e., Datalog, single-head binary rules, and frontier-guarded rules, the two notions coincide

    Revisiting Chase Termination for Existential Rules and their Extension to Nonmonotonic Negation

    Full text link
    Existential rules have been proposed for representing ontological knowledge, specifically in the context of Ontology- Based Data Access. Entailment with existential rules is undecidable. We focus in this paper on conditions that ensure the termination of a breadth-first forward chaining algorithm known as the chase. Several variants of the chase have been proposed. In the first part of this paper, we propose a new tool that allows to extend existing acyclicity conditions ensuring chase termination, while keeping good complexity properties. In the second part, we study the extension to existential rules with nonmonotonic negation under stable model semantics, discuss the relevancy of the chase variants for these rules and further extend acyclicity results obtained in the positive case.Comment: This paper appears in the Proceedings of the 15th International Workshop on Non-Monotonic Reasoning (NMR 2014

    Loop Restricted Existential Rules and First-order Rewritability for Query Answering

    Full text link
    In ontology-based data access (OBDA), the classical database is enhanced with an ontology in the form of logical assertions generating new intensional knowledge. A powerful form of such logical assertions is the tuple-generating dependencies (TGDs), also called existential rules, where Horn rules are extended by allowing existential quantifiers to appear in the rule heads. In this paper we introduce a new language called loop restricted (LR) TGDs (existential rules), which are TGDs with certain restrictions on the loops embedded in the underlying rule set. We study the complexity of this new language. We show that the conjunctive query answering (CQA) under the LR TGDs is decid- able. In particular, we prove that this language satisfies the so-called bounded derivation-depth prop- erty (BDDP), which implies that the CQA is first-order rewritable, and its data complexity is in AC0 . We also prove that the combined complexity of the CQA is EXPTIME complete, while the language membership is PSPACE complete. Then we extend the LR TGDs language to the generalised loop restricted (GLR) TGDs language, and prove that this class of TGDs still remains to be first-order rewritable and properly contains most of other first-order rewritable TGDs classes discovered in the literature so far.Comment: Full paper version of extended abstrac
    corecore