4 research outputs found

    A Charge-Recycling Scheme and Ultra Low Voltage Self-Startup Charge Pump for Highly Energy Efficient Mixed Signal Systems-On-A-Chip

    Get PDF
    The advent of battery operated sensor-based electronic systems has provided a pressing need to design energy-efficient, ultra-low power integrated circuits as a means to improve the battery lifetime. This dissertation describes a scheme to lower the power requirement of a digital circuit through the use of charge-recycling and dynamic supply-voltage scaling techniques. The novel charge-recycling scheme proposed in this research demonstrates the feasibility of operating digital circuits using the charge scavenged from the leakage and dynamic load currents inherent to digital design. The proposed scheme efficiently gathers the “ground-bound” charge into storage capacitor banks. This reclaimed charge is then subsequently recycled to power the source digital circuit. The charge-recycling methodology has been implemented on a 12-bit Gray-code counter operating at frequencies of less than 50 MHz. The circuit has been designed in a 90-nm process and measurement results reveal more than 41% reduction in the average energy consumption of the counter. The total energy savings including the power consumed for the generation of control signals aggregates to an average of 23%. The proposed methodology can be applied to an existing digital path without any design change to the circuit but with only small loss to the performance. Potential applications of this scheme are described, specifically in wide-temperature dynamic power reduction and as a source for energy harvesters. The second part of this dissertation deals with the design and development of a self-starting, ultra-low voltage, switched-capacitor (SC) DC-DC converter that is essential to an energy harvesting system. The proposed charge-pump based SC-converter operates from 125-mV input and thus enables battery-less operation in ultra-low voltage energy harvesters. The charge pump does not require any external components or expensive post-fabrication processing to enable low-voltage operation. This design has been implemented in a 130-nm CMOS process. While the proposed charge pump provides significant efficiency enhancement in energy harvesters, it can also be incorporated within charge recycling systems to facilitate adaptable charge-recycling levels. In total, this dissertation provides key components needed for highly energy-efficient mixed signal systems-on-a-chip

    Design of a smart power manager for digital communication systems

    Get PDF
    Portable devices, like mobile phones, are in an increasing need for power due to the growing complexity of applications and services provided by them. At the same time, mobile devices need to adapt their communication techniques so as to be able to work with different communication standards. The need for a multistandard communication circuit arises to overcome such a problem. Unfortunately, these circuits need to consume a considerable amount of power to achieve their designed goal. The researchers use the Dynamic Voltage / Frequency Scheduling technique to reduce power consumption in digital systems. This method employs the task time to schedule the system supply voltage along the task time to reduce the overall consumed power. Since the task time in digital communication systems is not defined, the application of the dynamic voltage/frequency technique on such systems is not possible. In this research, a closer look at the digital circuit power dissipation is given. Then, a new power model is introduced which can predict the digital circuit instantaneous power dissipation accurately. This model is used to build a power control strategy that makes use of the frequency as a control parameter. A setup is carried out using MATLAB to simulate the power of a NOT gate, a multiplexer circuit, a full adder and a two-bit full adder. The results are compared with OrCAD Cadence simulation for the same circuits. The results show that the new model can simulate the power dissipation accurately under different voltages, frequencies, and different technology sizes. In the second part of this research, a smart power manager is designed based on a fuzzy logic controller. The smart power manager makes use of the measured power and the input frequency to produce the required voltage to the digital system. The smart power manager is tested on a multiplexer circuit, two-bit full adder circuit, and cyclic redundancy check circuits. The results of the simulations show that the manager can reduce up to 60% of the consumed power by these circuits in low frequencies and up to 5% of the consumed power in high frequencies. The smart power manager can fulfil the purpose of the dynamic voltage/frequency scheduling technique without the need for the task time. In the final part of this research, the Long Term Evolution (LTE) system is taken as a case study. A unique cyclic redundancy check circuit is designed. This circuit is directed to work with LTE systems, so it has three generators integrated into it. The circuit can select the needed cyclic redundancy generator and produce the required remainder for the LTE system. The smart power manager is modified to supply both the voltage and frequency to the new cyclic redundancy check circuit so that it can control its consumed power. The selection of frequency depends on the used cyclic redundancy generator and the used modulation technique. The selected frequency ensures that the data rate between the LTE stages is constant. The results of the setup show that the smart power manager is capable of reducing the power of the circuit by more than 40% if it was operating at a constant frequency. The smart power manager can lower the power of the cyclic redundancy check circuit by more than 20% if the circuit is running under variable clock frequency. The conclusion driven from the results above proves that the SPM can reduce the consumed power in multi standard systems and Software Defined Radio (SDR) circuits

    Invited Paper Extended Dynamic Voltage Scaling for Low Power Design

    No full text
    Dynamic voltage scaling (DVS) is a popular approach for energy reduction of integrated circuits. Current processors that use DVS typically have an operating voltage range from full to half of the maximum Vdd. However, it is possible to construct designs that operate over a much larger voltage range: from full Vdd to subthreshold voltages. This possibility raises the question of whether a larger voltage range improves the energy efficiency of DVS. First, from a theoretical point of view, we show that for subthreshold supply voltages leakage energy becomes dominant, making “just in time completion” energy inefficient. We derive an analytical model for the minimum energy optimal voltage and study its trends with technology scaling. Second, we compare several different low-power approaches including MTCMOS, standard DVS and extended DVS to subthreshold operation. Study of real applications on commercial processor shows that extended DVS has the best energy efficiency. Therefore, we conclude that extending the voltage range below Vdd /2 will improve the energy efficiency for most processor designs.
    corecore