1,026 research outputs found

    Extended balancing of continuous LTI systems:A structure-preserving approach

    Get PDF
    In this paper, we treat extended balancing for continuous-time linear time-invariant systems. We take a dissipativity perspective, thus resulting in a characterization in terms of linear matrix inequalities. This perspective is useful for determining a priori error bounds. In addition, we address the problem of structure-preserving model reduction of the subclass of port-Hamiltonian systems. We establish sufficient conditions to ensure that the reduced-order model preserves a port-Hamiltonian structure. Moreover, we show that the use of extended Gramians can be exploited to get a small error bound and, possibly, to preserve a physical interpretation for the reduced-order model. We illustrate the results with a large-scale mechanical system example. Furthermore, we show how to interpret a reduced-order model of an electrical circuit again as a lower-dimensional electrical circuit

    Coprime factor model reduction for discrete-time uncertain systems

    Full text link
    © 2014 Elsevier B.V. All rights reserved. This paper presents a contractive coprime factor model reduction approach for discrete-time uncertain systems of LFT form with norm bounded structured uncertainty. A systematic approach is proposed for coprime factorization and contractive coprime factorization of the underlying uncertain systems. The proposed coprime factor approach overcomes the robust stability restriction on the underlying systems which is required in the balanced truncation approach. Our method is based on the use of LMIs to construct the desired reduced dimension uncertain system model. Closed-loop robustness is discussed under additive coprime factor perturbations

    On second-order cone positive systems

    Full text link
    Internal positivity offers a computationally cheap certificate for external (input-output) positivity of a linear time-invariant system. However, the drawback with this certificate lies in its realization dependency. Firstly, computing such a realization requires to find a polyhedral cone with a potentially high number of extremal generators that lifts the dimension of the state-space representation, significantly. Secondly, not all externally positive systems posses an internally positive realization. Thirdly, in many typical applications such as controller design, system identification and model order reduction, internal positivity is not preserved. To overcome these drawbacks, we present a tractable sufficient certificate of external positivity based on second-order cones. This certificate does not require any special state-space realization: if it succeeds with a possibly non-minimal realization, then it will do so with any minimal realization. While there exist systems where this certificate is also necessary, we also demonstrate how to construct systems, where both second-order and polyhedral cones as well as other certificates fail. Nonetheless, in contrast to other realization independent certificates, the present one appears to be favourable in terms of applicability and conservatism. Three applications are representatively discussed to underline its potential. We show how the certificate can be used to find externally positive approximations of nearly externally positive systems and demonstrated that this may help to reduce system identification errors. The same algorithm is used then to design state-feedback controllers that provide closed-loop external positivity, a common approach to avoid over- and undershooting of the step response. Lastly, we present modifications to generalized balanced truncation such that external positivity is preserved where our certificate applies

    A gramian-based approach to model reduction for uncertain systems

    Full text link
    The technical note considers a problem of model reduction for a class of uncertain systems with structured norm bounded uncertainty. The technical note introduces controllability and observability Gramians in terms of certain parameterized algebraic Riccati inequalities. Based on these Gramians, three model reduction approaches are investigated for the underlying uncertain systems. © 2010 IEEE
    • …
    corecore